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1. Introduction. In recent years Boolean Algebra has come to play a promi­
nent role in the analysis and synthesis of switching circuits [1; 4]. One general 
synthesis problem in which this algebra has proved useful is the following. Let 
there be given n input leads each of which can assume one of two possible states. 
It is desired to construct a network with these n input leads and a single out­
put lead also capable of assuming either of two states. Furthermore, the state 
of the output lead for each of the 2n states of the input leads is prescribed. Tech­
niques are now available for solving this problem and under various assumptions 
as to the meaning of "best," techniques for finding the "best" network are also 
available [1]. 

The operation performed by the above network can be described by a Boolean 
function of n variables. Thus if the variables xi, x2> . . • , xn represent the states 
of the n input leads (each x takes values 0 or 1), then the state of the output 
lead can be given by a Boolean function/(xi, ). Specifying the function 
/ determines the synthesis problem and under suitable restrictions leads to the 
synthesis of a definite physical network to realise / . From a physical point of 
view, however, it is immaterial how the n input leads are labelled or which of 
the two states any lead can assume is called zero or one. Therefore any Boolean 
function that can be obtained from / by permuting and (or) complementing 
one or more variables must be regarded as corresponding to the same physical 
network a s / . It is convenient to define two Boolean functions of n variables to 
be of the same type if one of the functions can be obtained from the other by 
the process of permuting and (or) complementing one or more variables. There 
are then only as many distinct physical switching networks of the sort described 
above as there are types of Boolean functions of n variables. It is the purpose 
of this paper to enumerate the types of Boolean functions. 

The argument to be used in determining Nn, the number of types of Boolean 
functions of n variables, is as follows. In §2 it is noted that there are only 
H = 22n possible Boolean functions of n variables and that each of these /x 
functions can be written as a linear combination of a certain set of 2n simple 
Boolean functions, sv. The operations of permuting and (or) complementing 
one or more of the n variables of a Boolean function constitute a finite group, 
0n, simply isomorphic with the hyper-octahedral group. Under the operations 
of 0n, the sv are permuted among themselves, as are also the JJL Boolean functions 
of n variables. The permutations of the latter furnish a representation, D, of 
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Ony which is shown to be reducible containing the identity representation Nn 

times. The theory of group characters then yields 

Nn = l^—^lncXc 

where nc is the number of elements of class C of 0nj xc in the character of class 
C in the representation D, and the summation is over all classes of 0n. Similar 
considerations give rise to a formula for Nn

{m\ the number of types of Boolean 
functions that are a linear sum of exactly m of the functions sv. To make com­
putations from the formulae of §2, it is necessary to know nc, Xc and quantities 
A/C) which serve to define the cycle structure of the permutation of the sv 

induced by any element of class C of 0n. In §3 these quantities are determined. 
A resume of the computational procedure is given in §4 and results of computa­
tions performed are presented. 

2. Formulae for Nn and Nn
(m). It is well known that any Boolean function 

of n variables can be uniquely expanded in the form 
2 » - l 

( I ) Ju{Xlj #2» • • • , %n) — 2^t €uv Sv 

where the euv can take values zero or one and the sv are the 2n simple Boolean 
functions 

So = X\ X2 • • . Xn, Si = Xi X2 • • • Xn, . . . , S2n—1 ~ #1 X2 • . . Xn , 

i.e., the functions obtained by priming the product XiX2. . . xn in all possible 
2n ways. (The prime is used to denote complementation.) Since each e can 
assume one of two values, there are only /JL = 22n possible Boolean functions of 
n variables so that w = 0, l , . . . , / x — l . 

Agreeing to arrange the x's of any sv so that their subscripts are in natural 
order, we can represent any 5 by an n-position symbol consisting of zeros or 
ones, the ith position of the symbol being zero if xt is not primed and one 
otherwise. We agree to label the s's so that the symbol for sv is the integer v 
expressed in binary notation. Similarly each fu can be specified by the 2n zeros 
or ones, euv, and we order the/ 's so that u is the number whose binary expression 
is euo eu\ . . . €M[2»-i]. 

It is readily seen that the operations of permuting and (or) complementing the 
variables of a Boolean function form a finite group, 0n, the multiplication law 
being defined by successive application of the operators to / . We adopt the 
customary cycle notation for permutations so that, for example, a = (123) (45) 
applied t o / means replace x\ by x2j replace x2 by xz, etc. Complementation may 
be expressed by an operator Nt where i is written in binary notation. Thus 
iVioon applied t o / means prime Xi, x4, and x5, and Nta means first apply a t o / , 
then apply Nt. 

