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Introduction

It is well known that a wide range of Special Function Theory can be realized
by considering unitary representations of certain topological groups.

In this approach it is very important to determine all irreducible continuous
unitary representations of the group in question.

For the group of movements this problem was initiated by Vilenkin [6].
Rather restrictive conditions were imposed in this paper and while he returned to
the problem in [7], it was still not solved in full generality (among other things
the representation space was assumed separable). The first complete solution
appears to have been given by Thoma [5]. Here, the method was to show each
irreducible continuous unitary representation equivalent to a particular re-
presentation in a space of square integrable functions. The form of the operators
was given by the expression,

- a), R constant,

where g is the movement determined by a rotation through angle a and a shift re'*.
A similar result has been established by Bingen [1]. In this work a repre-

sentation is understood in the more general sense of a homomorphism from the
group into the space of continuous linear operators on some locally convex
topological space. However this cannot be considered a generalization since a
differentiability condition is imposed on the operators Tg.

In [2] Gelfand and Shapiro determine the irreducible continuous unitary
representations of the group of rotations by considering the infinitesimal operators.
This method is easy and natural and hence posed the question: Can the in-
finitesimal operators be used to characterize all irreducible representations of
the group of movements?

In solving this problem many difficulties were encountered. These had their

78

https://doi.org/10.1017/S1446788700019145 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019145


[2] The group of movements of the Euclidean plane 79

origin in that all irreducible representations (with the exception of a trivial re-
presentation) are infinite dimensional, and hence the infinitesimal operators are
unbounded. In Sections 3, 4 and 5 these difficulties are met by considering the
action of the infinitesimal operators on a particular dense subset, &S, which has
reasonably pleasant properties. Some of the results of [2] carry over directly — for
example, Theorem 4, but they are proved in a different context, and by different
methods.

In Sections 7 and 8 the applications of this theory are considered. In particular
the Graf addition theorem is derived.

This research was performed in in 1968 and 1969 while I held a Monash
University Post-Graduate Award, and constituted a Master Degree. My supervi-
sor was E. Strzelecki and I take this opportunity to express my gratitude to him.

1. The group of movements

The group of Movements, ^, is the set of all possible transformations of the
plane obtained by a rotation about some fixed point (the origin) and applying a
constant shift, together with the group operation of iteration of movements.

If the plane is regarded as the complex plane then we may write for g e fS

where 6 is the angle through which the plane is rotated and a is the complex
number of the shift. If by g(z) we understand the complex number obtained by
acting upon zeC with movement g, then

(1) g{z) = e"z + a.

Usually we shall write g — (x,y,6) where x and y are the real and imaginary
parts of a respectively.

If #! = {xuyu0{), g2 = (x2,y2,92)
 t n e n the ErouP product formula is

easily obtained from (1):

9102 = (*i + x2cos0! - y2sin#!,}>! + Xjsinfl! + y2cos6uGi + 62).

The notation g = (x, y, 6) indicates the natural way to introduce a topology
upon <&. We define the topology upon ^ as the product topology of R2 and the
circle {0:0 ^ 6 —^ 2n} where 6 = 0 and 6 = 2n are identified. This topology is
obviously locally compact and Hausdorff.

The last remark implies that there exists a left Haar Integral on ^, that is,

= Jf(g)dg = J f(gog)dg

for integrable function f(g), f:&-+C and for all goe&. Writing g = (x,y,6)
then f(g) = f(x, y, 6) and th left Haar integral has the form
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/•GO /»oo /• 2n

(2) f(xyy,O)dedxdy
J — oo J — oo J o

2. Unitary representations of the group of movements

A unitary representation of <& is a homomorphism g -+Tg, ge'S, where the
operators Ts are unitary linear operators on some Hilbert space JF. That
is for gi,g2e&

where Tffl and T92 are unitary.

In the following the representations will be assumed to be continuous: that
is, I T£ - Tgii I -> 0 for all £ 6 J^ as g -• #, in the topology of 0.

A representation g -* Tg of ^ is said to be irreducible if the only closed sub-
spaces of JP which are invariant under all operations Tg, g e 'S, are <0> and J?'.
That is, if ^V is a closed subspace of ^ and Tg(jV) <=, Jf for all g e ^, then
yT = <0> or Jf.

