A TOPOLOGICAL CHARACTERISATION OF FINITE DIMENSIONALITY OF C^{*}-ALGEBRAS

Wai-Shing Tang

A C^{*}-algebra \mathcal{A} is finite-dimensional if and only if the cone $M_{2}^{+} \otimes \mathcal{A}^{+}$is closed in $M_{2} \otimes \mathcal{A}$.

1. Introduction

In the study of the matricial order structure of a C^{*}-algebra \mathcal{A}, two cones in $M_{n} \otimes \mathcal{A}$ arise naturally: $\left(M_{n} \otimes \mathcal{A}\right)^{+}$and $M_{n}^{+} \otimes \mathcal{A}^{+}$. (Notation will be explained in the next paragraph.) It is a basic fact that the cone $\left(M_{n} \otimes \mathcal{A}\right)^{+}$of all positive elements in $M_{n} \otimes \mathcal{A}$ is closed in $M_{n} \otimes \mathcal{A}$ for every positive integer n. We may ask the same question for $M_{n}^{+} \otimes \mathcal{A}^{+}$:

Question. Let $n \geqslant 2$ be a positive integer. Is $M_{n}^{+} \otimes \mathcal{A}^{+}$closed in $M_{n} \otimes \mathcal{A}$? We will show that this is true if and only if \mathcal{A} is finite dimensional (see Remark 2 and Remark 5).

Throughout this paper, \mathcal{A} denotes a C^{*}-algebra. The set of all hermitian elements (respectively positive elements) in \mathcal{A} is denoted by \mathcal{A}^{h} (respectively \mathcal{A}^{+}). We write $A \geqslant 0$ if $A \in \mathcal{A}^{+} . M_{n}$ denotes the algebra of all $n \times n$ complex matrices with the Hilbert.space operator norm. We often identify the C^{*}-tensor product $M_{n} \otimes \mathcal{A}$ of M_{n} and \mathcal{A} with the C^{*}-algebra $M_{n}(\mathcal{A})$ of all $n \times n$ matrices over \mathcal{A}, by the identification

$$
\left[\lambda_{i j}\right] \otimes A=\left[\lambda_{i j} A\right]
$$

for $\left[\lambda_{i j}\right]$ in M_{n} and A in \mathcal{A}. We let

$$
M_{n}^{+} \otimes \mathcal{A}^{+}=\text {convex hull of }\left\{S \otimes A: S \in M_{n}^{+}, A \in \mathcal{A}^{+}\right\}
$$

(without closure). All topologies considered here are those induced by C^{*}-norms. Not very much is known about $M_{n}^{+} \otimes \mathcal{A}^{+}$, even for $\mathcal{A}=M_{m}$. It is known that $M_{n}^{+} \otimes$ M_{m}^{+}is a proper subcone of $\left(M_{n} \otimes M_{m}\right)^{+}$except when $n=1$ or $m=1$ (see [1] for pertinent results). For a linear map $\Phi: \mathcal{A} \rightarrow \mathcal{B}$ between C^{*}-algebras \mathcal{A} and \mathcal{B}, let $i d_{n} \otimes \Phi: M_{n} \otimes \mathcal{A} \rightarrow M_{n} \otimes \mathcal{B}$ be the map defined by $i d_{n} \otimes \Phi\left(\Sigma S_{i} \otimes A_{i}\right)=\Sigma S_{i} \otimes \Phi\left(A_{i}\right)$. Φ is said to be positive if $\Phi\left(\mathcal{A}^{+}\right) \subseteq \mathcal{B}^{+}$.

Received 6 January 1988

The work in this paper is a revision of part of the author's Ph.D. thesis submitted to the University of Toronto, Canada. The author wishes to express his deep gratitude to Professor Man-Duen Choi for his guidance and constant encouragement.