We now define the complementation operator Nffi to mean the operator Nj 
where j is the binary expression obtained by applying the permutation a to 
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the places of the binary symbol i. For example, 

-Af(125)(64) 101100 = iVooiOll , 

the symbol in the first place being replaced by the symbol in the second place, 
etc. With this convention, the law Nta = <rNffil aNt = Npia, p = <r~l is readily 
established so that every element of On can be written in the form Ni<r. Since 
there are 2n complementation operators Niy and n\ permutation operators, o-, 
the order of On is 2nnl. The group is recognized as being simply isomorphic to 
the hyper-octahedral group [5; 6], the group of symmetries of the hyper-
octahedron in ^-dimensional Euclidean space. This group is also the group of 
symmetries of the hyper-cube in w-space, and the permutations of the sv effected 
by the elements of On correspond to the permutations of the vertices of the 
hyper-cube under the various symmetry operations. 

The totality of operations, H, of On which leave any particular fu invariant 
form a subgroup of On of order h, say. H will possess r = 2nn\/h left cosets under 
On. It is easily shown then that operating on fu by all the elements of On will 
result in exactly r distinct Boolean functions. These r functions are of one type 
and are all the functions of this type. The permutations of these r functions 
under the operations of On when written as permutation matrices furnish a 
representation of On of dimension r. This representation is just the permutation 
representation furnished by the left cosets of H and is therefore reducible 
containing the identity representation exactly once [2, p. 94]. 

Now the fx Boolean functions (1) are also permuted among themselves under 
the operations of On and these permutations when written as permutation 
matrices furnish a representation, D, of dimension /z of On. From the remarks 
of the preceding paragraph, it follows that D is reducible since it contains each 
of the r-dimensional representations once. D therefore contains the identity 
representation exactly Nn times, where Nn is the number of types of Boolean 
functions of n variables, and we can write 

(2) Nn = ^r-j I > c x c 

Here nc is the number of elements of class C of Ont xc is the character of class C 
in the representation D, and the summation is over all classes of On. 

Under the operations of Onf the quantities sv are clearly permuted among them­
selves. It is easily shown, however, that two elements of the same class of On 

give rise to permutations of the sv that have the same cycle structure. We are 
thus led to investigate the number of fu left invariant when the sv are permuted 
according to some fixed cycle structure, for this number is the character of the 
representation D of the class of On which permutes the sv according to this fixed 
cycle structure. 

Let o- be a permutation of the sv into K cycles of length X* (i = 1 ,2 , . . . ,K). 
We have 

t X- = 2". 
1 
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Consider now the matrix euv of equation (1). The /x rows of this array are the 
binary representations of the integers from 0 to /x — 1, and these rows may 
be labelled by the fu. Similarly the columns may be labelled by the sv. On 
permuting the columns of the e matrix according to a, the rows considered as 
numbers expressed in binary form are no longer in natural order and their new 
order specifies the permutation of the fs induced by o\ Clearly only those / ' s 
will be left invariant which have either all zeros or all ones in the Xt particular 
columns effected by the ith cycle of a (i = 1, 2, . . . , K). Of the /x rows of e, 
a fraction 2/2Xi have this property, so that there are 

Mn[2/2X l = 2* 
i=l 

fs left invariant under a. We can therefore rewrite (2) in the form 

(3) ^ = - 1 M 1 E 2 K ( C V 

where K(C) is the number of cycles in which the sv are permuted by any element 
of class C of 0n. 

In a similar manner we can obtain a formula for the number of types of 
Boolean functions, Nn

(m\ that have exactly m non-zero terms in their expansion 
(1). Under the operations of 0n, these fs are permuted among themselves and 
these permutations written as matrices furnish a reducible representation of 
0n. If the character of this representation is xc(m\ we have 

(4) tf.<"> = 2 ^ i : « c x c < ~ ) . 

To determine xc(m) consider the rows of the matrix euv of (1) corresponding to 
those 

o 
fs containing exactly m s1 s. Let a be the permutation of the sv induced by 
an element of class C of 0n and let a consist of cycles of length 

/ K(C) \ 

\ r (i=l,2,...,K; ÇX/C) = 2"J. 
Xc(m) is the number of these rows left invariant on permuting the columns 
according to a and is therefore the number of ways in which m can be obtained 
as a sum of terms taken from the series Xi, X2, . . . , X ,̂ no term occurring 
more than once in any one sum. Thus xc(m) is the coefficient of ym in 

K(C) 

n a+/) 
where a = Xi(C). Equation (4) now becomes 

(5) Nn
{m) = coefficient of yn in - , - £ ncU (1 + / ) 

Z 71. ï = i 
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where the sum is over all classes of 0n and the elements of class C effect a 
permutation of the s's with cycle structure \ / c ) . 

