
r
Proceedings of the Edinburgh Mathematical Society (1988) 31, 337-343 I

STRONGLY PRIME NEAR-RINGS
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1. Introduction

Strongly prime rings were introduced by Handelman and Lawrence [5] and in [2]
Groenewald and Heyman investigated the upper radical determined by the class of all
strongly prime rings. In this paper we extend the concept of strongly prime to near-
rings. We show that the class M of distributively generated near-rings is a special class
in the sense of Kaarli [6]. We also show that if N is any distributively generated near-
ring, then UM(N), UM denotes the upper radical determined by the class M, coincides
with the intersection of all the strongly prime ideals of N.

2. Preliminaries

Unless otherwise stated, all near-rings are zero-symmetric right near-rings. For
undefined terminologies, we refer to [9].

Definition 1. Let N be a near-ring. N is called {right) strongly prime if and only if for
every O^aeN there exists a finite subset F of N such that r(aF) = {neN:aFn=O} = 0. F
is called an insulator of a in N.

We now give the following alternative definition (c.f. [8] for corresponding definition
for rings).

Definition 2. Let N be a near-ring. N is called (right) strongly prime if and only if
every nonzero ideal I of N contains a finite subset F such that r(F) = 0.

The two definitions of strongly prime agree for the class of zero-symmetric near-rings.
The proof of this is based on the following observation and lemma.

Observation. Let N be a zero-symmetric near-ring and XcN. The ideal generated
by X is the intersection of all ideals containing X and can be obtained as follows:

Let XQ = XKJXN

XQ be the normal subgroup of N generated by Xo.
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Repeat this process to obtain successively X2,X3,... Clearly X o C ^ c ^ c . . . and it is
straightforward to show that the ideal of N generated by X is precisely (JJ'-XV

It is worth noting that an element of X{ can be expressed by a formula involving only
a finite number of terms involving expressions of the type n + zxy—n where
n, z, y e N, x e X.

Lemma 2.1. If Oj=aeN and aN = 0 then <a>N=0.

Proof. aN=0 implies axN = 0, zaN = O for all x,zeN. Hence XoN = 0. Suppose
X,N = 0. Then neN implies

— rn) = O when ±ueX(

(r(a + u) — ra)n = r[an + uri) — ran = 0 when ±ueX{.

Hence AT,+1/V=0. It follows that <a>JV=0.

Corollary. / / every ideal of N contains a subset F with r(F)=0 then for each aeN,
a / 0 , there is a yeN with

Theorem 2.2. The following are equivalent:

(i) aeN, a^O^-there is a finite subset F of N with r(aF)=0.
(ii) Every non-zero ideal of N contains a finite subset F with r(F)=0.

Proof. (i)=>(ii) is obvious.

Suppose (ii) and let ae/V,a#0. Then <a>, the ideal of TV generated by a, is non-zero
and hence by the corollary there exists yeN with ayj^O and a finite subset Gc(ay}
with r{G) = 0. Let Xo = {ay} u ayN. G is finite to G E X } for some j . Hence each element
is obtained by applying a finite number of operations of the type

or r(a + u)—ra,ueXj.

Choose one such construction for each element of G. This set of constructions will
involve a finite number of elements of Xo of the form aysk, sk e TV.

Let G' = {ay,aysk\these occur in the chosen construction of an element of G}.

Clearly G' is finite and r(G')£r(G)=0.

Then H = {z\azeG'} is an insulator of a in TV and so (ii)̂ >-(i).

We define an ideal / of the near-ring N to be strongly prime if and only if for every
x$I, there is a finite subset F of <x> such that for all aeN,Fa^I implies ael.

It is now clear from the definition of a strongly prime near-ring and a strongly
prime ideal that N/I is a strongly prime near-ring if and only if / is a strongly prime
ideal. Furthermore, TV is strongly prime if (0) is a strongly prime ideal.

https://doi.org/10.1017/S0013091500006738 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500006738


STRONGLY PRIME NEAR-RINGS 339

Lemma 23 . / / N is a strongly prime near-ring, then N is a prime near-ring.

Proof. Let 0#X; B<oN. We show AB^O. Since A^O, there exists a finite subset F
of A such that r(F)=0. Hence for each O^beB we have Fb#0. Therefore AB^O,

We give the following example to show that in general a prime near-ring need not be
a strongly prime near-ring.

