ON CERTAIN REMARKABLE TRIANGLES

O. BOTTEMA

1. Introduction. In his fine and stimulating book Introduction to geometry (1), Coxeter considers three mutually tangent circles C_{1}, C_{2}, and C_{3} (Fig. 1) and calculates the radii of the two circles E_{1} and E_{2} that touch all

Figure 1
these three. If the centres of C_{i} are the vertices of a triangle $A B C$ their radii are $s-a, s-b$, and $s-c ; \alpha, \beta$, and γ are defined by

$$
\alpha(s-a)=\beta(s-b)=\gamma(s-c)=1
$$

The radii R_{1} and R_{2} of E_{1} and E_{2} are then found to be

$$
\begin{equation*}
R_{1,2}=\left[\alpha+\beta+\gamma \pm 2(\beta \gamma+\gamma \alpha+\alpha \beta)^{\frac{1}{2}}\right]^{-1} . \tag{1}
\end{equation*}
$$

R_{1}, the radius of the smaller circle, is obviously always positive; the other radius, R_{2}, is said to be "usually" negative (which means that E_{2} encloses C_{i} as in our figure), but there are "very obtuse" triangles for which $R_{2}>0$ so that the circles C_{i} are all outside E_{2}. In the border-case E_{2} is a straight line and the condition for this to happen is

$$
\begin{equation*}
(\alpha+\beta+\gamma)^{2}=4(\beta \gamma+\gamma \alpha+\alpha \beta) \tag{2}
\end{equation*}
$$

or, what is shown to be the same thing,
Received May 15, 1962.

$$
4 R+r-2 s=0
$$

where R and r are the radii of the circumscribed and inscribed circles of $A B C$.

We determine here the triangles for which (2) holds; in fact, we express the sides a, b, c and angles A, B, C of such a triangle explicitly as functions of a parameter; in this manner the description "very obtuse" may be given a more precise meaning.
2. Alternative methods. A proof of (1) is given by Coxeter in a purely elementary way. He remarks that the well-known chemist Soddy considered the problem and that the formulae for R_{i} may be found in Hobson's Trigonometry (2). We add to this that (1) was already known to Steiner, who published a proof, by means of Heron's formula for the height of a triangle, in his "Einige geometrische Betrachtungen" which appeared in the first volume of Crelle's Journal in 1826 (pp. 161-184, 252-288). The paper is republished in his collected works (4) and the formulae are given with a clarifying note by Weierstrass on the signs of the radii concerned.

We remark that (1) may also easily be shown by inversion. If the contactpoint P_{3} of C_{1} and C_{2} is taken as the centre of inversion and its modulus is 2 , then the images $C_{1}{ }^{1}$ and $C_{2}{ }^{1}$ are two parallel lines (Fig. 2), that of the inscribed

Figure 2
circle C_{0} is the line $C_{0}{ }^{1}, C_{3}{ }^{1}$ has M as its centre, $P_{3} S_{1}=\alpha, P_{3} S_{2}=\beta$, $P_{3} D=\rho=r^{-1}$. Obviously $E_{1}{ }^{1}$ and $E_{2}{ }^{1}$ are circles congruent to $C_{3}{ }^{1}$ and touching it at the right- and the left-hand side. From

$$
P_{3} M_{1}^{2}=(\rho+\alpha+\beta)^{2}+\frac{1}{4}(\alpha-\beta)^{2}
$$

and

$$
P_{3} M_{2}^{2}=(\rho-\alpha-\beta)^{2}+\frac{1}{4}(\alpha-\beta)^{2}
$$

it follows that
(4) $R_{1}=(\alpha+\beta)\left[(\rho+\alpha+\beta)^{2}-\alpha \beta\right]^{-1}, \quad R_{2}=(\alpha+\beta)\left[(\rho-\alpha-\beta)^{2}-\alpha \beta\right]^{-1}$. E_{2} is a straight line if P_{3} is on $E_{2}{ }^{1}$, or what is the same thing, if

$$
\begin{equation*}
\rho^{2}-2(\alpha+\beta) \rho+\alpha^{2}+\alpha \beta+\beta^{2}=0 \tag{5}
\end{equation*}
$$

In the same way we obtain

$$
\begin{equation*}
\rho^{2}-2(\beta+\gamma) \rho+\beta^{2}+\beta \gamma+\gamma^{2}=0 \tag{6}
\end{equation*}
$$