Formula (5) has been given by Pôlya [3] who has computed values of Nn
(m) 

for n — 1,2, 3, 4. Pôlya, however, gives no means of determining the quantities 
nc and a — X*(C). It is believed that formula (3) for Nn is new. 

Equation (3) is a special case of the solution to the following more general 
enumeration problem. Each vertex of the hyper-cube in Euclidean w-space can 
be marked with one of p colors. Two such paintings of the hyper-cube are said 
to be of the same type if one can be obtained from the other by a symmetry 
operation of the hyper-cube. The number of types of paintings is 

3. Classes of 0n and the quantities nc and x / c ) . Details of the classes 
of 0n have been worked out by Young [6]. It will therefore suffice here to set 
down briefly a notation for the classes and a system for determining the class 
of a given element, iVV, of 0n. 

Let (ab . . .) be a typical cycle of a where a, b, . . . are certain of the symbols 
1, 2, . . . , n. The complementation operator Nt will indicate that either an 
even or an odd number of the variables xa, xb, . . . are to be primed by the opera­
tion Ni<r. In the former case we refer to (ab . . .) as an £-cycle of the element 
Ni<r, in the latter case an 0-cycle. With this terminology, the elements of 0n 

can be classified by the following scheme. Let a consist of at cycles of length i 
so that 

n 
23 ioct = n. 

i 

Let fit be the number of the at cycles of length i that are ^-cycles of iVV, so 
that the possible values of fii are fii = 0, 1, 2 , . . . , at (i = 1 , 2 , . . . , n). To every 
element of On there then corresponds a symbol 

(aha2, . . .an; ft, ft, . . . , A) 

or (a; /3) for short. 
It is shown in [6] that two elements of On are in the same class if and only if 

they have the same (a; /3) symbol. A simple calculation shows that the number 
of elements in the class (a; 13) of On is 

(6) »(«; n = »! E[ YuZ ^ V i > 
i -1 Pz! \OLi — Pi)\l 

and the number of classes in On is 

where the sum is over all partitions of n. 
We now inquire as to the cycle structure of the permutation of the sv induced 

by an operation Nff of the class C of On. Since all elements of the class C permute 
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the s0 in the same cycle structure, it will suffice to consider the effect 
of a particularly simple element of this class. We choose the element 
Ni<r where the complementation operator Nt does not prime any of the 
variables permuted by the e-cycles of N<r and where Nt primes only one 
variable from each set of variables permuted by the various separate o-cycles of 
Na. The permutation of the sv induced by Nta can best be studied by represent­
ing the sv by the numbers from 0 to 2n — 1 written in binary scale and listed in 
natural order in a column. The effect of Nta on the sv is given by first permuting 
the columns of this array according to a, and then in one column corresponding 
to each o-cycle interchanging the role of zero and one. The new array is again 
a list of the numbers from 0 to 2n — 1 in binary scale, and the new order of 
these numbers specifies the permutation of the sv effected by Ntcr. Suppose the 
cycles of a are of length 

A* (i= 1,2,...,K; Ç x f = « j . 

In the original array in any given row and in the \ t columns corresponding to the 
ith cycle of a, there will appear zeros and ones specifying in binary form a 
number, £*, between 0 and 2Xi — 1. We can accordingly specify the 2n sv by 
X-place symbols 

tti,f2,...,fc), it = 0 , 1 , . . . , 2X* - 1. 

The ith cycle of a, whether an e-cycle or an o-cycle of iVV, has the effect of per­
muting the 2Xi values of £*. Let us suppose the cycle structure of this permutation 
is 

« / ' > U= 1,2,...,?'), 

i.e., there are 

cycles of length j in the permutation of the 2X* values of £u induced by the 
operation of the ith cycle of a. (This number depends on whether the cycle is 
an e- or an 0-cycle of Ni<r.) It is clear that a knowledge of the as suffices to de­
fine the cycle structure of the permutation of the 5„asa function of Nta. 

