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ON A GENERALIZATION OF A RESULT OF WALDSPURGER

JIANDONG GUO

ABSTRACT. We consider a generalization of a trace formula identity of Jacquet, in
the context of the symmetric spaces GL(2n)/GL(n) x GL(n) and G’/ H'. Here G’ is an
inner form of GL(2n) over F with a subgroup H’ isomorphic to GL(n, E) where E/F
is a quadratic extension of number field attached to a quadratic idele class character 7
of F. A consequence of this identity would be the following conjecture: Let w be an
automorphic cuspidal representation of GL(2n). If there exists an automorphic repre-
sentation 7/ of G’ which is related to 7 by the Jacquet-Langlands correspondence, and
a vector ¢ in the space of 7’ whose integral over H' is nonzero, then both L(1/2, 7) and
L(1/2,m® n) are nonvanishing. Moreover, we have L(1/2, )L(1/2,7 ® 1) > 0. Here
the nonvanishing part of the conjecture is a generalization of a result of Waldspurger
for GL(2) and the nonnegativity of the product is predicted from the generalized Rie-
mann Hypothesis. In this article, we study the corresponding local orbital integrals for
the symmetric spaces. We prove the “fundamental lemma for the unit Hecke function-
s” which says that unit Hecke functions have “matching” orbital integrals. This serves
as the first step toward establishing the trace formula identity and in the same time it
provides strong evidence for what we proposed.

0. Introduction. Let F be a number field, £ a quadratic extension field of F. We
use F4 and E4 to denote the adele rings of F and E. Let 7 be the quadratic character of
the idele class group F% / F* attached to E. For a positive integer m, we denote by G,, the
linear group GL(m). Let G be G,(F) and let H be G,(F) X G,(F). We embed H into G

in the following way:
g 0 )
— .
(81,82) ( 0 o

Let Z be the center of G. For a character x of H(F4) trivial on Z(F,)H(F), we say that an
automorphic cuspidal representation m of G(F,) is (H, x)-distinguished if 7 has trivial
central character and there exists a vector ¢ in the space of the automorphic realization
of 7 such that the integral

©.1) o(h)x (k) dh

-/I'I(F)Z(FA)\H(FA)

is not zero. If 7 is (H, 1)-distinguished, we will simply say that it is H-distinguished.
We denote by X(E : F) the set of the isomorphic classes of pairs (G', H'), where G’
is an inner form of G over F and H' C G’ is an algebraic subgroup which is isomor-
phic to G,(E) over F. Let Z' be the center of G'. Then we can define the notion of H'-
distinguished representation of G’ in a similar way. We say that an automorphic cuspidal
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representation m of G(F ) satisfies Waldspurger’s condition if there exists a pair (G', H')
in X(E : F) and an automorphic cuspidal representation 7’ of G'(F), which is related
to 7 under the Jacquet-Langlands (Deligne-Kazhdan) correspondence, such that 7’ is
H'-distinguished. When n = 1 we have the following remarkable result of Waldspurger.

THEOREM (WALDSPURGER). Let m be an automorphic cuspidal representation of
G2(F4). Then 7 is both H-distinguished and (H, n)-distinguished if and only if T satisfies
Waldspurger s condition.

Here we regard 1) as a character of H(F,) by setting
n(h) = n(deth)

for h € H(F).
It is natural to ask for a generalization of this result to G,,. Here we conjecture a
partial generalization:

CONJECTURE.  If an automorphic cuspidal representation w of Gy,(F,) satisfies
Waldspurger s condition, then  is both H-distinguished and (H, n)-distinguished. In the
case that n is odd, the converse is also true.

Waldspurger first proved his theorem by using the machinery of the Weil represen-
tation. But this method is limited to low rank cases. Another approach to the problem
of proving the conjecture is the relative trace formula of Jacquet. We proceed to explain
this as follows. Let f be a smooth function with compact support on G(F,)/Z(F,). We
denote by L.(G) the subspace of cusp forms of the Hilbert space L2 (G(F)Z(F "D\ G(Fy )).
Then f induces an operator p.(f) on L.(G). Let K.(x, y) be the kemel of p.(f). We define
a distribution /(f) by

1) = Ke(x,y)n(x)dx dy.

Z(FQH(F)\H(F () /Z(FA)H(F)\H(FA)
The kemel K.(x, y) admits a spectral decomposition of the form
Ko(x,y) = 3 Ka(x,y),

where the sum is over all the irreducible cuspidal representations 7. Let {¢;} be an or-
thonormal basis of 7. Then we have

Kes.3) = X009 090)
From this expression we find
L) = [[Kewyme)dxdy
=3[ [enronwme & | [ )]

So I(f) is not zero only if 7 is both H-distinguished and (H, )-distinguished. In other
words only such representations contribute to I(f).
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Similarly for (G',H') € X(E : F) andf’ € C°(G'(F4)/Z'(Fy4)), we define a distribu-
tion I'(f") by

1= K/(x.y)dxdy

Z(F)H (F)\H'(F) v/Z’(FA)H’(F)\H’(FA)
where K/(x, y) is the kernel representing the operator p.(f’) on L.(G’) induced by 1. As
before only H'-distinguished representations contribute to 7'(f”).

Then if n is odd, we should have the following trace formula identity

0.2) = > I
(G'.H"eX(E:F)
if the corresponding local components of the function f and the functions {f’} have
“matching orbital integrals”.
If n is even, then for a given pair (G', H') € X(E : F), the trace formula identity we
expected reads:

0.3) 1) =I()

if the local components of / and /' have “matching orbital integrals™.

Here the difference in formulating the trace formula identities between the case when
n is odd and the case when n is even is suggested by the comparison of the double cosets
H\ G/H with the double cosets H' \ G’ /H' for (G',H') € X(E : F) (see Lemma 1.8 in
Section 1.1).

Once these identities are established, the above conjecture can be proved by analyzing
the spectral decomposition of both sides. When n = 1 this is what Jacquet has done in
[J1] where he established (0.2) for GL(2) and reproved the result of Waldspurger. Further
exploiting this identity, we proved in [G] that

L(1/2,mL(1/2,7®@7) >0

for an automorphic cuspidal representation m of GL(2, F4) with trivial central character.
When combining with some known result concerning the positivity of certain average of
L(1/2,m ® 1) ([HF]), this implies L(1/2,7) > 0.

Generally for f = ®,f, € C¥ (G(F W)/ Z(F4 )) , then we have a finite set S of the places
of F such that each v ¢ S is unramified in E and f; is the unit Hecke function of G(F,).
The same is true for the function in the other side. Thus in trying to establish (0.2) or
(0.3) for G,,, we should first show that locally the unit Hecke functions have “matching
orbital integrals”. The purpose of the present paper is to prove that this is the case (see
Section 1.2). So we may regard it as the first step toward the generalization of the result
of Waldspurger. In the same time it also provides evidence that the identities (0.2) and
(0.3) will work for G,,, hence our conjecture.

The distinguishedness of a representation has a strong relation with the properties of
L-functions. To explain this we recall a result of Friedberg-Jacquet ([FJ]) as suggested
by the work of Bump-Friedberg ([BF]). Let x be a character of 7 / F*. If an automorphic
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cuspidal representation 7 of G is (H, x)-distinguished, then the exterior square L-function
L(s,m, A%p) has a pole at s = 1 and

/H(F)Z(FA)\H(FA) ¢(ding(g1, £2))x (‘3‘:%) dg1,g) = L(1/2,7®X)
for some cusp form ¢ in the space of 7. So we could derive the following result from our
conjecture:

If 7 satisfies Waldspurger’s condition, then L(s,m, A’p) has a pole at s = 1 and
L(1/2,m)L(1/2,7®n) # 0.

Furthermore by the trace formula identity (0.2) or (0.3), we could relate the product
L(1/2,mL(1/2, 7 ® n) to, roughly speaking, the square of a integral

/H'(F)Z’(FA)\H’(FA) o(h)dh

for a pair (G, H') € X(E : F) and a cusp form ¢ in the space of a H'-distinguished repre-
sentation 7’ of G'(F4). This in turn should provide information concerning the positivity
and some other properties of L(1/2, m)L(1 /2,7 ® n).

To end the introduction, we mention that a necessary tool, which concerns the multi-
plicity one of the subgroup H in G and H' in G/, in carrying on the project we described
above becomes available recently ([JR], [G2]). To explain this, we assume that F' is a
nonarchimedean local field. Suppose 7 is an irreducible admissible representation of G.
Let Hom(r, C) be the dual space of 7, and let Homy(, C) be the set of the H-invariant
elements in Hom(m, C). Then we have ([JR])

dim Homy(7,C) < 1.

Similarly we have ([G2])
dim Homgp(7',€) < 1

where (G, H') € X(E : F) and 7’ is an irreducible admissible representation of G'.

The material in this paper is part of my Ph.D thesis in Columbia University. I would
like to express my deep gratitude to my thesis advisor Professor Herve Jacquet for his
generous guidance and help, and continuous encouragement over the years. I also want
to thank Columbia university and Sloan foundation for their support.

