BULL. AUSTRAL. MATH. Soc. Vol. 38 (1988) [329-333]

A TOPOLOGICAL CHARACTERISATION OF FINITE DIMENSIONALITY OF C*-ALGEBRAS

WAI-SHING TANG

A C^{*}-algebra \mathcal{A} is finite-dimensional if and only if the cone $M_2^+ \otimes \mathcal{A}^+$ is closed in $M_2 \otimes \mathcal{A}$.

1. INTRODUCTION

In the study of the matricial order structure of a C^* -algebra \mathcal{A} , two cones in $M_n \otimes \mathcal{A}$ arise naturally: $(M_n \otimes \mathcal{A})^+$ and $M_n^+ \otimes \mathcal{A}^+$. (Notation will be explained in the next paragraph.) It is a basic fact that the cone $(M_n \otimes \mathcal{A})^+$ of all positive elements in $M_n \otimes \mathcal{A}$ is closed in $M_n \otimes \mathcal{A}$ for every positive integer n. We may ask the same question for $M_n^+ \otimes \mathcal{A}^+$:

Question. Let $n \ge 2$ be a positive integer. Is $M_n^+ \otimes \mathcal{A}^+$ closed in $M_n \otimes \mathcal{A}$? We will show that this is true if and only if \mathcal{A} is finite dimensional (see Remark 2 and Remark 5).

Throughout this paper, \mathcal{A} denotes a C^* -algebra. The set of all hermitian elements (respectively positive elements) in \mathcal{A} is denoted by \mathcal{A}^h (respectively \mathcal{A}^+). We write $A \ge 0$ if $A \in \mathcal{A}^+$. M_n denotes the algebra of all $n \times n$ complex matrices with the Hilbert space operator norm. We often identify the C^* -tensor product $M_n \otimes \mathcal{A}$ of M_n and \mathcal{A} with the C^* -algebra $M_n(\mathcal{A})$ of all $n \times n$ matrices over \mathcal{A} , by the identification

$$[\lambda_{ij}] \otimes A = [\lambda_{ij}A]$$

for $[\lambda_{ij}]$ in M_n and A in A. We let

$$M_n^+ \otimes \mathcal{A}^+ = \text{ convex hull of } \{S \otimes A : S \in M_n^+, A \in \mathcal{A}^+\}$$

(without closure). All topologies considered here are those induced by C^* -norms. Not very much is known about $M_n^+ \otimes \mathcal{A}^+$, even for $\mathcal{A} = M_m$. It is known that $M_n^+ \otimes M_m^+$ is a proper subcone of $(M_n \otimes M_m)^+$ except when n = 1 or m = 1 (see [1] for pertinent results). For a linear map $\Phi: \mathcal{A} \to \mathcal{B}$ between C^* -algebras \mathcal{A} and \mathcal{B} , let $id_n \otimes \Phi: M_n \otimes \mathcal{A} \to M_n \otimes \mathcal{B}$ be the map defined by $id_n \otimes \Phi(\Sigma S_i \otimes A_i) = \Sigma S_i \otimes \Phi(A_i)$. Φ is said to be positive if $\Phi(\mathcal{A}^+) \subseteq \mathcal{B}^+$.

Received 6 January 1988

The work in this paper is a revision of part of the author's Ph.D. thesis submitted to the University of Toronto, Canada. The author wishes to express his deep gratitude to Professor Man-Duen Choi for his guidance and constant encouragement.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

2. RESULTS

We first prove the following

LEMMA 1. $M_n^+ \otimes M_k^+$ is closed in $M_n \otimes M_k$.

PROOF: By definition,

$$M_n^+\otimes M_k^+ = ext{ convex hull of } \{A\otimes B: A\in M_n^+, B\in M_k^+\}$$

 $\subset (M_n\otimes M_k)^h.$

Since $(M_n \otimes M_k)^h$ is a real vector space of dimension (over R) n^2k^2 , each element in $M_n^+ \otimes M_k^+$ is a convex combination of at most $p = n^2k^2 + 1$ elements in

$$\{A \otimes B : A \in M_n^+, B \in M_k^+\}$$

(see for example, [3, p. 73]). Hence

$$M_n^+ \otimes M_k^+ = \{\sum_{i=1}^p A_i \otimes B_i : A_i \in M_n^+, B_i \in M_k^+\}.$$

