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STABILITY OF LINEAR NEUTRAL
DELAY-DIFFERENTIAL SYSTEMS
Li-MiING L1

Sufficient conditions are obtained for the stability of linear neutral delay-differential sys-
tems by using a delay-differential inequality.

1. INTRODUCTION

This paper extends the result {2] for linear delay-differential systems to the neutral

case:

(1.1) z(t) = Az(t)+ Be(t — 1)+ Cz(t — 1) (t=0)

where, z(f) = (z, (£), z2(t), ..., za(t))T, A, B and C denote real constant n x n
matrices with elements a;j.bij.c;;(ij = 1,2,...,n) respectively, and 7 > 0 is a constant.

We adopt the following norms for vectors z = (zy, z2, ..., :cn)T and matrices 4 =

(@i5),,xn Tespectively:

n % n
llll; = max |z, lzll, = (Z 1‘?) ; 2l =Y Il
=1 =1

n n
. 1 .
Al =max Y leiil, 1Al = Amax(ATAM, Al = max 3 el
i=1 j=1

The measure p(A4) of a matrix A is defined by
o 4+ RA|-1
u(4) = tim 2222,
which for the corresponding norms reduces to
#1(4) = max(a;; + > laisll,
i=1

i#j

n(A) = %)‘mu[AT + 4],

n
Hoo(4) = maxa;; + >~ laisl,

—

7

where AT denotes the transposed of A, An.x[B] denotes the largest eignevalue of B,
and I denotes the unit matrix.
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2. A DELAY-DIFFERENTIAL INEQUALITY

A delay-differential inequality was discussed in [1] and [4]. Here an extension is

given

THEOREM 2.1. Let pi(t) > 0 (i=1,2) be continuously differentiable functions
on [—T, +o00) which satisfy

(2.1) (t >0)

{ Pl(t) < a11p1(t) + azpa(t) + anT(-Z) + blzl;':(?) S
0 < az21p1(t) + azzp2(t) + an’;(;) + 1’221;';(_{)

where, a;; > 0t # 7), bi; >0, [;:({) = sup pi(8) (i,j=1,2). If a;i+bi;; <0 and

-0t
the real parts of all eigenvalues of the matrix (a;j + bij),,, are negative. Then there
exist constants M > 1, a > 0 such that:

(22) pi(t) S M| Y p;(0) | et te[-7, 00).
i=1

ProoF: From the properties of a stable Metzler - Matrix [3], there exist constants
a; >0 (i=1,2) such that:

(a1 + b11)ey + (@12 + b1z)az <0,
(az21 + b21)as + (azz + baz)az < 0.

We choose two constants, « > 0 and k > 0, such that

(23) oy + ajiog + bnale‘" + ayz202 + blzage‘" < 0,
aziaq + b101€®” + azzoz + brrae®” <0,

and
kaje ™™™ > 1 (=1, 2).

For a sufficiently small real numble ¢ > 0, we define
2 .
wi(t) = ka; ij(O) te e (i=1,2,t > —1).
i=1

It is easy to check that p;(t) < wi(t) (¢ =1,2,t€[-7,0]). We want to prove
that:
pi(t) <wi(t) (i=1,2,t€ [0,+00)).
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If this inequality did not hold, then one of the following two situations would occur:
1. There exists a t; > 0, such that

p1(t) = wi(t1) and pi(t) < wi(t) (=12 -1<t <)
furthermore, p;(¢;) > 't;bl(tl). Also, from (2.3), we have

P1(t1) < anywi(t) + arzwa(t1) +bix sup wi(@)+ b1z sup  we(6),
t —T<O<Y t —T<OKYy

= anwi(t1) + arpwz(t1) + brawi(t1 — 7) + brzwa(ts — 7),

SO

2
wi(tr) = —kana | > pi(0) +e | e,
j=1

2
> k(ajray + bjya1e® + arz0z + bizoze™”) ZPj(O) +e e,
i=1

= anwi(ty) + arzw2(t1) + bniwi(ts — 7) + brzwa(ts — 7).

That is, w1(¢1) > p1(t1). This contradicts py(t1) > wi(t1).
2. There exists a t; > 0, such that

p2(t1) = wa(ty) and pi(t) < wi(t) (i=1,2, -7 <t < ty).
Then from (2.3), we obtain

—az2p2(t1) < az1wi(t1) + baaw1 (81 — 7) + bagwa(ty — 7)

2
=k ZP;‘(O) +e | e (ag1ay + br1a1e®” + byyaze®T),
j=1

2
<k ij(O)—f-s e~ (—azaz),
i=1

= —agw;z(t).

Since —a3z; > 0, we have ps(t1) < w(t1). This contradicts pa(t1) = wy(¢,).

Hence, we see that
p,'(t) < w,-(t) (‘L = 1,2, t > 0)

Let M = k(a; + a;3) and € — 0. Then (2.2) is satisfied and the proof is complete. §

Theorem 2.1 can be generalised immediately to the vector case:
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THEOREM 2.2. Let pi(t) 2 0 (i =1,2,...,2n) be continuously differentiable
functions on [—7, +o0) such that p*(t) = (pi(t),...,pn(t), 0...0)T and p(t) =
(P1(t)s-- -, Pnu(t), Prya(t). ..pgn(t))T satisfies

() < Ap(t) + Bp(?)