The third analogous equation is seen to be linearly dependent on (5) and (6), which also imply that

$$
\begin{equation*}
\rho^{2}=\beta \gamma+\gamma \alpha+\alpha \beta, \quad 2 \rho=\alpha+\beta+\gamma \tag{7}
\end{equation*}
$$

We thus have again the condition (2), of which both sides are now seen to be equal to $4 r^{-2}$.
3. The deltoid. If we multiply both sides of (2) by $(s-a)^{2}(s-b)^{2}(s-c)^{2}$ it becomes

$$
\begin{equation*}
\left(b c+c a+a b-s^{2}\right)^{2}=4 s(s-a)(s-b)(s-c) \tag{8}
\end{equation*}
$$

This is therefore the relation between the sides of a triangle for which E_{2} is a straight line. We regard a, b, c as the barycentric co-ordinates of a point in a Euclidean plane with respect to an equilateral triangle $O_{1} O_{2} O_{3}$ (Fig. 3).

Figure 3
For real triangles the image points are inside the triangle $D_{1} D_{2} D_{3}$. Points on the line-segments $D_{2} D_{3}, D_{3} D_{1}, D_{1} D_{2}$ correspond to improper triangles. The line l at infinity is given by $s=0 ; b c+c a+a b=0$ is the equation of the circumcircle Ω of $O_{1} O_{2} O_{3} ; s-a=0, s-b=0, s-c=0$ are the lines $D_{2} D_{3}, D_{3} D_{1}$, and $D_{1} D_{2}$ respectively.

We see that (8) is the equation of a quartic curve K, which has the three lines $O_{i} D_{i}$ as axes of symmetry. For $s=0$ we obtain the isotropic points each
counted twice, but these points are one-fold intersections of K and Ω. Hence l touches K in the isotropic points. For $s-a=0$ we obtain the points D_{2} and D_{3} each counted twice and so on; therefore D_{1}, D_{2}, and D_{3} are double points of K. The axis of symmetry $b=c$ meets K three times at D_{1} (the fourth point of intersection being $Q_{1}=(8,5,5)$), which means that D_{1} (and D_{2} and D_{3}) is a cusp. From these properties it follows, in view of a theorem of CremonaClebsch (3), that K is Steiner's hypocycloid. It is drawn in Figure 3 and we see that no points of K are outside $D_{1} D_{2} D_{3}$. Therefore if a, b, c satisfy (8) they are the sides of a real triangle, which is improper only if $a=0, b=c$, etc. K is generated by a point of a circle of radius $\frac{1}{3}$ which rolls within the inscribed circle of $O_{1} O_{2} O_{3}$, which is given the radius 1 (Fig. 4). If g is the

Figure 4
moving point, $\angle D_{1} O D=\phi$, then $\angle g N D=3 \phi$ and by projecting the broken line $D_{1} O N g$ on $O_{1} D_{1}, O_{2} D_{2}$, and $O_{3} D_{3}$ the co-ordinates of g are easily found. If we write $\alpha=\pi / 3$ the result is

$$
\begin{align*}
& \lambda a=3-2 \cos \phi-\cos 2 \phi, \\
& \lambda b=3+2 \cos (\phi+\alpha)-\cos 2(\phi+\alpha), \tag{9}\\
& \lambda c=3+2 \cos (\phi-\alpha)-\cos 2(\phi-\alpha),
\end{align*}
$$

where λ is a proportionality factor. By (9) the sides of our remarkable triangles are given explicitly as functions of the parameter ϕ with $0 \leqslant \phi<2 \pi$. For $\phi=0,2 \alpha$, and 4α we have the cusps D_{1}, D_{2}, and D_{3}; for $\phi=\alpha, 3 \alpha$, and 5α the points Q_{3}, Q_{1}, and Q_{2}. If ϕ increases with 2α the sides a, b, c are cyclically interchanged.