Example 1. Consider the dihedral group N with addition and multiplication defined
as in Pilz ([9, p. 345, number 11]):

• 0 1 2 3 4 5 6 7

0
1
2
3

0
0
0
0

0
1
2
3

0
0
0
0

0
1
2
3

0
0
0
0

0
1
2
3

0
1
2
3

0
0
0
0

4 4 4 4 4 4 4 4 4
5 4 5 4 5 4 5 5 4
6 4 6 4 6 4 6 6 4
7 4 7 4 7 4 7 7 4

/ = {0,1,2,3} o N . Furthermore {0,2} <\ I but {0,2} <\N. Clearly N is prime. For each
F £ / , F finite, we have F-4=0. Hence r(F)#0 and N not strongly prime.

In [7] Oswald defined a strictly prime near-ring as a near-ring N such that if A and
B are two N-subgroups of N such that AB=0, then A = 0 or B=0. When N has a
multiplicative identity or if N is a d.g. near-ring, then N is strictly prime if and only if
for a,beN, aNb = 0 implies a=0 or 6 = 0.

Proposition 2.4. / / N is distributively generated or has an identity then N is strongly
prime if N is strictly prime with D.C.C. on right annihilators.

Proof. Let O ^ / o N and consider the collection of right annihilates {r(F)} where F
runs over all finite subsets of /. From our assumption, there exists a minimal element
N = r(F0). M=(0), for if M#0, then there is O^meM such that Fom = 0. N is strictly
prime, hence there exists O^beN such that mbm^O. Hence bm^O. Let S = iiFt u {b}).
Now meM but m$S. Consequently S£M. The fact that S is smaller than M implies
that M=(0). Hence N is strongly prime.

Theorem 2.5. Let N be a zero symmetric near-ring. If A is an ideal of N and P a
strongly prime ideal of N, then PnA is a strongly prime ideal of A.

Proof. Let p$PnA. Since P is a strongly prime ideal in N, there exists a finite
subset F = {xj,...,xn}sAT such that if pFcsP, then ceP. Let deA such that d$P. It is
now possible to find x,eF such that pxjd$P. For this pXjd$P we can find a finite set
F j£N such that for all teA,t$P we have pxjdF^^P. Now F2 = pxjdF1 is a finite
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subset of (p)A, ideal generated by P in A, such that for all aeA,F2asPnA implies
a e P n A. Hence P nA is a strongly prime ideal in A.

Corollary 2.6. Let M be the class of all zero symmetric strongly prime near-rings. M is
hereditary.

Proof. This follows from Theorem 2.5 if we take P=(0).

An ideal I of N is called an essential ideal in N if / n K^<t> for any 0#X<i N. In this
case we shall write 7-^ • N.

Lemma 2.6. Let M be any class of strongly prime near-rings. M is closed under
essential extensions.

Proof. Let I-a-N where IeM. Furthermore, let J be any nonzero ideal of N. Since
0 # / n J < / and IeM, there exists a finite subset F s J n 7 such that {re/:Fr=0}=0.
We have l(I)<\ N where l(I) = {neN:nI = 0}, i.e. left annihilator of / in N. Furthermore,
[ /( / )n/]2£/( /)• 7 = 0. Now, /(7)n7<a7 and since / is a prime near-ring, it follows that
1(1) n 1 = 0. From the fact that / is an essential ideal in N, we have /(7)=0. Hence for all
0 / n e N there exist 0#pe7 such that np#O and consequently, Fnp^O. From this we
have Fn#0. Hence N is strongly prime which proves the lemma.

Definition (see [6, p. 57]). Let X be a homomorphically closed class of near-rings. A
class of a of near-rings is called X-special if the following conditions are satisfied.

51 Each near-ring from a is prime.
52 NeanX and A<\ N implies Aeir.

53 If 7<>4<JVeJf and A/lea, then /<JV and N/(I:A)sea where

Let D denote the class of all d.g. near-rings.

Theorem 2.8. The class M of strongly prime near-rings is D-special.

Proof. From 2.3 and Corollary 2.6 it follows that conditions SI and S2 are satisfied.
We only have to show that S3 is also satisfied. Let 7o A-oNeD and A/'IeM. Since A/I
is also a prime near-ring, it follows from [6, Theorem 5.3] that I<iN. We show that
N/(I:A)NeM, i.e. that (I:A)N is a strongly prime ideal in N. Let x$(I:A). There exists
aeA such that xa$I. Since 7 is a strongly prime ideal in A, there exists a finite subset
F of <xa>/1£<x>w such that for all zeA, Fz^I implies zel. Let teN be arbitrary
such that Ft £(7: A). Since Ft A £7, we have tA^I. Hence te(I:A). Therefore (I:A)N is a
strongly prime ideal in N and consequently

3. The strongly radical prime

Definition. Let N be any near-ring. As in the case of rings [2], we define the strongly
prime radical s(N) of N as the intersection of all the strongly prime ideals in N.
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If M is the class of all strongly prime near-rings, let UM be the upper radical class
determined by M. The following result is easy to prove.