1. Symmetric spaces and orbital integrals.
1.1. In this section, F is a field of characteristic 0. We will study the correspondence
between the double classes H \ G/H and the double classes H' \ G’ /H' for (G, H') €
X(E : F). For this purpose, we first recall the description of the geometric structure of
the H-conjugacy classes in the symmetric space G/ H, as given by Jacquet and Rallis in
[JR].

We denote by ¢, the matrix
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Let 6, be the involution of G defined by 8,(g) = €,g¢,. Then we have

H={geG|bu(g) =g}

We consider the variety
Sy = {geng 'en | g € G}

which is contained in the space

P,={g € G| gengen = bn}.

In what follows, we often write ¢, 8, S and P for ¢,, 0,, S, and P, respectively if no
confusion arises. The group G acts on S by the twisted conjugation

(gs)=gs0@g™"), g€ G, SES.

In particular H acts on S by conjugation (h,s) = hsh~! for h € H. The surjective map
p: G — S defined by

()] pg)=geg'e, g€G

satisfies
plxgh) = xp(g)b(x).

So it induces an isomorphism between the symmetric space G/H and the space S as
G-spaces. The map p also induces a one to one correspondence between the H-double
cosets in G and H-orbits in S.

Thus we are reduced to study the H-conjugacy classesin S. Forx € S, let x = x;x,, =
x,xs be its Jordan decomposition in G, where x; is semisimple and x, is unipotent. Then
both x; and x, are in S ([R] and [JR]). Our task is to analyze the semisimple elements in
S. We note that an element

A B
(1.2) g—(c D)(—_G,
where 4, B, C, D are of size n X n, is in P, if and only if
A*=1,+BC, D*=1,+BC, AB=BD, DC=CA.

So when 4 and D have no eigenvalues 11, then B and C are nonsingular. In this case we
have:

LEMMA 1.1. Lets € S be an element of the form (1.2) where A and D has no
eigenvalues £ 1. The s is H conjugate to an element of the form

(A A1
S(A')—(A1+I,, A )
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where A, has no eigenvalues 1. Two such element s(4,) and s(4;) are H conjugate if
and only if A\ and A; are conjugate. Furthermore S(A)) is semisimple if and only if A,
is semisimple.

This is essentially the Lemma 4.3 of [JR]. They actually proved that s is conjugate to

an element of the form y !
_ 1 n
t(AI)—(Az__In A])ES.

But it is easily seen that s(4;) is H conjugate to #(4,;). In fact we have
diag((4, — 1) ™", I)s(41) diag((41 — L), 1) = t(4)).

Let n) and n, are two integers such that 0 < n; < 5y +n, < nand let 4 be an element
in M(n,, F) without eigenvalues 1. We denote by s(4, n;, n2) the matrix

A4 0 0 A—L 0 0
o I, 0 o 0 0
0 0 —hhmw O 0 0
(1.3) A+, 0 0 4 0 0
o 0 0 o I, 0
0 0 0 0 0 *In—m —ny

If ny = n, np = 0, we will simply write S(4, n1, n3) as s(4). Then the result of Jacquet-
Rallis on the H conjugacy classes of semisimple elements in S can be summarized as
follows (cf. Proposition 4.1 of [JR]):

PROPOSITION 1.1.  Each semisimple element s € S is H conjugate to an element of
the form s(4, ny,ny). The set of the H conjugacy classes of semisimple elements of S is in
bijective correspondence with the set of all triples (n1,{A,},n2) where 0 <n; < nisan
integer, {4} a semisimple conjugacy class in M(n, F) without the eigenvalues +1 and
ny is an integer with 0 < n, < n—nj.

We say that an element s € S is §-regular if it is semisimple and the H orbit of s
has the maximal dimension among all the H conjugacy classes in S. This is the same as
saying that s is semisimple and the centralizer F° of s in H has the minimal dimension.
We denote by S the set of the f-regular elements of S.

LEMMA 1.2. A4 semisimple element s € S is O-regular if and only if it is H conjugate
to an element of the form
where A is a regular element (in the usual sense) in M(n, F) without eigenvalues +1. The
set of H conjugacy classes of S is in one to one correspondence to the conjugacy classes
of the regular elements in M(n, F) without eigenvalues +1.

PROOF. We first consider an element of the form s(4) where 4 € M(n, F) has no
eigenvalues +1. We have that

(5 ool 2)-eo
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if and only if
mART = A = hdhy', h@—L)hy' =A—1,, hA+1)h = A+,
It is easily seen that these conditions are equivalent to
hAhT" = A,hy = hy.
So if we identify G,(F) with the subgroup

{diag(e, g) | g € Gu(F)}

of H, then ) = G,(Fy!, the centralizer of 4 in G,(F). It is well known that
dim G,(Fy! > n and dim G,(F)! = n if and only if 4 is regular.

Generally, by the above proposition, we can assume that s = s(4, n;, ny) where 4 has
no eigenvalues 1, —1 and 0 < n; < n; + ny. Then by an easy computation, we find that
P is the set of the elements of the form

diag(Al,Az,A3,A1,A4,A5)

where 4, € G,,,(F)A,Az,A4 (S G,,z(F) and 43,45 € G,,3(F)} with n3 = n—n; —n,. Thus
we have
dim A’ = dimG,,l(F)A +2n§ +2n§ >ny+n,+n3; =n.

The equality occurs if and only if dim G,,,(FY! = n; = nand n, = n3 = 0. The assertion
of the lemma follows.

It is clear that if s(4) € S, then F® = G,(F)y! which is a torus in H. We say that
an element s € S is f-regular elliptic if F is a elliptic torus (i.e., H*/Z is compact).
This is equivalent to saying that s is H conjugate to an element of the form s(4) where 4
is a regular elliptic element in M(n, F). We denote by $° the set of the §-regular elliptic
elements in S.

Let G" (resp. G°) be the set of elements in G whose images under p are in S” (resp.
S¢). We say the elements in G are §-regular and the elements in G¢ are §-regular elliptic.
For a € G,(F) such that det(I, — a) # 0, we denote by g(a) the matrix

I, a
I, I,

LEMMA 1.3.  Each O-regular element of G is in the same H double coset as an ele-
ment of the form g(a) where a is a regular element in G,(F) such that det(l, — a) # 0. It
is 0-regular elliptic if and only if a is regular elliptic. The set H\ G" | H is in bijective cor-
respondence with the conjugacy classes of regular elements in G,(F) without eigenvalue
1.

which is in G. Then we have:

PROOF. We consider the inverse Cayley map A from the set

W = {a € Gu(F) | det(l, — a) # 0}
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to the set
U= {4 € M(n,F) | det(I, + A)det(l, — 4) # 0}

defined by
Na) = (L, +a)l, —a)".

Clearly ) is bijective and induces a one to one correspondence between the G,(F) con-
jugacy classes of W and the G,(F) conjugacy classes of U, which maps regular classes
(elliptic regular classes) in W to regular classes (elliptic regular classes) in U. On the
other hand it is easy to check that

p(g@) = s(M@)

for a € W. Here s()\(a)) is f-regular (f-regular elliptic) if and only if \(a) is regular
(regular elliptic), which is equivalent to saying that a is regular (regular elliptic). Recall
that p induces a bijective correspondence between the H-double classes in G and the H
conjugacy classes in S. The assertion of the lemma follows immediately from Lemma 1.2.

Next we consider the double cosets of the pairs in X(E : F). Given(G',H') € X(E : F),
we can find a central simple algebra L’ of dimension 4n? over F and a subalgebraM’ C L’
isomorphic to M(n, E) over F such that G’ (resp. H') is the multiplicative group of L’ (resp.
M’). Fory € F*, we use Ly, to denote the algebra

(5 %)

Then L, , is a central simple algebra of dimension 4n? over F with the subalgebra

a,B EM(n,E)}.

Mg, = {diag(e, @) | a € M(n, E)}

isomorphic to M(n,E). In particular if Y € NE* then (Ly,, Mg,) is isomorphic to
(M(2n,F), M(n,E)) over F. Let N(E : F) be a set of representatives of F*/NE*. It is
easily seen that there exists one and only one Y € N(E : F) such that (L', M") is isomor-
phic to (L, Mg,) over F. Let Gy, be the multiplicative group of L, , and let Hg, be
that of Mg,,. Thus we find that

{(Gyn,Hen) | Y € NE : F)}

gives us a set of representatives of X(E : F). Therefore we just need to study the
HE »-double cosets of Gy ..
Let E = F(+/T) where 7 € F* is not a square. We denote by g, the matrix

(Y6" )

Let 0, , be the involution on Gy, defined by

Ovn(8) = €£ng€En & € Gy
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Then Hg, = {g € Gyn | Oy 1(g) = g}. As before we consider the variety
Sy = {gbhn(g™) | £ € Grn} C Gr.