T
where, p(t) = ( sup pi(9),..., sup pzn(t)) , and A = (8ij)nuznr B =
t—~r<<t t-rOst

(b“J‘)2nx2n’ with aij 2> O(i;céj)bij 20 (4,j=1,2,...,2n). If a;; + b;; < 0 and
ReM(A + B) < 0, then there exist constants M > 1, a > 0 such that:

2n
(24) p()<M| D] sup_p;(6) et t € [~7, +00) i=1,2,...,2n
j=1"TSES

3. A STABILITY THEOREM

By C(M[—r, 0], we mean the Banach space of all functions u(t) (v an mn-vector)
which are continuously differentiable on [—7, 0] with norm:

lull, = _sup fu(O) + sup (6]

—TRUS —TE0<0

Consider the neutral delay-differential system
(3.1) &(t) = Az(t) + Bz(t — 7) + Cz(t — 7).

Let us define the stability of the solution z = 0 for (3.1) as follows. Suppose that
# is a given continuously differentiable function on [—7, 0] (that is ¢ € C{—7, 0])
and that z(t) = z(t, ¢) on [—7, +00) denotes the unique solution of (3.1) with z(t) =
#(t), 2(t) = (t) for t € [—, 0].

DEFINITION 1: The solution ¢ = 0 of (3.1) is stable in C)[—7, 0] if for each
€ > 0 there exists a § = §(¢) > 0 such that ||@]|, < é implies that the solution z(, ¢)
of (3.1) satisfies ~
let, D + (2, )l <e  te (-, +o0).

DEFINITION 2: The solution z =0 of (3.1) is asymptotically stable in C'V[—7, 0]
if it is stable in C{—7, 0] and there exists by > 0 such that ||¢]|, < bo implies

Jim (ll=(8), ¢l + It #)iI) = o.
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THEOREM 3.1. Suppose the coeflicient matrices A, B, C of (3.1) satisfy the
following

1Bl + (4] - €]
i=qer <

(3.2) llell < 1 and p(A) +

Then the solution z = 0 of the system, (3.1) is asymptotically stable in ¢("[—7, 0] and
there exist M 2 1, a > 0 such that

lz(t, P + 112(¢, )| < 2M ||4]], e
for every solution z(t, ¢) of (3.1) with z(t) = ¢(t), (t) = ¢(t) ont € [-r,0].

PROOF: From the definition of the measure u(A) we have for t € [0, +00),

UEON _ pay el = i, 3lle(e+ B = I + AA)] - (o))

N

Jlim 2{ll2(t + k) = (I +hA) X D))
<IBI et — )l + € - (e =]

that is

63 L) oo+ 181 sup

—TRVR

@l +lICl _sup [12(6)] -

—r<0<

From (3.1), we have directly

(3.4) 0 < fl2()ll + LAl izl + 1Bl sup_ Nl=(O)| + ICl| sup_ [l2(O)]]-
t—r<ost t—r<ost

—r<o —r<0g

Consider the functions p;(t), p2(t) in Theorem 2.1 defined by
pi(t) =z, p2(t) = ll2())]] ¢ €[-7, +00).

It follows from (3.3) and (3.4) that

{ p1(t) < u(A)ps(t) + | Bl p2(0) + I1C 2 (1),
0 < |4l p1(t) = p2(2) + IIBl 21 (2) + [IC]l 22 ().

We know from hypothesis (3.2) that the real parts of all eigenvalues of the matrix

(u(A)+||BH el )
AN+ 1Bl —1+1CH/ 2xz
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are negative and u(A)+||B|l <0, —1+|C|| < 0. Therefore, there exist M > 1, a > 0
such that

2
pi(t) < M ij(O) et t> —-r.
=1

By Theorem 2.1, we have
=t o) + ll2(t, Ol < 2M ||6]l, 7, t> -1
and the proof is complete. [
Consider the following system in component form
n n

(3.5) 2i(t) = aizi(t) + ) byzi(t—7)+ Y Cijij(t —7)

A =1 '

=1
where, ai;, b;j(i # j), Cij (i =1,2,...n) are constantsand a;; <0 (i=1,2,...,n).
Imitating the proof of Theorem 3.1 by using the delay-differential inequality in vector

form (Theorem 2.2), we can easily obtain the following theorem.

THEOREM 3.2. Suppose that the coefficients of (3.5) satisfy the following

ai + Y bl + ) "1Ci] < 0 and |ai| + E bl + > 1G5 <1
_l';e;' i=1 ,_';e;' j=1
i= i=

(: =1,2,...,n). Then the solution z; = 0 of (3.5) is asymptotically stable in
cWi-r,0].

Remark. Using Theorem 2.2, we can discuss the stability of the trivial solution for

more complex neutral delay-differential systems.
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