3. The space 38

We define Q to be the set of complex-valued functions with the following
properties. Let / e Q if:

(1) fid) = /(*> J> ^) n a s continuous partial derivatives of all orders.
(2) if / = / or a partial derivative of / and gt = {h, 0,0), (0, h, 0) or (0,0, h),

then / e L2(S?) n L^S?) and as ft -+ 0, I/A [/(fl-i"^) - /(#)] converges in L'(^) to its
pointwise limit (it will be shown later that Q ^ 4>). The following are at once
apparent.

LEMMA 1. / / / is in Q then so are dfjdx, dfjdy and df/dB.

LEMMA 2. Ifg1e
1^ and f(g) e Q then f(g11g)ed.

We now define BS = {neJ^ ;r\ = \f(g)TgUg, / e Q , £ e . ? f } . (The above
integration is of a vector valued function, f(g)Tg£,. We use the approach of [4]
§6 Section 19. Since f(g) is measurable and bounded, and Tg£, is continuous,
the integral exists.)

LEMMA 3. / / n&8$, n = $f(g)Tg£dg with / e Q and ZeJf?, then Tgin

PROOF.

9,ri = T9! jf(g)TgZdg

= jf(g)TgiTgZdg,
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by [4] §6 Section 19 Formula 3. Hence

= I f(gilg)Tg£,dg, by the invariance property.

COROLLARY. Tg (Span 38) c Span38 (ge^) where Span J1 is the linear hull
of @.

PROOF. By Lemma 2.

4. The infinitesimal operators

For t] e tf we define

lim kT(0,0,h)ri-r,)
*->o «

where T(0,0, h) is the representation image of the movement g = (0,0, h).
Similarly we define

Aa = lim -r(T(h,0,0)ri - tj)
*->o "

A2t, = lim J(r(O,*,O>j-ij).
*->o "

It may happen that for particular r\ these limits do not exist. However, this is not
so for n e 38, as follows from

THEOREM 1. If ne38,r\ = $f(g)Tg£dg then

- J |

PROOF. Put ^A = (l//i) (T(0,0,/i) - / ) . By Lemma 3 and some calculation
we show

= J \iK9~iig)-(5)

where n = ff(g)T§Zdg, fed, ZeJ? and 9l = (0,0,A). Writing 0 = (jc,y,
we see that
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gtlg= (O,O,-KXx,y,0)

= (x cos h + y sin h, y cos h — x sin h, d ~ h).

For fixed x, y, 8 we define

E(k) = f(x cos k + y sin k, y cos k — x sin k, 6 — k).

Then (l/fc)[/(<7r10) -/(<?)] = (l/J0[EC0 - £(0)] which implies

lim k / ( f f : 1 5 ) - / ( ^ ) ] = £'(0).

However,

E'(fc) = ^ ( - xsin/c+ycosfc) + | ^ ( - xcosfc - ysinfc) - | | ,

so that

thus

lim \uia:l9) -f(9)l = 3» ^ ~ *%-% pointwise.

Now / e Q , so this equality holds in LJ(^); and this implies

since the integral is a continuous linear functional on L 1 ^ ) . The other formulae
are proved similarly. Q.E.D.

COROLLARY. Span^? is invariant under AJt j = 1,2,3; and if f/eSpanJ1

then A)n, j = 1,2,3 exist for all n and belong to Span^1.

PROOF. This is immediate from Lemma 1.

Using the forms of the operators At calculated above, calculation shows the
following:

THEOREM 2.

[A^Aijn = A2n

[A2,A3~\r\ = Atf (f/eSpanJ1)

where [_A,B] = AB — BA for operators A,B.

THEOREM 3. SB contains an eigenvector of A3.

PROOF. We consider g = (r, a, 9) where re'" = x + iy. In this case the left
Haar integral becomes Jo" fo™ $o ' rdrdadO. Using Theorem 1 it is easy to
show

https://doi.org/10.1017/S1446788700019145 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019145


[6] The group of movements of the Euclidean plane 83

If feSl,f(g) = ein0e'^hir), where m,n are integers and h{r) is an arbitrary
function of r, we have:

A3t] = - i(n + m)t].

It remains only to show that there exists such an feQ with J f(g)Tg£,dg # 0.
We put Vr) = r* exp( - r2 - (1/r2)), for fc = 0, ± 1, ± 2 - , and it is possible
to show e^e'^h^r) e fi. Assume j eineeim"hk(r)Tgidg = 0, for all m, n, and fc.