In what follows, we will drop the second index n from the notations if no confusions
arises. Then it can be proved (see [G2]) that

Sy = {g € Gy | (gex)* = hn}

So an element

(4 "B

(E i ) € Gy
is in Sy if and only it satisfies the following conditions:
1.4) A*=1,+YBB, AB = BA.
As before Gy operates on Sy by the twisted conjugation

(g,X) = gxo‘?(g-l), g € Gy, x € S»y

and in particular the subgroup Hr of G, operates on Sy by conjugation. The surjective
map py: Gy — Sy defined by

pr(g) = geebr(g™")

induces an isomorphism between the symmetric space Gy/H and Sy as Gy-spaces. It
also induces a bijective correspondence between the Hg double cosets in Gy and the Hg
conjugacy classes in S.

Before describing the Hg conjugacy classes in Sy, we first recall some facts about the
twisted conjugation in G,(E). Two elements g1, 2> € G,(E) are called twisted conjugate
if there is a g € G,(E) such that g; = gg,g7 . If g € GL(E), we will write N(g) for gg
and call it the norm of g.

LEMMA 1.4 ([AC], LEMMA 1.1 IN CHAPTER 1). (1) Ifg € Gu(E), then Ng is
conjugate to an element h of G,(F); h is uniquely determined modulo conjugation in

Gu(F).
(2) If Ng| and Ng; are conjugate in G,(E), then g, and g, are twisted conjugate.

In other words, the norm map is an injection from the set of twisted conjugacy classes
in G,(E) to the set of conjugacy classes in G,(F). We will write A(g) for the conjugacy
class in G,(F) so obtained. We denote by NG,(E) the subset of the elements 4 € G,(F)
which are conjugate in G,(E) to Ng for some g € Gn(E). In fact, if h € NG,(E), we can
findag € G,(F) suchthath = Ng.Letg € Gn(F) such that Ng is conjugateto 4 € G,(F).
Then we say g is twisted regular (twisted regular elliptic) if 4 is regular (regular elliptic)
in Gu(F).

We are back to the symmetric space. For x € Sy, let x = x,x; = x;x, be its Jordan
decomposition where x; is semisimple and x,, is unipotent. Then we also have thatx; € Sy
and x, € Sy ([R]).
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LEMMA 1.S. Let

j= (4B
“\B 4
be an element in Sy such that A has no eigenvalues +1. Then s is Hg-conjugate to an
element of the form
_ (A1 7B
sy(41,B1) = (Bl 4 )

where Ay € M(n, F) has no eigenvalues +1 such thatA% —1I, =7YB,By and A\B, = B A,.
Furthermores is semisimple if and only if A| is semisimple. Two such elements s+(4,, B;)
and s+(A2, By) are Hg conjugate to each other if and only if A1 and A, are conjugate to
each other.

PROOF. The first assertion is proved in [G2]. Now we assume that

o= A 7B
“\B 4
where A € M(n, F) has no eigenvalues +1 such that 4> — [, = YBB and AB = BA. We
have that
. 1[4 B .. Y AN
diag("B,1,,) ( 5 4 |4i80B.L)=| o L o4)= H(4) € S.

In other words s is conjugate to #(4) in GL(2n, E). Applying the Lemma 4.3 of [JR], we
find that s is semisimple if and only if 4 is semisimple. To prove the last assertion, we note
that for two such elements S,(4;,B;) and S,(42, By), if we set oy = Y~ !Bj(4; +1,)"! €
Gu(E) (i = 1,2), then

A = U+ @)y — i)™, By = 2vou(l, — oydy) "
It is easy to check that if & € G,(E), then
diag(h, h)s+(A1, By) diag(h™', k") = 5,(42, B2)

if and only if hayh~! = «,. In other words, s,(41, B)) is Hg conjugate to Sy(42, B,) if
and only if o) is twisted conjugate to ar;. By Lemma 1.3, this last condition is equivalent
to the condition that o &) is conjugate to a»@;,, which is the same as saying that 4 is
conjugate to 4,. We are done.

Let ny, n; be two integers such that 0 < n; < n; +n, < n and let 4 be an element in
M(n,, F) such that 42 — I,, € YNG,,(E). Then we denote by s,(4, n1, ny) the matrix

4 0 0 B, 0 0

0 I, 0 0 0 0

0 0 —lyww 0 O 0
1.5) B, 0 0 4 0 0

0 0 0 o I, 0

0 0 0 0 0 "1 n—n;—m

~

where B, is a fixed matrix such that 42 —
sy(4,n,0) simply as s,(4). We have:

n = 'YBABA,BAA = AB,. We will write
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PROPOSITION 1.2.  Each semisimple element s € G is conjugate to an element of the
Sform sy(A,ny1,ny) where A is semisimple. The set of H conjugacy classes of semisimple
elements of Sy is in one to one correspondence with the set of all triples (ny,{A},ny),
where 0 < ny < n is an integer, {A} a semisimple conjugacy classes in M(n, F) with
A% — 1 € YNG(E), and n; is an integer with 0 < ny < n— nj.

PROOF. In [G2], we have proved each element s € S, is Hg conjugate to an element
of the form

0

A YB, 0
0 0 0
0 0 0 YB3

(1.6) B 4 0
0 0 0
0 0

where if we set

Si = (gi ,tfl) € G’Y,n,-’
then s; € Sy, such that 4; € M(n, F) with 42 — I, = YB,B,, A\B| = B4, and both
s, and —s3 are unipotent elements. Observing that in this case the element s is in fact
conjugate to diag(s;, s2,s3) in GL(2n, E), we have that s is semisimple if and only if
51,52,53 are semisimple. Equivalently 4; is semisimple by the above lemma, s, = L,
and s3 = —h,,. Hence s is semisimple if and only if it is Hr conjugate to an element of
the form s(4, n;, n;) where 4 is semisimple. The last assertion of the proposition follows
immediately from Lemma 1.5.

As before we say that a semisimple element s € Sy is 6-regular if the Hr conjugacy
class of s has the maximal dimension among all the Hg conjugacy classes in S,. We
denote by S, the set of 6y-regular elements in S,.

LEMMA 1.6.  Each element in S, is Hg conjugate to an element of the form s(A)
where A is regular. The Hg conjugacy classes is in a bijective correspondence with the
conjugacy classes in M(n, F) of those elements A such that A* — I, € YNG,(E).

PROOF. We first consider an element of the form s,(4) in S,. We set
oy =Y""Bylp+A)"" € Gu(E).
Then as in the proof of Lemma 1.5, we have that
diag(h, h)sy(4) diag(h ™', hi™") = 51(4), h € Gu(E)

if and only if hayh™' = ay. Thus if we identify Hg with G,(E) in the natural way, then
Hy “) is the twisted centralizer G,(E)* of a, in G,(E). Hence we have dimHiJ(A) >n
and dim HSE’(A) = n if and only if o is twisted regular which means that a4a,, hence
A = (I, + ay@4)(I, — aa@y), is regular. If this is the case, we have HJY) = G,(FY! if
we regard G,(F) as a subgroup of Hg.
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Generally, for a semisimple element s € S,, we can assume that s = s,(4,ny,n2)
where 4 € M(ny, F) such that 4> — I, = YB4B4and 0 < n; < n; +ny < n. Then we
have

dimHj, = dimHEf,’?) +2n§ +2n§ >n+tnyt+tny=n

and the equality occurs if and only if n; = n,n, = n; = 0 and 4 is regular. Hence the
assertion of the lemma.

We say that an element s € S, is 6,- regular elliptic if H}, is an elliptic torus. We
denote by S5 the set of such elements. Then for s € S,, it is easily seen that s € S5 if and
only if s is conjugate to an element s,(4) € S, such that 4 is regular elliptic in M(n, F).

We say that an element g € G, is 0,y-regular (resp. 6,-regular elliptic) if p,(g) € S,
(resp. S5). We use G, and G5 to denote the set of the fy-regular elements and the set of
the 6y-regular elliptic elements respectively. For o € G,(E) with det(f, — Ya&) # 0, we

denote by g,() the matrix
I, Ya
a I, )’

LEMMA 1.7.  Each element g € G, is in the same double coset as an element g,(x)
where a is a regular element in G,(F) such that det(l, — Yaa) # 0. Furthermore g is
0y-regular elliptic if and only if a is elliptic. The double classes Hg \ G [ Hg is in one
to one correspondence with the twisted conjugacy classes of twisted regular elements in
G,(E) whose norms have no eigenvalue Y™,

PROOF. Let Wy = WNYNG,(E)and Uy = UN{4 € M(n,F) | A>—1, € YNG.(E)}.
(See the proof of Lemma 1.4 for the notations.) For a € W, we have

\a)* — I, = 4a(l, — a)2.

Here 4(I, —a) > € NG,(E). So A(a)? —1, € YNG,(E) if and only if a € YNG,(E). Hence
the inverse Cayley map ) induces a bijective correspondence between W, and U,. For
a € Gy(E) such that Yaa € W,, we have

Py (gv(a)) = Sv()\('yad’))-

Here s, (/\(7ad)) is By-regular (0y-regular elliptic) if and only if A(Yx@) is regular (regu-
lar elliptic), which is the same as saying that « is twisted regular (twisted regular elliptic).
Then the first and the second assertions follow from Lemma 1.6.

