BULL. AUSTRAL. MATH. SOC. VOL. 5 (1971), 221-225.

Remarks on theorems of Thompson and Freede

A.R. Amir-Moéz and C.R.Perry

Let A be a hermitian transformation on an n-dimensional unitary space E_n , with proper values $a_1 \geq \ldots \geq a_n$. Let M be a proper subspace of E_n . Suppose $b_1 \geq \ldots \geq b_h$ are the proper values of $A \mid M$ and $c_1 \geq \ldots \geq c_k$ are the proper values of $A \mid M^\perp$. Let $i_1 < \ldots < i_r$ and $j_1 < \ldots < j_r$ be sequences of positive integers, with $i_r \leq k$ and $j_r \leq h$. Then

$$\sum_{p=1}^{r} b_{i_{p}} + \sum_{p=1}^{r} c_{j_{p}} \leq \sum_{p=1}^{r} a_{p} + \sum_{p=1}^{r} a_{(i_{p}+j_{p})}.$$

This is a special case of one of the Thompson-Freede theorems which is proved by use of certain invariants.

Some very interesting generalizations of an inequality of Aronszajn have been given by Thompson and Freede [4]. In this note we give a sample of expressing these theorems in terms of linear transformations and give a proof using some invariants.

1. Definitions and notations

An n-dimensional unitary space will be indicated by E_n . The inner product of two vectors α and β will be denoted by (α, β) . An orthonormal set $\{\alpha_1, \ldots, \alpha_k\}$ will be indicated by $\{\alpha_p\}$ orthonormal.

Received 6 April 1971.

The subspace spanned by the set $\{\alpha_1, \ldots, \alpha_k\}$ will be denoted by $\left[\alpha_1, \ldots, \alpha_k\right]$. We write $\dim M = h$ if the dimension of the subspace M is h.

If A is a linear transformation on E_n and if M is a subspace of E_n , then we define a linear transformation $A\mid M$ as follows: if $\xi\in M$, let $[A\mid M]\xi=PA\xi$, where P is the orthogonal projection on M. We observe that if α and $\beta\in M$, then

$$([A|M]\alpha, \beta) = (PA\alpha, \beta) = (A\alpha, \beta)$$
.

It follows that if A is hermitian, then $A \mid M$ is hermitian.

Given any sequence $i_1 \leq \ldots \leq i_k$ of positive integers such that $i_p \geq p$, for $p=1,\ldots,k$, we define (i'_1,\ldots,i'_k) recursively by $i'_k=i_k$ and $i'_r=\min(i_r,\,i'_{r+1}-1)$, for $r=k-1,\,\ldots,\,1$, [1].

2. Some preliminary theorems

Let ${\it H}$ be a hermitian transformation on ${\it E}_n$ with proper values $m_1 \, \geq \, \ldots \, \geq \, m_n$. Then

(1)
$$m_1 + \ldots + m_k = \sup_{\{\xi_i\} \text{ orthonormal}} [(H\xi_1, \xi_1) + \ldots + (H\xi_k, \xi_k)]$$
.

This theorem is due to Fan [2]. Further, if $i_1 \leq \ldots \leq i_k$ is a sequence of positive integers such that $i_p \leq n$ and $i_p \geq p$, $p = 1, \ldots, k$, then

(2)
$$m_{i_1}^{i_1} + \dots + m_{i_k}^{i_k}$$

$$= \sup_{\substack{M_1 \subset \dots \subset M_k \\ \dim M_p = i_p}} \inf_{\substack{\xi_p \in M \\ p} \text{ orthonormal}} [(H\xi_1, \xi_1) + \dots + (H\xi_k, \xi_k)],$$

where M_p is a subspace of E_n , [1].

3.

THEOREM. Let A be a hermitian transformation on E_n with proper

values $a_1 \geq \cdots \geq a_n$. Let R_1 , \cdots , R_s be proper subspaces of E_n such that $E_n = R_1 \oplus \cdots \oplus R_s$ and R_i is orthogonal to R_j , for $i \neq j$. Let $\dim_q = h_q$, q = 1, \cdots , s. Suppose the proper values of $A \mid R_q$ are $b_{q1} \geq \cdots \geq b_{qh_q}$, q = 1, \cdots , s. Let $i_{q1} \leq \cdots \leq i_{qr}$, q = 1, \cdots , s, be sequences of positive integers such that $i_{qp} \leq h_q$ and $i_{qp} \geq p$, for p = 1, \cdots , r and q = 1, \cdots , s. Then

$$(1) \qquad \qquad \sum_{q=1}^{s} \left(\sum_{p=1}^{r} b_{q,i_{qp}} \right) \leq \sum_{j=1}^{r(s-1)} a_{j} + \sum_{p=1}^{r} a_{\left(\sum\limits_{q=1}^{s} i_{qp}\right)}, \quad .$$

Proof. By §2 (2), there exist subspaces $M_{q1} \subset \ldots \subset M_{qr} \subset R_q$, $q=1,\ldots,s$, with $\dim M_{qp}=i_{qp}$, for $p=1,\ldots,r$ and $q=1,\ldots,s$, such that

(2)
$$\sum_{p=1}^{r} b_{q,i,qp} = \inf_{\substack{\eta_{qp} \in M \\ \eta_{qp} \} \text{ orthonormal}}} \sum_{p=1}^{r} ([A|R_{q}]\eta_{qp}, \eta_{qp})$$

$$= \inf_{\substack{\eta_{qp} \in M \\ \eta_{qp} \neq qp \\ \{\eta_{qp} \} \text{ orthonormal}}} \sum_{p=1}^{r} (A\eta_{qp}, \eta_{qp}),$$

for q = 1, ..., s.