2. Results

We first prove the following
Lemma 1. $M_{n}^{+} \otimes M_{k}^{+}$is closed in $M_{n} \otimes M_{k}$.
Proof: By definition,

$$
\begin{aligned}
M_{n}^{+} \otimes M_{k}^{+} & =\text {convex hull of }\left\{A \otimes B: A \in M_{n}^{+}, B \in M_{k}^{+}\right\} \\
& \subset\left(M_{n} \otimes M_{k}\right)^{h} .
\end{aligned}
$$

Since $\left(M_{n} \otimes M_{k}\right)^{h}$ is a real vector space of dimension (over R) $n^{2} k^{2}$, each element in $M_{n}^{+} \otimes M_{k}^{+}$is a convex combination of at most $p=n^{2} k^{2}+1$ elements in

$$
\left\{A \otimes B: A \in M_{n}^{+}, B \in M_{k}^{+}\right\}
$$

(see for example, [3, p. 73]). Hence

$$
M_{n}^{+} \otimes M_{k}^{+}=\left\{\sum_{i=1}^{p} A_{i} \otimes B_{i}: A_{i} \in M_{n}^{+}, B_{i} \in M_{k}^{+}\right\}
$$

If $X_{j}=\sum_{i=1}^{p} A_{j i} \otimes B_{j i} \in M_{n}^{+} \otimes M_{k}^{+}$and $X_{j} \rightarrow X$ in $M_{n} \otimes M_{k}$, then there exists a positive constant r such that $\left\|X_{j}\right\| \leqslant r$ for every j. Since $0 \leqslant A_{j i} \otimes B_{j i} \leqslant X_{j}$, $\left\|A_{j i} \otimes B_{j i}\right\| \leqslant\left\|X_{j}\right\| \leqslant r$ for every $1 \leqslant i \leqslant p$ and every j. We may assume without loss of generality that $A_{j i} \neq 0$ for every i and j. Then

$$
\frac{1}{\left\|A_{j i}\right\|} A_{j i} \otimes\left\|A_{j i}\right\| B_{j i}=A_{j i} \otimes B_{j i}
$$

and

$$
\left\|\left\|A_{j i}\right\| B_{j i}\right\|=\left\|A_{j i}\right\|\left\|B_{j i}\right\|=\left\|A_{j i} \otimes B_{j i}\right\| \leqslant r .
$$

Since the sets $\left\{A \in M_{n}^{+}:\|A\| \leqslant 1\right\}$ and $\left\{B \in M_{k}^{+}:\|B\| \leqslant r\right\}$ are compact, there exist subsequence $\{j \ell\}$ and $A_{i} \in M_{n}^{+}, B_{i} \in M_{k}^{+}, 1 \leqslant i \leqslant p$, such that for every i,

$$
\frac{1}{\left\|A_{j_{\ell} i}\right\|} A_{j_{\ell} i} \rightarrow A_{i}
$$

and

$$
\left\|A_{j_{i} i}\right\| B_{j_{\ell} i} \rightarrow B_{i}
$$

Hence for every i,

$$
A_{j_{\ell} i} \otimes B_{j_{\ell} i} \rightarrow A_{i} \otimes B_{i}
$$

and so

$$
X_{j_{\ell}}=\sum_{i=1}^{p} A_{j_{\ell} i} \otimes B_{j_{\ell} i} \rightarrow \sum_{i=1}^{p} A_{i} \otimes B_{i}
$$

Since $X_{i_{\ell}} \rightarrow X$ also, $X=\sum_{i=1}^{p} A_{i} \otimes B_{i} \in M_{n}^{+} \otimes M_{k}^{+}$. Hence $M_{n}^{+} \otimes M_{k}^{+}$is closed in $M_{n} \otimes M_{k}$.

Remark 2. Since each finite-dimensional C^{*}-algebra is *-isomorphic to a direct sum of full matrix algebras (for example, [5, Chapter I, Theorem 11.2], we have the following result: if \mathcal{A} is a finite-dimensional C^{*}-algebra, then $M_{n}^{+} \otimes \mathcal{A}^{+}$is closed in $M_{n} \otimes \mathcal{A}$ for every positive integer n.