Proposition 3.1. / / M denotes the class of all strongly prime near-rings, then
UM = {N:N is a near-ring such that N = s(N)}.

We also need the following result which follows from [1] and [10].

Proposition 3.2. Let M be a regular and essential closed class of near-rings satisfying
the following condition:

i N and I/K e M imply K o N. (F)

Then UM(N) = n{/ ,<Af:N/I ,eM}.

Proof. This follows from [10, Proposition 11] and [1, Theorem 1].

Theorem 33. If M is the class of all strongly prime near-rings, then for every NeD
and IoN we have UM(I) = I n UM(N) and s(N) = UM(N).

Proof. From Theorem 2.8 and Lemma 2.7 it follows that the conditions of [1,
Theorem 1] are satisfied. From [1, Theorem 1] we have UM hereditary and from [1,
Proposition 3] it follows that SUM is hereditary. Hence for every NeD and every ideal
/ of N we have UM(I) = UM(N)nI.

Since MeD is a regular and essentially closed class of near-rings satisfying condition
(F) we have UM(N) = s(N) for each NeD.

Remark. In general, s(N) nljts(l) where / o N. Take N and / as in Example 1. / is
a strongly prime ideal in N: For every x$I take F={4}£<x> = N. Now we have Fy£I
for each y$I. Since (0) is not a strongly prime ideal we have s(N)=I = {0,1,2,3}. We
show K = {0,2} is a strongly prime ideal in /. For each x$K, take F={1} £<*> = /.
Now Fy£K for each y$K. Hence K is a strongly prime ideal in /. Since / is not a
prime near-ring it is also not a strongly prime near-ring. Hence s(I) = K and

Regarding the position of strongly prime radical among the well-known radicals, we
have: If P(N) denotes the prime radical of the near-ring N, then we have from Lemma
2.3 that P(N)^s(N). This inclusion can be strict, for the near-ring in Example 1 is
prime. Hence P(N)=0£I=s(N). In [4] the completely prime radical of a near-ring
N, C(N), was defined as the intersection of all the completely prime ideals, i.e. all ideals
IoN such that a,b,$l implies obi I. Every completely prime ideal is strongly prime
for if / is completely prime then for every x$l take F={x}. Clearly Fy<£I for every
y$I. Hence s{N)^C(N).

We have the following example to show that this inclusion can be strict.

Example 2. Let N be the ring of 2 x 2 matrices over the two element field Z2 = [0,1].
Every nonzero ideal of N contains the one element subset F=[ J X\ such that Fz=0
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implies z=O,zeN. Hence N is strongly prime and therefore s(iV)=(0). N is not
completely prime for 0#[g J] and 0#[J g] but [g J] ft g] = [g g]. Hence
C(N) = N and consequently s(N)£C(N).

In [3] it was proved that the Levitzki radical L(N) of a near-ring JV is the
intersection of all the /-prime ideals of N. I<s N is a /-prime ideal if for every a $ I there
exists a finite number of elements fli,a, an(a)e<a> such that the following condition
is satisfied. If a,b$I then for every n>\ there exists a product of N^n factors,
consisting of a/s and b/s which is not in /.

Lemma 3.4. / / N is a near-ring, then L(N)zs(N).

Proof. We show that any strongly prime ideal is a /-prime ideal. Suppose / < N is a
strongly prime ideal in N. For every a,b,$I there exists finite sets F^ia) and
F2£<fc> such that for any x$I we have F ^ S / and F2x^I. It is now easy to show
that for every n>\ there exists a product of N ^ n factors consisting of elements from F t

and F2 which is not in /. Hence / is an /-prime ideal and therefore

For a characterization of s(N) by using certain systems (as is the case for the prime
radical and m-systems) we use the approach of [11] for rings.

Definition. An sp-system in N is a pair (G,P) where P is an ideal in N and G is a
subset of N such that GnP contains no nonzero elements of N and for any geG, there
is a finite subset F c ( g ) such that FznG^Q for all

Now / o N is a strongly prime ideal if and only if (7V\/, /) is an sp-system.

Proposition. For any near-ring N, we have s(N) = {xeN:if xeG where (G,I) is an
sp-system for some ideal I in N, then OeG}.

Proof. The same as for rings (cf. [11, Proposition 2.3]).
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