For example, if K = 2 and the permutation of the values of £i has a cycle 
of length a and the permutation of the values of £2 has a cycle of length b, then 
the sv will have ab/c cycles of length c, where c is the least common multiple of 
a and b. This may be seen as follows. Without loss of generality we may assume 
the cycle of length a to be (12 . . . a) and the cycle of length b to be (12 . . . b) 
and a < b. We wish to determine the cycle structure of the permutation of the 
ab symbols (£i, £2) where £i = 1, 2, . . . , a; £2 = 1,2, ... ,b. Now (1, 1) will 
be replaced by (2, 2), (2, 2) by (3, 3), . . . , (a, a) by (1, a + 1), etc. We return 
to (1, 1) after c steps. Similarly, starting with any of the ab symbols (£i, £2) the 
original symbol is again obtained after c steps. Since there are only ab symbols, 
they must be permuted in ab/c cycles each of length c. 
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These observations for K = 2 can be extended to arbitrary K. The following 
simple calculus for determining the cycle structure of the permutations of the 
sv is then obtained. For each i = 1, 2, . . . , K form the expression 

p(xo = ! > ? % 
in the indeterminates Zj. Define multiplication of the z's by 

(7) zazb = (ab/c) zc 

where c is the least common multiple of a and b (an associative law of multiplica­
tion when extended to three or more factors). The product 

p= n-PM 
i 

can then be expanded in the form X atZi. The a{ are positive integers giving the 
number of cycles of length i in the permutation of the sv induced by Na. 

There remains only the problem of obtaining the quantities 
(Xi) 

aj . 

These quantities depend not only on the length A* of the cycle in question, but 
on whether the cycle is an e- or 0-cycle. For an e-cycle, a/X) can be obtained as 
follows. Let the numbers from 0 to 2X — 1 be written in binary form in natural 
order in a column. The effect of an e-cycle of length X on this array may be 
obtained by removing the left-hand column of the array and writing it in again 
as the right-hand column. Each original binary number is then doubled modulo 
2X — 1, and the permutation is easily written; e.g., for X = 3 we have (0) 
(1, 2, 4) (3, 6, 5) (7) and a^ = 2, a3

(3) = 2 and all other a™ are zero. The 
0-cycle case can be obtained from the e-cycle case by interchanging the zeros 
and ones in the column of the array in which these symbols alternate from 
row to row. This corresponds to left-multiplying the permutation obtained in 
the e-cycle case by the permutation 

(0,1) ( 2 , 3 ) . . . ( 2 n - 2, 2n - 1). 

For X = 3, we find (0, 1, 3, 7, 6, 4) (2, 5) whence a2
(3) = 1, «6(3) = 1 and all 

other a(3) are zero. Table I lists the P(X) for e- and ^-cycles of length X = 1, 2, 3, 
4, 5, 6. 

P(Xo) 
z2 

ZA 

z2 + ZQ 

2z8 

Z<L + 3 Zio 
Zi + 5 Zn 

TABLE I 

X PQO 
1 2 sx 
2 2 z\ + z2 

3 2 zi + 2 z3 

4 2 z\ + z2 + 3 24 

5 2 z\ + 6 z$ 
6 2 2i + z2 + 2 zz + 9 2, 
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It can be shown that the rows of Table I can be extended successively to 
larger values of X as follows. For X = n and the case of an e-cycle, the only s's 
occurring in P(Xe) (e denotes that the cycle of length X is an e-cycle) are those 
whose subscripts are integral divisors of n, and every such z occurs. Every such 
z except zn has occurred previously in the P(\e) table and the coefficients of 
these s's in P(ne) are taken to be identical with the coefficients in previous 
occurrences of these z's. Thus 

n - l 

•P(««) = J2 aiZi + XZn 
1 

where only x is unknown; x is then given by 

* = ( 2 * - E*«<) / »• 

P(n0) is obtained in a somewhat similar manner. The only z's occurring in 
P(n0) are those whose subscripts are integral divisors of 2n but are not integral 
divisors of n, and every such z occurs. All such z's except Zin have occurred 
previously in the P(X0) table and the coefficients of these zs in P{n0) are taken 
to be identical with the coefficients of these z's in previous occurrences. P(n0) 
is thus 

2 n - l 

/ J Oui Zi ~t~ X Zn 

1 

where only x is unknown; x is given by 

x = \2n - ^ia\/2n. 

4. Computational scheme and results of computations. The procedure 
developed above may be summarized as follows. A partition of n into positive 
integers, 

K 

n = S XÏ, 
i 

is written by listing the X t in any order. The subscript e or o is added to each X t. 
Each of the distinct possible symbols obtained in this manner specifies a class of 
0n and all classes of 0n are obtained. The cycle structure of the permutation of 
the sv induced by all elements of any class C is obtained by forming 

p= np(xi) = 5><*< 
i 

(using (7)) where the appropriate P(\) are taken from Table I; at is the number 
of cycles of length i in the permutation of the sv induced by an element of class 
C whence the quantities Xi(C) of (5) are obtained. K(C) of (3) is given by XI «< 
and nc by (6) so that Nn and Nn

{m) can then be obtained from (3) and (5). 
This computational scheme was used to obtain the following values of Nn: 

n 1 2 3 4 5 6 

Nn 3 6 22 402 1,228,158 400,507,806,843,728 
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