Let ℓ_{∞} be the algebra of all bounded sequences of complex numbers with sup norm.

Lemma 3. $M_{2}^{+} \otimes \ell_{\infty}^{+}$is not closed in $M_{2} \otimes \ell_{\infty}$.
Proof: Let $e_{k}=\left(\delta_{i k}\right)_{i=1}^{\infty} \in \ell_{\infty}$. Let

$$
A=\left[\begin{array}{cc}
{\left[\frac{1}{n}\right]_{n=1}^{\infty}} & {\left[\frac{1}{n^{2}}\right]_{n=1}^{\infty}} \\
{\left[\frac{1}{n^{2}}\right]_{n=1}^{\infty}} & {\left[\frac{1}{n^{3}}\right]_{n=1}^{\infty}}
\end{array}\right]=\sum_{n=1}^{\infty} A(n) \otimes e_{n}
$$

where $A(n)=\left[\begin{array}{cc}\frac{1}{n} & \frac{1}{n^{2}} \\ \frac{1}{n^{2}} & \frac{1}{n^{3}}\end{array}\right]$, and

$$
\begin{aligned}
A_{n} & =\left[\begin{array}{cc}
\left(1, \frac{1}{2}, \ldots, \frac{1}{n}, 0, \ldots\right) & \left(1, \frac{1}{2^{2}}, \ldots, \frac{1}{n^{2}}, 0, \ldots\right) \\
\left(1, \frac{1}{2^{2}}, \ldots, \frac{1}{n^{2}}, 0, \ldots\right) & \left(1, \frac{1}{2^{3}}, \ldots, \frac{1}{n^{3}}, 0, \ldots\right)
\end{array}\right] \\
& =\sum_{k=1}^{n} A(k) \otimes e_{k} .
\end{aligned}
$$

Then $A \in\left(M_{2} \otimes \ell_{\infty}\right)^{+}, A_{n} \in M_{2}^{+} \otimes \ell_{\infty}^{+}$and $A_{n} \rightarrow A$ in norm, since $\left\|A_{n}-A\right\| \leqslant$ $\frac{1}{n+1}+\frac{2}{(n+1)^{2}}+\frac{1}{(n+1)^{3}}$.
Claim: $A \notin M_{2}^{+} \otimes \ell_{\infty}^{+}$. For suppose that $A \in M_{2}^{+} \otimes \ell_{\infty}^{+}$; then there exist λ_{i}, μ_{i} in C , $\left|\lambda_{i}\right|^{2}+\left|\mu_{i}\right|^{2} \neq 0$ and $f_{i} \neq 0$ in $\ell_{\infty}^{+}(1 \leqslant i \leqslant r)$ such that

$$
\begin{aligned}
A & =\sum_{i=1}^{r}\left[\begin{array}{l}
\lambda_{i} \\
\mu_{i}
\end{array}\right]\left[\begin{array}{ll}
\overline{\lambda_{i}} & \overline{\mu_{i}}
\end{array}\right] \otimes f_{i} \\
& =\sum_{i=1}^{r}\left[\begin{array}{ll}
\left|\lambda_{i}\right|^{2} f_{i} & \lambda_{i} \overline{\mu_{i}} f_{i} \\
\mu_{i} \overline{\lambda_{i}} f_{i} & \left|\mu_{i}\right|^{2} f_{i}
\end{array}\right] .
\end{aligned}
$$