It is easily seen that g1(a;) and gy(az) are in the same double coset if and only if
a; and o are twisted conjugate. Recall that we have a bijective map A/ between the
twisted conjugacy classes in G,(E) and the conjugacy classes in NG,(E). The the map
AL defined by NS () = YA (@) is a bijective map between the twisted conjugacy classes
in {a € G,(E) | det(l, — Ya@) # 0} and the conjugacy classes in W,. Hence the last
assertion of the lemma.
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We now consider the correspondence between the H conjugacy classes in Sy and the
H conjugacy classes in S. We note that both S, and S are subsets of G,,(E). The following
simple fact will be used repeatedly. Let

_ A By _ A2 B
gl - Cl D1 ’ g2 - CZ D2
are two elements in G,(E) where A4; are elements in M(n, E). If g, is H(E) conjugate to
22, then 4; is conjugate to A4,.

We first consider the Hg conjugacy class of sy(4) where, as usual, 4 € M(n, F) and
A% — I, € YNG,(E). We have

((A—g,)B;‘ 0 )s,(A)(BA(AEI")“ L) = s

In other words s,(A4) is H(E) conjugate to s(4). Now suppose s,(4) is H(E) conjugate to

another element 4 B
_ 1 1
s = (Cl Dl) e€S.

Then A4, is conjugate to 4. Thus by Lemma 1.1, we have that s; is H conjugate to s(4).

On the other hand if y B
_[42 B
2= (BZ A, ) €5
is also H(E) conjugate to s(4). Then 4, is conjugate to the element 4. Soby Lemma 1.5, 5,
is Hg conjugate to sy(4). Combining this considerations with Proposition 1.1 and Propo-
sition 1.2, we get:

PROPOSITION 1.3.  Suppose s is a semisimple element of Sy. Then there is g € H(E)
suchthatgsg™" € S. This establishes an injection of the Hg semisimple conjugacy classes
in Sy into the H semisimple conjugacy classes in S which carries the conjugacy class of
sy(A,ny,ny) in Sy to the conjugacy class of s(A,ny,ny) in S where A € M(n, F) such that
A% — I, EYNG(E)and 0 < ny <n;j+n, <n.

We can in fact define an injection of the general Hg conjugacy classes in .Sy into the
H conjugacy classes in S in exactly the same way. Recall that each element in Sy is Hg
conjugate to an element of the form (1.6). The same thing is true for an element in S. So
we are reduced to study the element s € Sy such that s or —s is unipotent. The point here
is that in this case we can find # € H, such that Ash~! is in Sy NS (see [G2]), and we can
also prove that this induces an injection of the H, conjugacy classes of elements in Sy of
this type into the H conjugacy classes of the same kind of elements in S. Since this will
not be used in this paper, we omit the details.

Finally we study more especially the 6-regular elliptic elements. We denote by Y~ the
subset

{{s(4)} | 4 is regular elliptic such that 42 — I, € YNG,(E) }

of the set of the H conjugacy classes {S¢} in S, which is the image of the set of the Hg
conjugacy classes {S¢} in S,. Then we have
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LEMMA 1.8.  When n is odd, the subsets Y: and Y%, are disjoint if YY{'! is not in
NE*. Furthermore we have
U r={s}.
YEF* | NE*

So we have a bijective correspondence between the disjoint union Llyp ne- {85} and

{5},

When n is even, then for each Y we have
Y; = {{s(4)} | 4 is regular elliptic in G,(F) with det(4*> — I,) € NG,(E)}

which does not depend on 7.

PROOF. We consider the element S(4) € S where 4 € U (see the proof of
Lemma 1.3). Then there exists a € W such that

A=Xa)= U, +a)I, —a)"".

It is clear that 4 is regular elliptic if and only if a is regular elliptic. Then as in the proof
of Lemma 1.7, we have
A* — 1, = da(l, — a)"2.

Since 4(I, — a)~2 € NGL,(E), so A*> — I, € YNG,(E) if and only if a € YNG,(E). It is
well known that if a is regular elliptic, then Y~'a € NG,(E) if and only if detY~'a € NE*
(Lemma 1.3, Chapter 1 in [AC]). This implies that if 4 is regular elliptic, then 42 — I, €
YNG,(E) if and only if

1.7 " det(4? — I,) € NE*.
Now if n is 0dd, then the condition (1.7) is equivalent to
Ydet(4® — I,) € NE*.

Note that we also have
U NE'=F".

YEF* |NE*

Then we obtain the first part of the lemma.
If n is even, then the condition (1.7) is equivalent to

det(4? — I,) € NE*.

The second part of the lemma follows.

By this lemma, we can also find easily that, if » is odd, then we have a injection from
the disjoint union Lep /ng- {85} to {S"}. But it is not surjective except for n = 1.

1.2. 'We now assume that F is a non-archimedean local field, E is a quadratic extension
field of F. Let ) be the quadratic character of F* attached to E. We use | | to denote the
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absolute value on F for which we have |w|r = ¢! where w is a uniformizer of F and ¢
is the number of the elements of the residue field of F.

We call an element s € S relevant if n|p = 1. It is easily seen that a semisimple
element s(4, ny, ny) is relevantif and only if n; = n,n, = 0 (see the proof of Lemma 1.2).
Recall that the H conjugacy class of a semisimple element in S is closed ([R]). Then for
f € CX(S) and a relevant semisimple element s € S, the following orbital integral is
well defined

(1.8) H(s:f:m) = [

-1
i/ f(hsh™ Yn(det h) dh.
If s = s(4), we will simply denote H(s(A) f; n) by H(4;f; ).

REMARK. For a relevant semisimple element s € Sand & € H, we have

H(hsh™"; f;m) = n(det h)H(s; ;7).

So our orbital integral is not constant on a double coset. But for a semisimple element
A € M(n, F) without eigenvalues +1 and an element 4 € G,,, we have that

H(hAR™";f;m) = n(det KHH(A; f; 1) = HA; f3n).

Hence H(4;f;,n) depends only on the conjugacy classes of 4 under G,,.
Forg € G, we let

(1.9) H,=HNg 'Hg={h € H| hg = gh' forsomeh’' € H}.

We call g relevant if 5|, = 1. It is easy to check that g € G is relevant if and only if p(g)
is relevant in S. For a function /' € C2°(G) and a relevant element g € G such that p(g)
is semisimple (this is the same as saying that AgH is closed [R]), the following orbital
integral is convergence

(1.10) Hig:f;m) = /H/H | fOngham(det hy)dhy dhs.

If g = g(a) where a is an element in G, without eigenvalue 1, then we simply denote
H(g; f;m) by H(a;f;n). If for f € CX(G), we define a function p(f) € C°(S) by the
formula

oN)(p) = [ figh)dh,
then we have
H(g:f;m) = H(p(g); p();n)
forg € G, and
H(a;f;m) = H(A@); p("); ),

for a € W. So H(g;f;n) is not constant on the double cosets, but H(a;f; 17) depends only
on the conjugacy classes of a in G,.
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Let f be a smooth function with compact support on S,. We define an orbital integral
for f at a semisimple element s € S, by

Hy(s;/) = - f(hsh™")dh.

If s = s5,(4), we use Hy(4;f) to denote Hy(s;f). In this case, Hy(s;f) depends only on
the Hg conjugacy classes of s. Hence H,(4; f) depends only on the conjugacy classes of
A.

For g € G, such that p,(g) is semisimple, then HggH is closed. So we can also define
an orbital integral of f € C°(G) at g as follows

.11 H@N = [, i /,,Ef(hlghz)dhldhz

where (Hg); = HeNg ' Hgg. If g = gy(a) where & € G,(E) suchthat det(l, —Yad) # 0,
we will denote H,(g; f) by Hy(a;f). As before we have

Hy(g:f) = Hr(pv(g)i (), and  Hy(asf) = Hy(Mve@); py())

where

p(N(pr(®) = [, fighydh.

IfY = 1, then G is isomorphic to G over F. For convenience, we will denote (G, Hg)
by (G', H'), and denote the orbital integral H,(g; f) by H(g; /) in all cases. Let Rr and Rz
be the rings of the integers of F and E. We set K = G(Rr) and K’ = G2,(RE) N G'. They
are maximal compact subgroups of G and G’ respectively. Suppose F has odd residual
characteristic and £ is unramified over F. Then as usual, one of the ingredients in the
comparison of trace formulas is the “fundamental lemma” which involves matching the
orbital integrals of Hecke functions. In our case, the (conjectural) fundamental lemma
has the following form.

FUNDAMENTAL LEMMA.  Let f be a Hecke function on G and let ' be the corre-
sponding Hecke function on G'. Then for a regular element a € G,(F) without eigenvalue
1, we have

- wasn = (o N,

The main result of this paper is that the fundamental lemma is true for unit Hecke
functions. More precisely we have:

THEOREM. Let fy and f be the characteristic functions of K and K' respectively.
Then the identity (1.12) is true when f and [’ are fy and f} respectively.