Then

f eMe'mtr*e-r2e-1"2(T£,ili)dg = 0,

for all \p e Zff and for all integers m, n, k. We put

Jo Jo

then l(r) e L2(0, oo) and we have

r rke-r2hl(r)rdr = 0.
Jo

However the set {rke~r2/2; k a positive integer} forms a basis for L2(0, oo)
(see [8], Chapter 1) so we must have l{r) = 0. We have shown:

f2" f 2*eliV"e-rl/je~1/r2(Tf^)d0<fo == 0.
Jo Jo

As above the set {e1"9; n an integer} forms a basis for L2(0,27r), and we may argue
as before. The final result is

which is impossible unless <̂  = 0. Q.E.D.

The operators Ay,j = 1,2,3 have the following property. If rii,ri2e
then

C-tyh.fa) = (f/i. - ^y^); i = 1.2, 3.

Indeed,

since the operators Tg, ge&, are unitary; taking limits, we have the relation. We
now define
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iAj = Hji j = 1,2,3,

and the above relation may be written

(Hjriur\2) = (riuHjn2y, j = 1,2,3.

(If we use the terminology of [4] §5 Section 9 we may call the operators Hj
symmetric.)

It is more convenient to work with certain linear combinations of the H}.
We define

H+ = tf t + iH2

H_ = H1- iH2.

Direct calculation then establishes the following relations

(6) [tf+,H3] = -H+

(7) [ff-,H3] = H_

(8) [H+,H_] = 0

(9) (H+r,ut,2) = (riuH_r,2)

— for nu r\2 e Span ^ .

THEOREM 4. Lef f%.e3$ be an eigenvector of H3 with eigenvalue A. Then if
H+fi ^ 0 it is an eigenvector of H2 with eigenvalue X + 1. Similarly if
H-fx 9̂  0 </ien H_ / x is an eigenvector of eigenvalue A — 1.

PROOF. ff3H+A = [H3,H+-]fx+H+H3fx = H+fx + XH+fx = (A+1)H+A
where / x e ̂  is an eigenvector of eigenvalue A. The dual result is proved similarly.

Q.E.D.

We shall prove eventually that if Tg is irreducible then H + H _ A = Mfk, for
some M e R.

LEMMA 4. If g -+ Tg is irreducible then S p a n ^ is dense in Jt?.

PROOF. One considers Span^ . This is invariant due to the corollary to
Lemma 3.

In general if A is an operator on Jti?, 3){A) (Domain A) dense in Jf, then A
is self-adjoint if A = A*. The following three results are from §5 Section9 of [4].

PROPOSITION 1. A* is a closed linear operator.

PROPOSITION 2. If A is closed and@(A) dense in J^, then A* A is self adjoint.

PROPOSITION 3. / / the linear operator A with dense domain has the closure
A then
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A** = 2 2 A.

We shall also need the following.

THEOREM 5. Let g -*• Tg be an irreducible representation of @. Let A be
an (a priori) unbounded self-adjoint operator such that &i(TgA) s 3i{ATg) and
forne@(TgA), TgAn = ATgn; then A = MI for some real M.

(See [4] §29 Section 3. The result for rings is established in §17, Section 6,
Proposition II and the result for groups is a consequence of the relationship
established in §29.)

We define H = H%*H% and from Proposition 1 and Proposition 2 we have:

PROPOSITION 4. H is self-adjoint.

PROPOSITION 5. H 2 H+H- (i.e. H is an extension of / /+ / /_ ) .

PROOF.

Hi = (H1 + iH2)*

=> H? - iH$

2 Ht - m2,

since the operators Hl and H2 are symmetric. Since H* is closed, H+ admits of
a closure, and by our Proposition 3:

H r 2 H + - Q.E.D.
PROPOSITION 6. If A is self-adjoint then

f
J —

and

At = [ XdP(X)£, for Z
J — 00

Note. P(l) is the spectral operator function and this result is the spectral
theorem for unbounded linear operators. See [4], §17.

PROPOSITION 7. If £e@ then TgH£ = ^

PROOF. These expressions are both well defined, (see the Corollary to
Lemma 3 and Proposition 5). To prove the equality we make use of Lemma 3 and
the form of the infinitesimal operators calculated in Theorem 1.