Fix i. If $f_{i}(n) \neq 0$, then

$$
\left[\begin{array}{cc}
\frac{1}{n} & \frac{1}{n^{2}} \\
\frac{1}{n^{2}} & \frac{1}{n^{3}}
\end{array}\right]=A(n)=\sum_{j=1}^{r}\left[\begin{array}{ll}
\left|\lambda_{j}\right|^{2} & \lambda_{j} \overline{\mu_{j}} \\
\mu_{j} \overline{\lambda_{j}} & \left|\mu_{j}\right|^{2}
\end{array}\right] f_{j}(n)
$$

is of rank 1 and so

$$
\left[\begin{array}{ll}
\left|\lambda_{i}\right|^{2} & \lambda_{i} \overline{\mu_{i}} \\
\mu_{i} \overline{\lambda_{i}} & \left|\mu_{i}\right|^{2}
\end{array}\right]=t_{i n}\left[\begin{array}{cc}
\frac{1}{n} & \frac{1}{n^{2}} \\
\frac{1}{n^{2}} & \frac{1}{n^{3}}
\end{array}\right] \text { for some } t_{i n}>0
$$

Hence if $f_{i}(n) \neq 0$ and $f_{i}(m) \neq 0$, then

$$
t_{i n}\left[\begin{array}{cc}
\frac{1}{n} & \frac{1}{n^{2}} \\
\frac{1}{n^{2}} & \frac{1}{n^{3}}
\end{array}\right]=t_{i m}\left[\begin{array}{cc}
\frac{1}{m} & \frac{1}{m^{2}} \\
\frac{1}{m^{2}} & \frac{1}{m^{3}}
\end{array}\right] \text { where } t_{i n}, t_{i m}>0 .
$$

So $n=m$. Therefore for each i, there exists a unique n_{i} such that $f_{i}\left(n_{i}\right) \neq 0$, that is, $f_{i}=f_{i}\left(n_{i}\right) e_{n_{i}}$. Since r is finite, if $n>\max \left(n_{1}, \ldots, n_{r}\right)$, then $A(n)$ would be 0 in M_{2}, which is a contradiction. Hence $A \notin M_{2}^{+} \otimes \ell_{\infty}^{+}$. Thus $M_{2}^{+} \otimes \ell_{\infty}^{+}$is not closed in $M_{2} \otimes \ell_{\infty}$.

Combining Remark 2 and Lemma 3, we obtain a characterisation of the finitedimensionality of a C^{*}-algebra \mathcal{A} in terms of a topological property of the cone $M_{2}^{+} \otimes$ \mathcal{A}^{+}in $M_{2} \otimes \mathcal{A}$.

Theorem 4. Let \mathcal{A} be a C^{*}-algebra. Then \mathcal{A} is finite-dimensional if and only if $M_{2}^{+} \otimes \mathcal{A}^{+}$is closed in $M_{2} \otimes \mathcal{A}$.

Proof: The "only if" part is in Remark 2. Conversely, suppose that \mathcal{A} is infinite dimensional. We will show that $M_{2}^{+} \otimes \mathcal{A}^{+}$is not closed in $M_{2} \otimes \mathcal{A}$. Since \mathcal{A} is infinite dimensional, \mathcal{A} has a hermitian element A with infinite spectrum [2]. By spectral theory, there exist a sequence $\left\{E_{i}\right\}_{i=1}^{\infty}$ of positive elements of norm one in \mathcal{A} and states $\left\{\phi_{i}\right\}_{i=1}^{\infty}$ on \mathcal{A} such that $E_{i} E_{j}=0$ if $i \neq j$ and $\phi_{i}\left(E_{j}\right)=\delta_{i j}$. (See also [4, proof of Lemma 2.3]). Let

$$
X=\left[\begin{array}{cc}
\sum_{n=1}^{\infty} \frac{1}{n} E_{n} & \sum_{n=1}^{\infty} \frac{1}{n^{2}} E_{n} \\
\sum_{n=1}^{\infty} \frac{1}{n^{2}} E_{n} & \sum_{n=1}^{\infty} \frac{1}{n^{3}} E_{n}
\end{array}\right]=\sum_{n=1}^{\infty}\left[\begin{array}{cc}
\frac{1}{n} & \frac{1}{n^{2}} \\
\frac{1}{n^{2}} & \frac{1}{n^{3}}
\end{array}\right] \otimes E_{n}
$$