This theorem is the initial step in our project described in the introduction. We also
expect that we can deduce the fundamental lemma for general Hecke functions from this
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result for the unit Hecke functions following the ideas of Clozel [C] or Labesse [L] for
stable base change.

Another local result we need is the existence of the transfer of smooth function f with
compact support on G to the smooth function f; with compact support on Gy where f
and {f, } have “matching” orbital integrals at regular elements. In the case G = G, this
was done by the author in an unpublished note.

The remaining part of the paper is arranged as follows. In Section 2 we prove a reduc-
tion formula that can be used to reduce the comparison of orbital integrals of Hecke func-
tions to the case of elliptic orbital integrals. Then for a regular elliptic element » = aa
in G,(F), we construct a Hecke function ¥, of G,(F) and a Hecke function @, of G,(E)
such that H(r; fo; ) and H(c; f7) are represented by the usual conjugate orbital integral of
Y, at r and the usual twisted conjugate orbital integral of @, at a. We then prove that P,
and @, are related by the base change map. These are done in Section 3. In conclusion
we prove our theorem in Section 4.

2. A reduction formula. In this section we will prove a reduction formula which
relates the orbital integrals on G(F) to the orbital integrals on the Levi subgroups of
G(F). This formula can be used to reduce the comparison of the orbital integrals of Hecke
functions to the case of elliptic orbital integrals.

2.1. We first introduce some notations. Let (m;,my, . .., my) be a partition of a positive
integer m. Let T; be a subgroup of G, (F). Fort, € T; (i = 1,2,...,]), we use (t1,...,4)
to denote the element diag(?y,...,#) of Gu(F). Then T} X --- X T is the subgroup of
G (F) consisting of such elements.

Given a regular semisimple element r of G,(F), we may assume

@.1) r=(r,...,n)

up to a conjugation. Here r; is a regular elliptic element of G,,,(F). Let P; be the standard
parabolic subgroup of G,(F) associated to the partition n = n; + --- + n;. We have a
decomposition

P] = M1N1 = N1M|

where M, is the standard Levi subgroup and N is the unipotent radical of P;.

We use P to denote the standard parabolic subgroup of G(F) of type (2ny,...,2n)).
Let M and N be the standard Levi subgroup and the unipotent radical respectively of P.
Then we have

@.2) M= Gony(F) X -+ X Gan(F).

We now define an automorphism 8 of G by

(Aih<ij<i (Bij)ISI,iSI) (O
(2- 3) ( (C,‘/)] <ij<i (Di,f)lsi,jil (Q’J)IS',ISI
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where 4;, B;j, Cij, D;; are n; X n; matrices and

Ai: Bi;
2.4 =1 A N
.4 0u=(¢ )
is 2n; X 2n; matrix. Let
l,, 0 0 0 0 0
0 0 0 1, O 0
0 1, 0 0 0 0
xx=]0 0 0 0 1 0
0 0 -~ 1, 0 0 - 0
0 0 - 0 0 0 - 1,

The map 8 is actually the inner automorphism defined by 8(g) = xogx; . Since xo € K,
We have 6(K) = K. We remind that P, x P; is regarded as a subgroup of G, in the way
that it is a subgroup of G,, X G, C Ga,. Let Hys be the image of M; x M; under the map
0. Then Hy is the subgroup

2.5) Gy (F) X Gy (F) X -+ X G (F) X G (F)

of M. We can extend the definition of our orbital integrals to (M, Hy) in a natural way.
Let N, be the subgroup 8(N, x N)). It is easy to see that each element of N, has the form

Loy, (U2, Up) - (U, Up)
0 124, ce (U, Uy)
0 0 . 12,

where Uj; and U{j are n; X n; matrices and (Uj; U{j) is used to denote

(v a)
0 U,fj
It is clear that NV, is contained in N.
In order to state our proposition we need to introduce another notation. For a Hecke
function f on G, we define a function ) on M as follows:

©.6) FP(m) = §p(m)? / [ fmn)dn.
Here ép is the usual module on P. We have

dmnm™' | detm;|™

@7 bl = = = W detmm

forn € Nand m = (my,...,m;) € M. The function ) is actually a Hecke function of
M and the map
fror®
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is an isomorphism from H(G,K) to H(M, M N K). In particular f7 is the unit Hecke
function of M if f is the unit Hecke function of G(F).

Back to the element r given in (2.1). Let F be a finite Galois extension field of F
such that r splits in G,(F). Let rim, (1 < m; < n;) be the eigenvalues of r; in G, (F)
(1 <i < ). Then the element

H (r im; rj""/)
1<m;<n;
1<m;<n;

is in . We use \(r) to denote the value

| det(1,, — ri)|2| det(l,, — r)lF

1<i<j<l IH 1<my<m (Fim; — "jm,)l F
1<m <n,

2.8)

2.2. We have:
PROPOSITION 2.1.  Letf € H(G,K) and let r € G,(F) be as in (2.1), then:

2.9) H(r;f;n):,\(r)H(((}:: 1"1)(}: 1’;));/@);,,).

PROOF. For any positive integer m, we normalize the Haar measure on G,,(F) so that
the mass of K;,, = Gn(RF) is one. By the definition of our orbital integral we have:

o) — I, r
HELD = [ /Hmf(hl (i 1) hz) (et hy) dhy dhy.

Since r is a regular semisimple element in M, it is easily seen that H, is equal to
My, x My)Nr (M x My)r
which is contained in M; X M,. Applying the Iwasawa Decomposition
H(F) = (HE) NK)N1 X Ny)(My % My)

to the integral we get:
H(r;f; n) = /ILll XM]/H, -/1;41 )(Ml -/1‘V|XN| [V| XN]
f<n1m1 ( i" lr ) mznz)n(detml)dnl dny dmy dm;.
n n

We now consider the action of the map 6. Since f is a Hecke function, we have fof = f.
Let 6(r) be the image of
1, r
1, 1,
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under 6. Then we find

2.10) 00) = ((} 0 )i lri,))

which is in M. Therefore with the action of 6, our integral becomes
2.11) /;JM/(HM)O(r) /;{M /;vz /sz(nlmlG(r)mznz)n(detml)dn1 dny dm dm;.

where
(Hu)ory = Hu N O(@) ™ Hp0(r)

which is equal to
O((My x My) N (M, x My)r) = 6(H,).

Let
m = m0(rym, € M.

Thus we can write the integrand of our integral in the form
S(mmny) = f(mm™ nimny).

Consider the map

(2.12) (n1,n2) — m ' nymn;

from N, @ N, to N. We will find that it is bijective. Let J(m) be the Jacobian of this map.
We obtain:

' (2.13) Hrf;m) = /HM/(HM)o(,) /HM /Nf(mn)(l /J(m))n(detml)dn dm, dmj.
To continue, we must compute J(m). First of all we write (2.12) in the form
(2.14) (n1,n2) — m3 ' [0() ™" (my ' nymy )O(r)(manamy  ))m.

By formula (2.7), we find
67 (0(Ce1,72) ) = 8 (112’

for x;,x, € M;. Recall that Hy, = (M, x M;) and N, = O(N, X N)). It follows that the
Jacobian of the map

nu——»ml“nlml and n2»—>m2nzm2‘l

from N, — N, are
Sp(m)/? and §p(my)'/?

respectively.
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Next we consider the Jacobian J of the map
(m1,12) — 0(r) ' mi60(r)n;

from N, @ N, to N. Let

Loy, (Ui, Upp) -+ (Uy,UY)
0 124, e (U, Uy)
n =1 . . A .
0 0 .. lon,
and , ,
Lo, (Vi2, V) -+ (Vs V)
0 12m, e (Y, V)
ny; = . . . .
0 0 . 12s,

where Uy, U;

s Vi, V,.’j are n; X n; matrices. We denote the matrix

ln,- ri
1o, 1,

by Xifori=1,2,...,1 Let Wy (1 <i <I,1 <j < n;) be the matrix

2.15) XUy, UpX; + Vi, V).
Then we have
los, Wi -+ Wy
| low, -+ Wy
0(r) " 'n10(r)ny = . . .
0 0 v Iy

The formula (2.15) determines a F-linear map from F*"% to F*"_Let J; be the corre-
sponding Jacobian. Then we have J = I <i<j<;Jj;. So we are reduced to computing J;;.
From (2.15), we find Wj; is

( *+ V (lni—rl)“'(U,-jrj—riU,; )
1, - I‘,-)_'(U,{j - Uy)) *+Vj ’

Here * indicates matrices not related to ¥;; and V.. Thus the only nontrivial part we need
to compute is the Jacobian of the map

(Uij, UZ,) — (Uyrj ~rU,

ijs

Uy — Uy)
from F2"" to F2"" . We now go for a moment to the field F. Let

— -1
ri = Si(rilari2’--~arini)si

and

— -1
rj = Sj("jl,"ﬂ, s arjnj)sj
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fors; € G, (F1) and s; € G, (F1). Then by a suitable change of basis of P‘f"i"’ , We just
need to consider the Jacobian of the map

Uy, Up) — (Us@, .o 1m) — (it rin) Uy Uy = Uy).

y> =y

In this case an elementary computation shows that the result is

l H (im; — rjm,) -
1<m; <n; F
1<m;<n;

Thus we find

|H 1<m;<n; (rim, - rjmj)|F
1<m;<n;

Jy = .
/ | det(1,, — r)|

Taking the product of all Jj;, we obtain

M1 <, (im, — rjm_,-){F
J= 1<m;<n

2n;
icig<t | det(ly, — ri)|”

M1z Cim = 1) | det(1,,, — r|"
9

_ H 1<m;<n;
< | det(1,, — r})|"| det(1,, — DK i< | det(1,, — ri)|"

=AY 65 (00)) 2.