If $X_j = \sum_{i=1}^p A_{ji} \otimes B_{ji} \in M_n^+ \otimes M_k^+$ and $X_j \to X$ in $M_n \otimes M_k$, then there exists a positive constant r such that $||X_j|| \leq r$ for every j. Since $0 \leq A_{ji} \otimes B_{ji} \leq X_j$, $||A_{ji} \otimes B_{ji}|| \leq ||X_j|| \leq r$ for every $1 \leq i \leq p$ and every j. We may assume without loss of generality that $A_{ji} \neq 0$ for every i and j. Then

$$\frac{1}{\|A_{ji}\|}A_{ji}\otimes \|A_{ji}\|B_{ji}=A_{ji}\otimes B_{ji}$$

and

$$\| \|A_{ji}\| \|B_{ji}\| = \|A_{ji}\| \|B_{ji}\| = \|A_{ji} \otimes B_{ji}\| \leq r.$$

Since the sets $\{A \in M_n^+ : ||A|| \leq 1\}$ and $\{B \in M_k^+ : ||B|| \leq r\}$ are compact, there exist subsequence $\{j_\ell\}$ and $A_i \in M_n^+$, $B_i \in M_k^+$, $1 \leq i \leq p$, such that for every i,

$$\frac{1}{\left\|A_{j_{\ell}i}\right\|}A_{j_{\ell}i} \to A_i$$

and

$$\left\|A_{j_{\ell}i}\right\|B_{j_{\ell}i}\to B_i.$$

Hence for every i,

$$A_{j_{\ell}i}\otimes B_{j_{\ell}i}\to A_i\otimes B_i,$$

and so

$$X_{j_{\ell}} = \sum_{i=1}^{p} A_{j_{\ell}i} \otimes B_{j_{\ell}i} \to \sum_{i=1}^{p} A_i \otimes B_i.$$

Since $X_{i_{\ell}} \to X$ also, $X = \sum_{i=1}^{p} A_i \otimes B_i \in M_n^+ \otimes M_k^+$. Hence $M_n^+ \otimes M_k^+$ is closed in $M_n \otimes M_k$.

331

Remark 2. Since each finite-dimensional C^* -algebra is *-isomorphic to a direct sum of full matrix algebras (for example, [5, Chapter I, Theorem 11.2], we have the following result: if \mathcal{A} is a finite-dimensional C^* -algebra, then $M_n^+ \otimes \mathcal{A}^+$ is closed in $M_n \otimes \mathcal{A}$ for every positive integer n.

Let ℓ_{∞} be the algebra of all bounded sequences of complex numbers with sup norm.

LEMMA 3. $M_2^+ \otimes \ell_{\infty}^+$ is not closed in $M_2 \otimes \ell_{\infty}$.

PROOF: Let $e_k = (\delta_{ik})_{i=1}^{\infty} \in \ell_{\infty}$. Let

[3]

$$A = \begin{bmatrix} \left[\frac{1}{n}\right]_{n=1}^{\infty} & \left[\frac{1}{n^{2}}\right]_{n=1}^{\infty} \\ \left[\frac{1}{n^{2}}\right]_{n=1}^{\infty} & \left[\frac{1}{n^{3}}\right]_{n=1}^{\infty} \end{bmatrix} = \sum_{n=1}^{\infty} A(n) \otimes e_{n}$$

where $A(n) = \begin{bmatrix} \frac{1}{n} & \frac{1}{n^{2}} \\ \frac{1}{n^{2}} & \frac{1}{n^{3}} \end{bmatrix}$, and
 $A_{n} = \begin{bmatrix} (1, \frac{1}{2}, \dots, \frac{1}{n}, 0, \dots) & (1, \frac{1}{2^{2}}, \dots, \frac{1}{n^{2}}, 0, \dots) \\ (1, \frac{1}{2^{2}}, \dots, \frac{1}{n^{3}}, 0, \dots) & (1, \frac{1}{2^{3}}, \dots, \frac{1}{n^{3}}, 0, \dots) \end{bmatrix}$
 $= \sum_{k=1}^{n} A(k) \otimes e_{k}.$

Then $A \in (M_2 \otimes \ell_{\infty})^+$, $A_n \in M_2^+ \otimes \ell_{\infty}^+$ and $A_n \to A$ in norm, since $||A_n - A|| \leq \frac{1}{n+1} + \frac{2}{(n+1)^2} + \frac{1}{(n+1)^3}$.