PROPOSITION 8. P(X)Tg = TgP(X).

PROOF. We adapt the proof of Proposition VII §17 of [4]. It is straight-
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forward to show from Proposition 7 that Tg commutes with U (as defined in [4])
for vectors in 88. Since 88 is dense in tf and both Tg and U are unitary operators
this property can be extended to #F. The argument then proceeds as in the reference.

PROPOSITION 9. ®(TgH) <= 3){HTg\ and for £,e®{TqH),

PROOF. This is immediate from Propositions 6 and 8.

We can now apply Theorem 5 to obtain:

THEOREM 6. Let g -*Tg be an irreducible representation of (8. Then
H+H-rj = Mn {r\ e Span88) for some real M.

5. Exponential formulae

In this section we will determine the form of the operators Tg in terms of
exponentials. The symbol fx will denote a non-zero eigenvector of H3 with eigen-
value X where fx e- 88. 88{fy) will denote the set

{A} U {H+/x; n a positive integer} (J {Hi.fx; n a positive integer}

and Span 88{f^) will denote the set of all finite linear combinations of the vectors

THEOREM 7. Let g -+Tg be a continuous unitary representation of 'S. If

k=0 K- \n ~ L)'. Jo

PROOF. The reference is [3] Theorem 11.6.3. Assuming the representation
to be continuous is a much stronger condition than (0, /I) summability.

COROLLARY. If | An
3t] || g K" | r\ | for some K ^ 0 then we have

T(0,0,d)n= I ^-.Airtfor r,eSpan88;

and similar results hold for T(x,0,G) and T{0,y,0).

PROOF. One shows that || Jo(^ - ^ " " ^ ( O . O . T ) ^ / / ^ ! -»0 as n-> oo.

We can now proceed to the calculation of the form of an irreducible re-
presentation of IS. We shall denote Y.^=0{Qklk^Ak

3r\ by exp(6A3)n.

THEOREM 8. Let g ->Tg be irreducible. If M = 0 then the representation
is 1-dimensional of the form T(x,y,9) = e*8 where k is a constant integer.
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PROOF. Assume M = 0. Let A be an eigenvector of H3 with eigenvalue A.
keU, since H3 is self adjoint. Now

(tf_A,ff_/J = (A,H+H_/J = (A, MA) = (A,0) = 0,

so H_A = 0. Similarly H+fx = 0, so in general H\fx = Hifx = 0 for all
positive integers n, m. Hence A\fx = A%fx = 0 and trivially

Thus by the corollary to Theorem 7 we have

Since A is an eigenvector of A3 we have that A^fx = ( — iX)"fx,Xe U, and this
gives I A"3fx I = | A |" | A I • So by the same corollary,

r(o,o,0)A=

= A + ( - »

Since T(x,y,9) = T(x,0,0)T(0,y,0)T(0,0,e) we have Tgfx = eikefx for some
real k, and since T(0,0,2nn) = / for integer n, we must have k an integer. Clearly
this formula holds in the one-dimensional space

CA<= J T .

Hence CA is invariant under all operators Tg, g&r&, and the irreduciblility con-
dition implies CA = «^-

LEMMA 5. If g -* Tg is an irreducible representation and M # 0 f/ien
-ff+A ^ 0 a "^ ^ - A ^ Ofor all positive integers m,n.

PROOF. If M # 0, let n be the least positive integer such that

HIA = 0.

Then 0 = tf_tf+A = H_H+Hn
+-% = MH^~%, which implies that #TVx = 0,

a contradiction.
In the light of this result we henceforth assume M ^ 0, ff" A ^ 0 and

ff-A * 0.