Finally the Jacobian of the map n +— m; 'nm, from N to N is §p(m;)~". Therefore

J(m) = §p(m1)/26,(m2) 2A(P) 65 (6) " 6p(ma) ™!

which can be simplified to
§p(m)~ 2 ()~

Hence our integral becomes

A(r) fH /o ]H ., [5p(m)]/ 2 / Nf(mn)dn]n(detml)dml dmy

— P)
= A\(r) S~ L y f( (m;0(r)m2)n(detm1)dm1 dms.

This ends the proof of our proposition.

2.3. We turn to the H'-double orbital integrals on G'(F). Let « belong to G(E) and let
r = ada. Suppose r is a regular element in G,(F) which has the form as in (2.1). We may
assume '

a=(al,...,a1)
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where r; = a;@; is a regular elliptic element in G, (F). To continue we need to introduce
another variant of G(F). Let G” C G,(E) be the subgroup which consists of the elements

f the fi
o fhe form (qm 511) (({lu ﬁu)
Bu  an Bu oy

() (3 2)

where o;; and 3;; are n; X n; matrices over E. Regarded as an algebraic group over F, G” is
isomorphic to both G and G'. Let P” C G"(F) be the parabolic group which corresponds
to P C G(F). Theng” € P" if and only if oy = B = 0 whenj < i. Let

M" = Gy, (F) X -+ X Ghy (F)

be a Levi subgroup and N” be the unipotent radical of P".

The automorphism 8 of G defined in (2.3) can be regarded as an automorphism of
G(E). Then it is easy to see that the restriction of § to G’ induces an isomorphism be-
tween G’ and G”. In what follows we will not make a distinction between G,(E) and its
embedding in G%,,(F) for any m > 0. Thus the subgroup

Hy = G’ll(E) X an(E) X X G"I(E)

of M is just 0(M ] (E)). We can extend the definition of our orbital integral to (M", Hy)
in a natural way.

PROPOSITION 2.2.  Let f* be a Hecke function of G'(F) and let f"" = f’ 0 0~ be the
corresponding one of G (F). Then

(2.16) H(a;j’)=)\(r)H(((:;l‘ f‘l)(l, ;):));f«m).

a
PROOF. We normalize the Haar measure on G,(E) by fx) dg = 1. For g € Gu(E),

we set g = knm by Iwasawa decomposition, where £ € K,(E),n € Niy(E)and m €
M, (E). Thendg = dkdndm. So we get

Hsf) = /Mm fM«E)/Gn(E); /N.(E) /Nm
Vi ((nl,ﬁl)(h, i) ( 10'; ;" ) (g g)(nz,ﬁz)) dny dny dh dg.

Let Ny be the image of Ni(E) under the map 6. Then Nj is a subgroup of N”, which
consists of the elements of the form

l, (Un,On) -+ (Ui, Ou)
0 Lon, o (U, Un)
0 0 L
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Here we use (Uj;, Uy) to denote the matrix

Ui 0
0 Uy

Let () be the element

on (s 2)-((5 1)L 2)

Then we can change our orbital integral into

!
/H s fH ” ) , /N , S (mh10(@)hans) dny dny dhy dhy
= / / / S m"n")(1/J(m")) dn"” dhy dhy

Here m" = h10(c)hy, € M" and J(m") is the Jacobian of the map

(2.18) (n1,m2) — m"'nym"n,

from N} ® N, to N”. We need to compute J(m"). To do this we express (2.18) in the form

2 BN
(n1,n2) — hy ' [0() ™" (' mi i )0()(hana by ).

First of all the Jacobians of the maps ny +— hy'n;h; and ny — hynyhy! from Ny to Ny
are
_ -1 _ -
Sp@ (07" ()" = 8pi(h1)'? and  8p,) (07" (h2)) = Epr(h2)'/?

respectively. Next we consider the Jacobian J’ of the map
(n1,n2) — 8()” ' m ().

from Ny & N3 to N”. We proceed as in the last proposition. Let

Loy, (Ui2,Un) --- (U, Uy)
0 L2n, o (U, Un)
h = . . . .
0 0 e Lan,
and _ _
L, (Vi2,Vi2) -+ (Vs Vi)
0 L2y, e (Vo V)
ny = . . . .
0 0 R

We use X! to denote the element
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Let W,'J be the matrix

(2.19) XUy, U)X, + Vi, V)
for 1 <i<j <1 Thenwe have
Lo Wiy - Wy
) ' mb(oymy = | . 12:712 VI:’Q,
0 0 o 1

As before if we denote by J;; the Jacobian of the F-linear map from F*"% to F*" de-
termined by (2.19), then J' = Tli<igj<1J;; We now compute J;;. We will do this over
E, = F, ® E. Here E, is a quadratic extension field of F; if E is not isomorphic to a
subfield of F;. Otherwise we have E; = F; & F;. In either case we will still use x +— x
to denote the only nontrivial F; -automorphism of E,. Since r = aa splits over F, there
exists sy € G, (E)) foreach k € {1,...,I} such that

—1
ay = sp(Q1s . - -, Uy )5

where ay; € E; and a,ay, = ry. Thus we can write W,’j in the following form:

*+Vy o Yy
vy E+Vy

where * is not related to V; and
(1n, — @)Yy = Ujoj — o Uy
= Ugsi(ag, .., o) " — si(a, ..., o )57 Uy
—1 —177 ay1e—1
= sil(si Uysi) (s - - - Qi) — (@it - - -, cin )87 UySIs;
Then through an elementary computation we obtain

lH 1<m;<n; (rimi - rf’”j)lp
1<m;<n;

v | det(lm - ri)li*nj

Thus by taking the product of all J{j, we find

I = M) 8 (0) 2.
Finally the Jacobian of the map n s h; 'nh; from N to N” is
Spo(ha) ™12,

Hence '
Ty = 8pu(hy) ™26 pu () XY 8 (8(0)) ™26 pu () !
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which is
Spr(m") T PA@)

So our orbital integral becomes

) [(spu(m”)l/2 /N ") dn"] dh, dh,

HM”/(HM" )o(a) /Hill
which equals to

Xr)H(0(c); ).

From these two propositions the comparison of the orbital integrals of Hecke functions
is reduced to the case of the orbital integrals at regular elliptic elements.

3. Orbital integrals at regular elliptic elements. In this section we restrict ourself
to the unit Hecke functions fj and fj. We will compare the orbital integrals H(a; fo; 17) and
H(a; f3) where a is regular elliptic in G,(F) and « is twisted regular elliptic in G,(E).

3.1. We need some preliminaries. Let ¥ = F?" be the 2n-dimensional vector space of
column vectors over F. Let (e}, ey, . .., e2,) be the natural basis of V. Then the exterior
n-space A"V is a vector space with basis {e;, A--- Ae;, | 1 <ij <--- <i, <2n}.For
a vector

v=_ 3 e A Ae,
1<) <-<ip<2n

in A"V, we define
[VlF = max(la;,..;,|F3 1 < i) < - <y < 2m).
The group G(F) acts on A"V by
gle, N---Ney) =ge, N---\ge;,.
LEMMA 3.1. Given g € G(F). Then g € KH if and only if

3.1 lg(er A+ Aew)lr®|glensi A+ Aex)|r = |detg|r.

We remark that as a function on G(F)

lgler A=+ Aen)lrlglent A+ Aew)lr
|detg|p

is invariant under K on the left and invariant under H on the right.

PROOF. Clearly if g € KH, then the relation is satisfied.
As for the “if” part, We apply the following Iwasawa decomposition for g € G(F)

1, X
g=k(g 1,)"

https://doi.org/10.4153/CJM-1996-005-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1996-005-3

GENERALIZATION OF A RESULT OF WALDSPURGER 131

where k € K and 4 € H. Because the element

(5 =) o

is in K and @w™1, + X is nonsingular when m is large enough, we may assume det X # 0
in the above decomposition. By the Cartan decomposition for G,(F), we can express X
as

k(@",..., ")k,

with k), &k, € K, and i} < --- <i,. Thus we can write

(1l (@,...,w"
g*"(o L, )"

if we change k, A suitably. We may further assume i; < --- <, < 0 by adjusting &. In
this case we have

Ig(el /\ - /\ e")l |g(en+l /\ - /\ ezn)l — qi|+-u+in detgl
Therefore if
lgter A=+ N eyl |glen A -+ Aeay)| = | detg]
theni; = .- =i, =0and g € KH.