Claim: $A \notin M_2^+ \otimes \ell_{\infty}^+$. For suppose that $A \in M_2^+ \otimes \ell_{\infty}^+$; then there exist λ_i, μ_i in C, $|\lambda_i|^2 + |\mu_i|^2 \neq 0$ and $f_i \neq 0$ in $\ell_{\infty}^+ (1 \leq i \leq r)$ such that

$$A = \sum_{i=1}^{r} \begin{bmatrix} \lambda_i \\ \mu_i \end{bmatrix} [\overline{\lambda_i} \quad \overline{\mu_i}] \otimes f_i$$
$$= \sum_{i=1}^{r} \begin{bmatrix} |\lambda_i|^2 f_i & \lambda_i \overline{\mu_i} f_i \\ \mu_i \overline{\lambda_i} f_i & |\mu_i|^2 f_i \end{bmatrix}$$

Fix i. If $f_i(n) \neq 0$, then

$$\begin{bmatrix} \frac{1}{n} & \frac{1}{n^2} \\ \frac{1}{n^2} & \frac{1}{n^3} \end{bmatrix} = A(n) = \sum_{j=1}^r \begin{bmatrix} |\lambda_j|^2 & \lambda_j \overline{\mu_j} \\ \mu_j \overline{\lambda_j} & |\mu_j|^2 \end{bmatrix} f_j(n)$$

is of rank 1 and so

$$\begin{bmatrix} |\lambda_i|^2 & \lambda_i \overline{\mu_i} \\ \mu_i \overline{\lambda_i} & |\mu_i|^2 \end{bmatrix} = t_{in} \begin{bmatrix} \frac{1}{n} & \frac{1}{n^2} \\ \frac{1}{n^2} & \frac{1}{n^3} \end{bmatrix} \text{ for some } t_{in} > 0.$$

W. Tang

Hence if $f_i(n) \neq 0$ and $f_i(m) \neq 0$, then

$$t_{in} \begin{bmatrix} \frac{1}{n} & \frac{1}{n^2} \\ \frac{1}{n^2} & \frac{1}{n^3} \end{bmatrix} = t_{im} \begin{bmatrix} \frac{1}{m} & \frac{1}{m^2} \\ \frac{1}{m^2} & \frac{1}{m^3} \end{bmatrix} \text{ where } t_{in}, t_{im} > 0.$$

So n = m. Therefore for each *i*, there exists a unique n_i such that $f_i(n_i) \neq 0$, that is, $f_i = f_i(n_i)e_{n_i}$. Since *r* is finite, if $n > \max(n_1, \ldots, n_r)$, then A(n) would be 0 in M_2 , which is a contradiction. Hence $A \notin M_2^+ \otimes \ell_{\infty}^+$. Thus $M_2^+ \otimes \ell_{\infty}^+$ is not closed in $M_2 \otimes \ell_{\infty}$.

Combining Remark 2 and Lemma 3, we obtain a characterisation of the finitedimensionality of a C^* -algebra \mathcal{A} in terms of a topological property of the cone $M_2^+ \otimes \mathcal{A}^+$ in $M_2 \otimes \mathcal{A}$.

THEOREM 4. Let \mathcal{A} be a C^* -algebra. Then \mathcal{A} is finite-dimensional if and only if $M_2^+ \otimes \mathcal{A}^+$ is closed in $M_2 \otimes \mathcal{A}$.