Let $L_p=M_{1p}\oplus\ldots\oplus M_{sp}$, $p=1,\ldots,r$. We observe that $L_1\subset\ldots\subset L_r\subset E_n \text{ and } \dim L_p=\sum\limits_{q=1}^s i_{qp},\ p=1,\ldots,r$. Let $\{\zeta_1,\ldots,\zeta_r\} \text{ be an orthonormal set in } E_n \text{ such that } \zeta_p\in L_p,$ $p=1,\ldots,r$. Now, for each $p=1,\ldots,r$, it is clear that there exists an orthonormal set $\{\eta_{1p},\ldots,\eta_{sp}\}$ such that $\zeta_p\in [\eta_{1p},\ldots,\eta_{sp}]$ and $\eta_{qp}\in M_{qp}$, $q=1,\ldots,s$. Here the set $\{\eta_{11},\ldots,\eta_{1r},\eta_{21},\ldots,\eta_{2r},\ldots,\eta_{s1},\ldots,\eta_{sr}\}$ may not be linearly independent. But, it is clear, there exists an orthonormal set

$$\{\eta_{11}', \ \dots, \ \eta_{1r}', \ \dots, \ \eta_{s1}', \ \dots, \ \eta_{sr}'\} \quad \text{such that}$$

$$[\eta_{11}, \ \dots, \ \eta_{1r}, \ \dots, \ \eta_{s1}, \ \dots, \ \eta_{sr}] \subset [\eta_{11}', \ \dots, \ \eta_{1r}', \ \dots, \ \eta_{s1}', \ \dots, \ \eta_{sr}']$$
 and
$$\eta_{qp}' \in M_{qp} \quad , \text{ for } q = 1, \ \dots, s \quad \text{and} \quad p = 1, \ \dots, r \quad \text{ It is clear that}$$

$$\{\zeta_1, \ \dots, \ \zeta_r\} \quad \text{can be extended to an orthonormal set} \quad \{\zeta_1, \ \dots, \ \zeta_{sr}\} \quad \text{in}$$
 such a way that
$$L = \left[\eta_{11}', \ \dots, \ \eta_{1r}', \ \dots, \ \eta_{s1}', \ \dots, \ \eta_{sr}'\right] = \left[\zeta_1, \ \dots, \ \zeta_{sr}\right] .$$
 Thus

(3)
$$\sum_{q=1}^{s} \left(\sum_{p=1}^{r} \left(A \eta'_{qp}, \eta'_{qp} \right) \right) = \operatorname{trace}(A|L) = \sum_{i=1}^{sr} \left(A \zeta_{i}, \zeta_{i} \right) .$$

By §2 (1), it follows that

$$\begin{array}{ccc}
r(s-1) & sr \\
\sum_{p=1}^{s} a_p \geq \sum_{i=r+1}^{s} (A\zeta_i, \zeta_i)
\end{array}.$$

Combining (3) and (4) we obtain

(5)
$$\sum_{q=1}^{s} \left(\sum_{p=1}^{r} \left(A \eta_{qp}', \eta_{qp}' \right) \right) \leq \sum_{i=1}^{r} \left(A \zeta_{i}, \zeta_{i} \right) + \sum_{j=1}^{r(s-1)} a_{j} .$$

Using (2) and (5) we obtain

(6)
$$\sum_{q=1}^{s} {r \choose p=1} b_{q,i,qp}$$

$$\leq \sum_{j=1}^{r(s-1)} a_{j} + \sup_{\substack{K_{1} \subset \ldots \subset K_{r} \\ p = 1}} \inf_{\substack{\delta_{p} \in K_{p} \\ q=1}} \sum_{i=1}^{r} (A\delta_{p}, \delta_{p}) .$$

Applying §2 (2) to the right side of (6) yields (1); thus the proof is complete.

4. Remark

We observe that the other results of Thompson and Freede can be proved in a manner similar to §3. These results may also be obtained as corollaries to §3 as was done in the Thompson and Freede paper.

References

- [1] Ali R. Amir-Moéz, "Extreme properties of eigenvalues of a Hermitian transformation and singular values of the sum and product of linear transformations", Duke Math. J. 23 (1956), 463-476.
- [2] Ky Fan, "On a theorem of Weyl concerning eigenvalues of linear transformations. I", Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 652-655.
- [3] H.L. Hamburger and M.E. Grimshaw, Linear transformations in n-dimensional vector spaces (Cambridge University Press, Cambridge, 1951).
- [4] Robert C. Thompson and Linda J. Freede, "Eigenvalues of partitioned hermitian matrices", Bull. Austral. Math. Soc. 3 (1970), 23-37.
- [5] Hermann Weyl, "Inequalities between the two kinds of eigenvalues of a linear transformation", *Proc. Nat. Acad. Sci. U.S.A.* 35 (1949), 408-411.

Texas Tech University, Lubbock, Texas, USA.