THEOREM 9. Let g -* Tg be irreducible. Then M is positive and if N is
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the positive square root of M, then H"±fk = N"fx±n for integers n ̂  0, where

(A±n>A±n) = 1-

PROOF. We write H+A = (XiA+i- Clearly A+i may be selected so that
(A+uA+i) = 1 a n d a i > 0- I n general we define

H + fx + n = an+lA + n+l> (A + n+l> A + n+l) = *>

where an+1 > 0. In the same way we define

where ft,+1 > 0 and ( A - » - i , A - n - i ) = 1> for all M. Since fx±ne!%v/e have

_ H + A + n =(M/a n + 1 )A + n and
a similar calculation gives

w f - M

n+JX-n-l — Pn+1

Since (H+n1,n2) = (rjl,H_J/2) for nu t]2e Span88, it follows that

C^ + A + mA + n+l) = (aB+lA + n+l> A + n+l) = an+l

_ _ / M \ -
~ ( / + n > " - A + n+l ) ~ I A + n>~ A + nl ~

V a /
n+l / an+lan+l •

Hence (M/an+1) = an+1, that is, M = a^+j > 0. By considering (//-A-n>A-«-i)
we obtain the relation

We put + ^/M = N and we have

Pn+l = «n+l = ^ .

as required.

THEOREM 10. If g^Tg is irreducible and n e Span^(/X), then

T(x,y,6)n =

PROOF. Let A+n^^CA)- We have Ax = {\j2i){H+ + HJ). Hence, since H+

and i?_ commute:

and calculation shows
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The dual result for A2 is proved similarly; thus

(10) \\A7A+n\\^Nm i = 1,2.

Also, since fx+n is an eigenvector of A3 we have

\\A^fx+n\\ = \x + n\m.

Hence by the corollary to Theorem 7 we have

(11) T(x,0,0)fl+H=

T(0,y,0)A+n= cxp(yA2)fx+n

So
T(x, y, 8)fk+n = T(x, 0,0)T(0, y, 0)T(0,0,6)fk+n

= T(x, 0,0)T(0, j>, 0) exp (M 3 )A + B .

Now T(O,O,0)/l+I16^> (Lemma 3). Moreover H3 commutes with T(0,0,0). So

H3T(0,0,e)A+n = T(0,0,9)H3A+n =

Thus /x'+n = T(0,0,6)A+n is a non-zero eigenvector of H3. Starting with fl+n

as fx we may reproduce the results of Theorem 9 and in particular obtain formulae
(11). Hence

Moreover AtA2 = A2AU so A1exp(yA2) = exp(yA2)A1, and this implies

1 \

-j (H++H_)mA+n .

(ll2i)m(H+ + HJ)mfl+n is a linear combination of eigenvectors of H3. Clearly
formulae (11) apply to such vectors and the expression on the right is just:

The unitariness of T(0, y, 0) and a similar calculation to that which derived (10)
give

where iVj is the N of Theorem 9 for /x'+n = fx. Hence by the corollary to Theorem 7
we have

T(x,0,0)r(0,y,0)/x'+11 =
So
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T(x,y,6)A+n = (expxA1expyA2exp9A3)fl+n

— and since AXA2 = A2At it is easy to verify that

e x p x ^ e x p y ^ = exp(x/l1 + yA2).

The generalization from JXA) to Span J*(A) is now immediate. Q.E.D.

THEOREM 11. Let g->Tg be an irreducible unitary representation of 'S.

Then Jf = Span^C/T)-

PROOF. Span^?(A) is invariant under all operators H + , /f_, H3. Using the
form of the operators on Span 3?(fx) calculated in Theorem 9 we have the result.

COROLLARY. Any irreducible representation of (S is separable.

PROOF. In fact the countable basis of JP is ^ (A) . Q.E.D.

Finally we note that

T(O,O,0)A+I1 = ' ( X + 9

Since T(0,0,2mn) = I for integer m it follows that X is an integer. By Theorem 4
we may take 2 = 0. Thus we have established the following:

THEOREM. Let g -* Tg be an irreducible continuous unitary representation
of the group of movements in the Space 3F, dimension 2tP =£ 1. Then J4? is
separable (and infinite dimensional) and there exists an orthonormal basis
of Jf, &(f) = {/„; n an integer} upon which the infinitesimal operators have
the form

A2fn = - ^ / . + l

A3L = ~ in fn,

where N > 0. Moreover if ne Span &8(f),

Tgn = exp(x^! + y

where g = (x, y, 0).