We remark that (9) may be written:

$$
\begin{align*}
& \lambda a=2(1-\cos \phi)(2+\cos \phi) \\
& \lambda b=2\{1+\cos (\phi+\alpha)\}\{2-\cos (\phi+\alpha)\} \tag{10}\\
& \lambda c=2\{1+\cos (\phi-\alpha)\}\{2-\cos (\phi-\alpha)\}
\end{align*}
$$

Furthermore from (9) it follows that

$$
\begin{align*}
& 2 \lambda s \quad=9 \\
& 2 \lambda(s-a)=(2 \cos \phi+1)^{2}=16 \cos ^{2} \frac{\phi+\alpha}{2} \cos ^{2} \frac{\phi+5 \alpha}{2} \\
& 2 \lambda(s-b)=\{2 \cos (\phi+\alpha)-1\}^{2}=16 \cos ^{2} \frac{\phi+5 \alpha}{2} \cos ^{2} \frac{\phi+3 \alpha}{2} \tag{11}\\
& 2 \lambda(s-c)=\{2 \cos (\phi-\alpha)-1\}^{2}=16 \cos ^{2} \frac{\phi+3 \alpha}{2} \cos ^{2} \frac{\phi+\alpha}{2}
\end{align*}
$$

and therefore, if Δ stands for the area of triangle $A B C$:

$$
\begin{align*}
\lambda^{2} \Delta & =48 \cos ^{2} \frac{\phi+\alpha}{2} \cos ^{2} \frac{\phi+3 \alpha}{2} \cos ^{2} \frac{\phi+5 \alpha}{2}=3 \sin ^{2} \frac{3 \phi}{2}, \tag{12}\\
\lambda r & =\frac{2}{3} \sin ^{2} \frac{3}{2} \phi, \tag{13}\\
\lambda r_{a} & =6 \sin ^{2} \frac{1}{2} \phi, \quad \lambda r_{b}=6 \sin ^{2}\left(\frac{1}{2} \phi-\alpha\right), \quad \lambda r_{c}=6 \sin ^{2}\left(\frac{1}{2} \phi+\alpha\right), \tag{14}\\
\tan \frac{1}{2} \mathrm{~A} & =\frac{4}{3} \sin ^{2} \frac{1}{2} \phi, \quad \tan \frac{1}{2} B=\frac{4}{3} \sin ^{2}\left(\frac{1}{2} \phi-\alpha\right), \quad \tan \frac{1}{2} C=\frac{4}{3} \sin ^{2}\left(\frac{1}{2} \phi+\alpha\right), \tag{15}\\
12 \lambda R & =27-2 \sin ^{2} \frac{3}{2} \phi . \tag{16}
\end{align*}
$$

4. Bounds for the angles. The formulae (9) and (12) to (16) give some characteristic values for the triangles $A B C$. Obviously all triangles of the set are essentially determined if ϕ is chosen in the interval $0<\phi \leqslant \alpha$, the imagepoint then lying on the arc $D_{1} Q_{3}$ of K. We have then $A \leqslant B \leqslant C$. From (15) we draw the conclusion that $1<\tan \frac{1}{2} C \leqslant \frac{4}{3}$, from which it follows that $A B C$ is always an obtuse-angled triangle, but the largest angle is at most $2 \arcsin \frac{4}{5}$ (that is, about 106°); this maximum is found for the isosceles triangle of the set, namely $a: b: c=5: 5: 8$. Furthermore $0<\tan \frac{1}{2} A \leqslant \frac{1}{3}$ and therefore $A \leqslant \arcsin \frac{3}{5}$ (that is, about 37°); for the angle B we find $\arcsin \frac{3}{5} \leqslant B<\frac{1}{2} \pi$.
5. Centres of similitude. G. R. Veldkamp has noticed that the centres of similitude of the circles E_{1} and E_{2} are the incentre I and the Gergonne point M (which lies on the lines joining the vertices to the points of contact of the opposite sides with the incircle). Therefore, in a "remarkable" triangle (such that E_{2} is a straight line l), the circle E_{1} has $I M$ as a diameter; moreover, l is the polar line of M with respect to the incircle.

References

1. H. S. M. Coxeter, Introduction to geometry (New York, 1961), pp. 13-16.
2. E. W. Hobson, A treatise on plane trigonometry (London, 1925), p. 216.
3. Gino Loria, Spezielle algebraische und transzendente ebene Kurven, I (2. Aufl., Leipzig, 1910), p. 161.
4. Jacob Steiner, Gesammelte Werke, I (Berlin, 1881), pp. 60-63, 524.

Technological University
Delft, Holland