The subgroup H’ is not a Levi subgroup of G'. But we still have a similar description
for K'H'. To that end we need a preparatory lemma.

LEMMA 3.2.  Every double coset K'g’H' has a representative g}, such that g}, has

integral entries and
lgoer A -+~ Nele = 1.
PROOF. Let 8
r=|¢
£ (ﬂ &)
Multiplying g’ on the left by
l, w"l, ,
(w’"l,, 1, ) €K
for large enough m if necessary, we may assume deta # 0 and det3 # 0. So we can
take g’ of the form
I, B
B 1.)
Let

B =ki@",..., ", ..., &")k.
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Here k), ky € Ky (F)and iy > --- > iy > 0 > i) > -+ 2> iy. Then the element

g=£&K'A,.... Lo, ok 1, e, w )
_(&'Q,.. LeTn ey k(@@ 1)

“\ k@@, B, e wy)

i L., Lw ™, e Ezkl(wi‘,...,wi',l,...,l).

=k ’k‘)x( @",...,@ ..., 1) U, e, )

has integral entries. We have
lgo(er A+ - Aen)|
=|e1 t " en) A- - Aler+ @ enn) A (@ ™ ey + Enir)) A+ A (@ "en+ €24)|

= |e1 Ao NeAemmi A Aewm+ S ay e A /\e;nl

where ay,..,, are integers. Hence |gj(e1 A --- Ae,)| = 1.

LEMMA 3.3. Anelementg € G'isin K'H' if and only if

3.2) |8/(el ARERWAN en)lE hd Ig,(enﬂ AREREIAY eZn)IE = ldetgllE'

PROOF. Let g’ = k'gyh’ where g, has integral entries and satisfies

|gf,(e1 ARER /\e,,)IE =1.

We also have
|go(entt A=+ ANeaw)| = |goler A+ Aep)| = 1.

Then we find
lg'(er A+ Aen)lelg (en1 A+ Aexn)|e = | deth|.

Thus
lg'(er A -~ Aenlelg'(ent A+ Ne)le = | detg|e

if and only if | detgy| = 1 which is equivalent to gj € K’, hence g’ € K'H'.
The following simple lemma is crucial in later computations.
LEMMA 3.4. Let r be a regular elliptic element in G,(F) and let
x = |det(ln —P)|r, yr=|detr|F,
thenx, <y,ory, <x,= 1.

PROOF. Let F be the splitting field of the characteristic polynomial of ». Then F
is a finite Galois extension of F. Let «, ..., a, be the eigenvalues of r in F. Then r is
conjugate to (o, .. ., a,) in G,(F1). Thus

Xr = l(l —a) (A —alr, yr=|a - ol
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Since r is regular elliptic, the characteristic polynomial of r is irreducible. Therefore
aj,..., 0y, are conjugate to each other. Hence we have

lalr = - =laulr, [1-alp = =[1-aln.

Now |1 —ai|r, < |ai|p, or|ai|r, < |1—a|r, = 1. The conclusion of the lemma follows.

We now fix some notations. Let 4 be an n x n matrix over F. We will denote by
l(A)k|| the maximum of the absolute values of determinants of all k¥ x k submatrices
of 4. In particular ||(4),|| is the maximum of the absolute values of all the entries and
l(A)n]] = |detA|. We will simple denote ||(4):]| by ||4]]. For convenience, we define

Aol = 1.

3.2. Letr be an element of G,(F) such that det(1, — r) # 0. Let x, and y, be defined
as in Lemma 3.4. We use @, to denote the characteristic function of the set of (X, Y) €
G,(F) X G,(F) such that

sup(||@ll; k= 0,...,n) sup([|(Vhll; k= 0,...,n) = x,

3.3) | detXY| = y,.
Then ®, is compactly supported and bi-K,, invariant for both X and Y. Let ¥, be the
function on G,(F) defined by
_ -1
(3.4) ¥,(g) = /G , OEH ™ Fym(deth)dh.

It is clear that ¥, is a Hecke function of G,(F).
LEMMA 3.5.  With the Hecke function ¥, defined above, we have

(3.5) HESo) = [ o

Here G,(F), is the centralizer of r in Gn(F).

¥,(grg ') dg.

The right-hand side of (3.5) is the usual orbital integral with respect to conjugation in
G,(F). We will call it the conjugate orbital integral.

PROOF. Recalling the definition of the integral H(r;f; 1), we have:

H(r; fo;m)

_ h] 0 1,, r h3 0
~fom /Hfo((o W L) (s h4))n(dethlhz)d(hl,hz)d(ha,ho
which is
h1h3 hlrh4
fom /Hﬁ)(( ps ks ))n(dethlhz)d(hl,hz)d(hs,hn.
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We now change the variables k3 +— hyh3, hy +— hyhg, by +— hahy!. Then our integral

becomes:
—1p—1
JIa(( MR b oaeto)dnd, .
hy 1n
Let @ be the function on the symmetric space G/ H defined by

o(@) = [ folgh)dh
and let @(X, Y) be

for X, Y € G,(F). Thus we obtain
Y — —1p—1
Hef) =, . oy, PO s oy (det o) diy diy
By Lemma 3.1, we have that @ is the characteristic function of the set of

X, Y) € Gu(F) x Gu(F)

such that

1, X
(Y 1”)(e1/\---/\e,,)

By a simple computation, we find

I, X
(%5 ©)enned

I, X
( Y 1 )(e,,ﬂ A~ Aey)| = | det(l, — XT)).

= sup(l[(Y)kH;k =0, 1,...,n)

and

1, X
l( v 1n)(e,,ﬂ A+ New)| = sup([|(Xll; k= 0,1,...,n).
On the other hand when X = hyrhy'h;! and Y = h, we have

| det(1l, — XY)| = |det(l, —r)|, |detXY|=|detr]|.

Thus we find
Ohyrhy 1yt hy) = O (hirhT R hy)

for all Ay, hy, € G,(F). The assertion of the lemma follows immediately.

Similarly for @ € G,(E) such that a@ = r € G,(F) and det(1, — r) # 0, we use @,
to denote the characteristic function of the set of X € G,(F) where

sup(|(illes k£ =0,1,...,n) = x,
(3.6) | det X|g = yy.

Then @, is a Hecke function on G,(E).
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LEMMA 3.6.  With the above notations, we have.

(.7 Hf) = /G . Do (hok ") dh.

Here
Gu(E); = {h € Gu(E) | hak™" = a}

is the twisted centralizer of « in G,(FE).
The right-hand side is the usual orbital integral with respect to the twisted conjugation
in G,(E). We will call it the twisted conjugate orbital integral.

PROOF. By definition the orbital integral H(c; f7) is equal to

B O\(l, a)(h O

/a”(m/cn(m; /Gnus)fg( (0 5) (5‘ l") ( 0 h )) At
B l, hah™"\(h O
_//j‘;((ﬁdh“ 1, )(0 ’;1))dhldh'

Let @' be the function on G’/ H' defined by
v'(g) = [ f'ghdh

o[ 1)

@' (hah™")dh.

and let ®'(X) be

Then our integral becomes

-/G,.(E)/ Gu(E)z
By Lemma 3.3, @’ is the characteristic function of the set of X € G,(E) such that

(% ©)@nna
This condition is equivalent to
sup(||(Xellss k= 0,...,n) = | det(l, — XX)|r.
If X = hah™!, we have
|detX|g = |detalg = |detr|lr = y,, |det(1, — XX)|F = x,-.
Thus we find

= I det(ln - mlE

E

I, X
(3 1) emnne

E

@' (hah™") = Oy(hah™)
for any 4 € G,(E). Hence our lemma.

From these two lemmas we find that to compare the orbital integral of f; at » with the
orbital integral of fj at c, it suffices to compare the conjugate orbital integrals of ¥, with
the twisted orbital integrals of @, . In this case we have:
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PROPOSITION3.7.  Let r be a regular elliptic element in G,(F) such that det(1,—r) #
0. Then

(1) ifr = aa for some a € G,(E), then ¥, and ®, have matching (conjugate and
twisted conjugate) orbital integrals at regular split elements of G,(F), i.e., for a regular
split element t of G,(F)

1y g0 — [ Joum)/Gum: PulgBE ) dg, ift=pp
¥, (gt~ ") dg = { Seworio A

(2) if r ¢ NG,(E), then the conjugate orbital integral of ¥, vanishes at all split
regular elements of G,(F).

(3-8) /Gm/cm.

PROOF. Since the orbital integrals depend only on conjugacy classes, we just need
to consider the diagonal matrices. We use 4, to denote the subgroup of diagonal matrices

of G,(F).