6. Infinite matrices

We have shown that for any irreducible representation, Jf is separable.
Thus we may regard 3tf as the set of column matrices of the form

https://doi.org/10.1017/S1446788700019145 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019145


[14] The group of movements of the Euclidean plane 91

where formerly we wrote tj — Z >/„/„

(where Z" 0 0 = n | / 7 n | 2 < oo). Moreover on this space any linear operator may be
represented as an infinite matrix: T = (tmn) where Tr\ is the column matrix with
^-00 =k tmtfk m the mth place. In this notation /„ is just the column matrix with 1
in the nth place and zeros elsewhere. It is easily seen that the infinitesimal operators
have the forms

H_ = N

o i o :
\

0 0 1 0
\

0 0 0 1 0
\

: o o o i
\

: o o o

: o o

: o
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H+ = N

o o :

o o o :
\

1 0 0 0
\

0 1 0 0
\

0 1 0

: o I

: o

o o :

- 2 o o :
\

o - i o o :
\

0 0 0 0 0

o o o

o o 2

o o
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— that is the mnth entries of H+, H_ and H3 are N5mn+1, N5m+ln and mdmn

respectively.
Using these expressions for H+, H_, H3 it is possible, though tedious, to

prove the following converse of the theorem of Section 5.

THEOREM. Let 2? be the space of infinite column matrices,

"o where X |nn | 2 < oo and let the matrices

H + , H_, H3 be defined as above. Put /„ as the column matrix with 1 in the nth
place. Then Span^( / ) , the set of column matrices with only finite non-zero
entries, is dense in Jf. Moreover for v e Span ^ ( / ) the matrix

T = exp|-(H+ + H_)exp - j-(H+ - H_)exp( - i6H3)n

is defined for x,y,9e U. Writing Tg (where g = (x, y, 6)) for the unique extension
to 3V of this operator T we have that g-+Tg is an irreducible continuous unitary
representation of eS.

7. The matrix elements of an irreducible representation

It has been shown (for a dense subset of 3^) that

Tg =

= exp ^.{

= exp ^

and the matrices H+, H-, H3 have the forms N(8mn+l), N(Sm + ln), (n«5mn) res-
pectively. (By (dmn+1) etc. we understand the matrix with <5mn+1 in the m, nth
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position.) The powers of H+, if_ are easy to calculate. In fact

Hi = N*{8m+pJ

and from this it follows that

exp ±H+ = ^ ( -O '^^OU*, , , ) and

By multiplying these two matrices and some calculation it can be shown that the
m, nth entry of exp xAt is

where Jm_n(x) is the Bessel function of order m — n, and a similar approach
shows that the m, nth entry of e\pyA2 is Jm-n(Ny).

Using the fact that H3 is a diagonal matrix it is easy to show exp 0A3 =
'{e~inedm,n), so that the final result is that the m, nth entry of Tg = exp(x^x + yA2)
exp&43 is:

(12) i (-ir-kJm_k(Nx)Jk.n(Ny)e-il">.

8. Some relations between the Bessel functions

The fundamental relation

(13) TgiTgi = Tgig2,

satisfied by the operators Tg is, in effect, an addition formula for Bessel functions
As a preliminary we put

gl= (0,0,0), ga = (Q,y,0)

so that

0102 = (jcos0,)>sin0,0).

Substituting in (13) from (12) we have

I ( - i)m-kJm-k{Ny cosd)Jk_n(Ny sin9)e""

= ( - i)m-"Jm-n(Ny)e -ime
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so that

(14) ^ - n W = ^ - " ) ( ' + l / 2 ) X ( - Q"~kJm-k{y cos6)Jk.n{y sin0)
-0O=fc

— which expresses a Bessel function in terms of its "components". This formula
enables us to simplify the general element of Tg.

If g = (x, y, 0), put re1" = x + iy. Then x = r cos a, y = r sin a, and the
mnth entry of Tg is

( -

In the light of this result we will consider g as a function of r, a and 0 rather than
x,y,6. We write g = (r,a,0). Putting 04 = (r^oii^,), g2 = (r2,a2,02) we have
9192 = (R, a. 0i + 82) where

+ a2 - aj)* and

, ' • " _ J " l

Writing a2 — at + 0t = (/> and substituting in (13) we have on simplification

[„ 1 r o - '*l(»>-»)/2 00

1 2 = Z Jm-£Nrl)Jk-jLNraei«-k> .•r2e"- " ° ° = *

Putting JV = 1, n = 0 this becomes

This is an addition formula for Bessel functions: in fact the more familiar Graf
formula may be obtained by substituting </> 4- n for </>.
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