and

$$
X_{n}=\left[\begin{array}{cc}
\sum_{k=1}^{n} \frac{1}{k} E_{k} & \sum_{k=1}^{n} \frac{1}{k^{2}} E_{k} \\
\sum_{k=1}^{n} \frac{1}{k^{2}} E_{k} & \sum_{k=1}^{n} \frac{1}{k^{3}} E_{k}
\end{array}\right]=\sum_{k=1}^{n}\left[\begin{array}{cc}
\frac{1}{k} & \frac{1}{k^{2}} \\
\frac{1}{k^{2}} & \frac{1}{k^{3}}
\end{array}\right] \otimes E_{k} .
$$

Then $X \in\left(M_{2} \otimes \mathcal{A}\right)^{+}, X_{n} \in M_{2}^{+} \otimes \mathcal{A}^{+}$and $X_{n} \rightarrow X$ in norm, since $\left\|X_{n}-X\right\| \leqslant$ $\frac{1}{n+1}+\frac{2}{(n+1)^{2}}+\frac{1}{(n+1)^{3}}$ (since the $\left\{E_{j}\right\}_{j=1}^{\infty}$ are mutually orthogonal).
Define

$$
\Phi: \mathcal{A} \rightarrow \ell_{\infty}
$$

by

$$
\Phi(T)=\left(\phi_{i}(T)\right)_{i=1}^{\infty}, T \in \mathcal{A} .
$$

Then Φ is positive and contractive, $\Phi\left(E_{n}\right)=\left(\delta_{i n}\right)_{i=1}^{\infty}=e_{n}$ and

$$
i d_{2} \otimes \Phi(X)=\sum_{n=1}^{\infty}\left[\begin{array}{cc}
\frac{1}{n} & \frac{1}{n^{2}} \\
\frac{1}{n^{2}} & \frac{1}{n^{3}}
\end{array}\right] \otimes e_{n} \notin M_{2}^{+} \otimes \ell_{\infty}^{+}
$$

by Lemma 3. Hence $X \notin M_{2}^{+} \otimes \mathcal{A}^{+}$. For if $X=\Sigma B_{i} \otimes T_{i} \in M_{2}^{+} \otimes \mathcal{A}^{+}$where $B_{i} \in M_{2}^{+}$ and $T_{i} \in \mathcal{A}^{+}$, then $i d_{2} \otimes \Phi(X)=\Sigma B_{i} \otimes \Phi\left(T_{i}\right) \in M_{2}^{+} \otimes \ell_{\infty}^{+}$, a contradiction.

Remark 5. A similar argument as in the proof of Lemma 3 shows that $M_{n}^{+} \otimes \ell_{\infty}^{+}$ is not closed in $M_{n} \otimes \ell_{\infty}$ for each positive integer $n \geqslant 2$. Using this and the same idea as in the proof of Theorem 4, we can show that if \mathcal{A} is infinite dimensional, then $M_{n}^{+} \otimes \mathcal{A}^{+}$is not closed in $M_{n} \otimes \mathcal{A}$ for each $n \geqslant 2$.

References

[1] M. -D. Choi, 'Positive linear maps', Proc. Sympos. Pure Math. 38 (1982), 583-590.
[2] T. Ogasawara, 'Finite dimensionality of certain Banach algebras', J. Sci. Hiroshima Univ. Ser. A. 17 (1954), 359-364.
[3] W. Rudin, Functional Analysis (MeGraw-Hill, New York, 1973).
[4] R.R. Smith, 'Completely bounded maps between C^{*}-algebras', J. London Math. Soc. (2) 27 (1983), 157-166.
[5] M. Takesaki, Theory of Operator Algebras I (Springer Verlag, Berlin, 1979).

Department of Mathematics
National University of Singapore
Kent Ridge
Republic of Singapore 0511