We first compute the conjugate orbital integral of ¥, at the matrix a = (ay,...,an)
where a; # a; if i # j. For convenience we use 4,(a) to denote this integral. Then we
have:

— —1
Aa) = /Gm i V&g g
which is equal to

/N ¥, (nan"") dn

by the Iwasawa decomposition G,(F) = K,N,A,. Here N, is the group of the upper
triangular unipotent elements of G,(F).
Recalling the definition of the function ¥, we have

— —1,-1
a@) = [, [, ®lnan”'g™, gyn(detg)]dndg

Then using the Iwasawa decomposition G,(F) = K,N,A, again and the fact that @, is
bi-K,, invariant for both variables, we find

Ar(a) = L,, /N,. /N” (Dr(nan_lm_lnl_l,nlm)n(detm)dn dn;dm
= -[1” /I-\l,, /N,, (Dr(a(a“lnan‘l)m—lnrl’nlm)n(detm)dndnl dm.

We now consider the map

n— a ‘nan™!

from N, to N,,. Its Jacobian is
A(a) = |det(Ad(a) — 1)|Li e(N,,)lF

where Lie(V,) is the Lie algebra of N,. So our integral becomes:
-1 -1 -1
A(a) /A" /N" /N" O(anm™ " n| ", nim)n(det m)dn dn; dm

= A(a)”! .[4” /N -/Nn (I)(am’l(mnm‘[)nfl,m(m_lnlm))n(detm)dndm dm
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Next we change the variables

1 1

n—mnm = ny—m nm

and then n — nny! to obtain

Aa) = Aa)”! / /N /]-v ®,(am ™' n, mn,)n(det m)dn dn, dm.

Recall that the function @, is the characteristic function of the subset of (X, ¥) € Gn(F) %
G,(F) which satisfy the conditions

sup([|(Xll; k=0, ... ,n) sup(H(Y)kH;k =0,.. .,n) =X
3.9 | det XY| = y,.
This subset is empty unless y, < x, and 1 < x,. Assuming this is the case, we must have
xx=y>1 o y<x=1

by Lemma 3 .4.
To continue we distinguish these two cases.
We first consider the case y, < x, = 1. Then (X, Y) € G,(F) x G,(F) satisfies the
conditions (3.9) if and only if
sup(|(ll; k= 0,1,...,n) =1
sup(l(Vkllsk=0,1,...,m) = 1
and

| detXY| = yy.

These conditions are equivalent to

IXI <1, ¥ <1, |detXY]=y,.

Now let
m = (xl" . -,xn)

and let u;; and vy; be the (i,)-entry of n and n; respectively. So when | deta| = y, our
integral becomes

Ay ISII;[Sn fl"klsmlsl [Q(/I,lsul du) (flv.-lel/lx.-I dvy ) et x) s

1
= x;)d*x;.
A@|ai a5 ap|r 151:15,, /Ia.-lslxilsl ne)dxi

We conclude that

1 : —
A,(a)={m 1f[a,-|§l,a,-GNE*,|a1~~-a,,|—y,
otherwise.
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In particular if y, ¢ |NE*|, then 4,(a) is always zero.
Next we consider the case x, = y, > 1. Then the conditions in (3.9) become

sup(||(X)k||;k = 0,...,n) = | det X]|
(3.10) sup(|(ell; = 0,...,n) = | detY|
| det XY| = x, = y;.

Let
X=k@",..., ")k

where k1, k; € K, and i; < --- <i,. Then we have

ORIl = g~ .

So
sup(II(X)kH;k = 0,...,n) = | detX]

ifand only ifi; <--- <i, <0. Since
X' =kl @™,. .., ")k
we find that ||[X~!|| = g*. Thus the above condition is equivalent to || X~!|| < 1. Similarly
sup([[(Mll;k=0,...,n) = |det Y]

ifand only if || Y7} < 1.
Hence the conditions in (3.10) are simply

I <1 <1, |detXY] =x =y,
Therefore 4,(a) equals to

Ada)™! j / [ n(detm)dn dn; dm
where the integrals are over the domain
In"'ma~t|| <1, |Iny'm™'|| <1, |deta| =x =y,

Now we change the variables from (n,7) to (n~',n7"). The domain for our integral
becomes
lmma™|| < 1,||mm™"|| < 1,|deta] = x, = y,.

Thus in the case | deta| = x, = y, we find

4@ =A@ ,SHS/l <bl<lail [I<I,<fllsi/x| duy) (/Ivulslel i )]"(x") i
2...a:—1
= |0203A(a) | 1 /

1<i<|a;|

| n(x) d*x;.

<xil<lai
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In conclusion we get

A(a)"

2. 11 .
A, (@) = |a_2a}__a_|, 1f|a,-| > 1,a; € NE*, |a1 --~a,,| =y
R otherwise.

In particular 4, is always zero if y, ¢ |NE*|.

We now pass to the computation of the twisted conjugate orbital integrals of @, at
diagonal matrices. We assume aa = r is a regular elliptic element of G,(F). Let 8 =
(Bi1,--->Bn) € An(E) such that B;5; # B;f3; if i # j. We use Bo(B) to denote the orbital
integral

D, (gBg ") dg.
fom/Am o(80g ) dg

Then it is equal to

-—1-—1 _ _—1
fAn(Ewn(n /Nm Pa(nmfBm ") dndm = /N,(E) Po(nfi") dn.

We now change n to 3~'n37i~'. The Jacobian is

ldet( 1-AdB) oo ) |Lie(N..(1:‘))l

where o is the nontrivial element of Gal(E / F). This Jacobian is actually equal to A(N3)
(K], p- 376). Hence our integral becomes

ANBY™ [, PalBm)dn.

Recall @, is the characteristic function of the set of X € G,(E) such that

(3.11) | det X] =y,,sup(||(X)k||;k=0,...,n) = X,.

So ®, = 0ifx, < 1 orx, < y,. As before the only remaining cases are

xx=y>1 and y, <x,=1.
We first consider the case y, < x, = 1. Then the conditions for ®, becomes

IXlle <1, [detX]=x,.

So when | det 8|¢ = x, we have

- {A(Nﬂ)“' iUy e<i dui)s i [Bi] <1
flBnllz<1 0, otherwise.

Bo(B) = ANB)™!

1 vy
= { e WE.S 1
0, otherwise.

If | det B|g # x,, the integral is zero.
Next we consider the case y, = x, > 1. Then the condition for @, is

sup(||(X)k||;k =0,. ..,n) <|detX|g = x, = yp.
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As before this is equivalent to
||X“‘||E§ 1, |detX]E=x, =Y

Hence if | det B|g = x, = y, we have

Ba () = ANB)™ /|n~lﬂ—'|551 dn = ANB)"! /lnﬁ-'lsg

_ {A(Nﬂ)“’ iU el ) if1Bi] > 1
0, otherwise
BB Me .

= { Awg) lflﬁllE 2 1
0 otherwise.

If | det B|g # yr, then B4 (B) =
So we have finished the computations. Comparing the results, we find the assertions
of the proposition are true.

COROLLARY 3.7.  With the notations as in the proposition, we have

¥, =0 ifr¢ NG,(E)

and
¥, =bd, ifr=caa.

Here b: H(Gn(E), Kn(E)) — H(Ga(F), Ko(F)) is the base change map.

PROOF. We assume ®, = 0 if r ¢ NG,(E). Let f = b®,. Then f and @, have
matching (conjugate and twisted conjugate) orbital integrals ([AC], Chapter 1). Thus f
and ¥, have the same conjugate orbital integrals at regular diagonal matrices.

Let S be the Satake transform from H| (G,,(F), K,,) to H(4,,A,NK,). Then for regular
a € A, we have

§/(a) = A(@)r, @)/ /G,m/Amf (gag™")dg

where P, = A,N, is the minimal standard parabolic subgroup of G, ([C], p. 147). The
same is true for ¥,. Therefore sf = s'¥,. But Sis one to one. So f = ¥,.

4. Conclusion. Now we are ready to prove our theorem.

PROOF OF THE THEOREM. Let r € G,(F) be a regular semisimple element such that

det(1, — r) # 0.

If r is regular elliptic, we have

r(g’g~l)dg = { IGn(E)/Gn(E)a (I)(gag )dg’ lfr - aa

A if r ¢ NG,(E)
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by the above corollary. By Lemma 3.5 and 3.6, we obtain:

@b Hefsn = (@R e

If r is not regular elliptic, we may assume

r=(r,...,n)

where 7; is a regular elliptic element in G,,(F). Proposition 2.1 tells us

H(r;fo;m) = A(r) 1 ’H(r,-; 037)

1<i<
where fj is the unit Hecke function of G;(F). On the other hand if
a= (oq,...oq)'
where o;&; = r; is regular elliptic in G, (F), we have

H(a; /) = M) T1 H(a, fy).

1<i<l]

Here f}, is the unit Hecke function of Gé,,i. Therefore the identity (4.1) is also satisfied in
this case. This ends the proof of our theorem.

We remark that we could also consider the orbital integrals over nonregular elements.
For GL(4), this was done by the author in an unpublished note where he established the
Shalike germ expansion theorem for our orbital integrals and applied it to obtain the
relations between orbital integrals over elements which are not relatively regular.
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