PROOF: The "only if" part is in Remark 2. Conversely, suppose that \mathcal{A} is infinite dimensional. We will show that $M_2^+ \otimes \mathcal{A}^+$ is not closed in $M_2 \otimes \mathcal{A}$. Since \mathcal{A} is infinite dimensional, \mathcal{A} has a hermitian element A with infinite spectrum [2]. By spectral theory, there exist a sequence $\{E_i\}_{i=1}^{\infty}$ of positive elements of norm one in \mathcal{A} and states $\{\phi_i\}_{i=1}^{\infty}$ on \mathcal{A} such that $E_i E_j = 0$ if $i \neq j$ and $\phi_i(E_j) = \delta_{ij}$. (See also [4, proof of Lemma 2.3]). Let

$$X = \begin{bmatrix} \sum_{n=1}^{\infty} \frac{1}{n} E_n & \sum_{n=1}^{\infty} \frac{1}{n^2} E_n \\ \sum_{n=1}^{\infty} \frac{1}{n^2} E_n & \sum_{n=1}^{\infty} \frac{1}{n^3} E_n \end{bmatrix} = \sum_{n=1}^{\infty} \begin{bmatrix} \frac{1}{n} & \frac{1}{n^2} \\ \frac{1}{n^2} & \frac{1}{n^3} \end{bmatrix} \otimes E_n$$

and

$$X_{n} = \begin{bmatrix} \sum_{k=1}^{n} \frac{1}{k} E_{k} & \sum_{k=1}^{n} \frac{1}{k^{2}} E_{k} \\ \sum_{k=1}^{n} \frac{1}{k^{2}} E_{k} & \sum_{k=1}^{n} \frac{1}{k^{3}} E_{k} \end{bmatrix} = \sum_{k=1}^{n} \begin{bmatrix} \frac{1}{k} & \frac{1}{k^{2}} \\ \frac{1}{k^{2}} & \frac{1}{k^{3}} \end{bmatrix} \otimes E_{k}$$

Then $X \in (M_2 \otimes \mathcal{A})^+$, $X_n \in M_2^+ \otimes \mathcal{A}^+$ and $X_n \to X$ in norm, since $||X_n - X|| \leq \frac{1}{n+1} + \frac{2}{(n+1)^2} + \frac{1}{(n+1)^3}$ (since the $\{E_j\}_{j=1}^{\infty}$ are mutually orthogonal). Define

$$\Phi\colon \mathcal{A} \to \ell_{\infty}$$

by

$$\Phi(T) = (\phi_i(T))_{i=1}^{\infty}, T \in \mathcal{A}.$$

Then Φ is positive and contractive, $\Phi(E_n) = (\delta_{in})_{i=1}^{\infty} = e_n$ and

$$id_2 \otimes \Phi(X) = \sum_{n=1}^{\infty} \begin{bmatrix} \frac{1}{n} & \frac{1}{n^2} \\ \frac{1}{n^2} & \frac{1}{n^3} \end{bmatrix} \otimes e_n \notin M_2^+ \otimes \ell_{\infty}^+$$

332

by Lemma 3. Hence $X \notin M_2^+ \otimes \mathcal{A}^+$. For if $X = \Sigma B_i \otimes T_i \in M_2^+ \otimes \mathcal{A}^+$ where $B_i \in M_2^+$ and $T_i \in \mathcal{A}^+$, then $id_2 \otimes \Phi(X) = \Sigma B_i \otimes \Phi(T_i) \in M_2^+ \otimes \ell_{\infty}^+$, a contradiction.

Remark 5. A similar argument as in the proof of Lemma 3 shows that $M_n^+ \otimes \ell_{\infty}^+$ is not closed in $M_n \otimes \ell_{\infty}$ for each positive integer $n \ge 2$. Using this and the same idea as in the proof of Theorem 4, we can show that if \mathcal{A} is infinite dimensional, then $M_n^+ \otimes \mathcal{A}^+$ is not closed in $M_n \otimes \mathcal{A}$ for each $n \ge 2$.

References

- [1] M. -D. Choi, 'Positive linear maps', Proc. Sympos. Pure Math. 38 (1982), 583-590.
- T. Ogasawara, 'Finite dimensionality of certain Banach algebras', J. Sci. Hiroshima Univ. Ser. A. 17 (1954), 359-364.
- [3] W. Rudin, Functional Analysis (McGraw-Hill, New York, 1973).
- [4] R.R. Smith, 'Completely bounded maps between C*-algebras', J. London Math. Soc. (2) 27 (1983), 157-166.
- [5] M. Takesaki, Theory of Operator Algebras I (Springer Verlag, Berlin, 1979).

Department of Mathematics National University of Singapore Kent Ridge Republic of Singapore 0511