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BOUNDARY-VALUE PROBLEMS OF A 
DEGENERATE SOBOLEV-TYPE 

DIFFERENTIAL EQUATION 
BY 

C. V. PAO 

ABSTRACT. The purpose of this paper is to study a degenerate 
Sobolev type partial differential equation in the form of Mut + Lu = 
/, where M and L are second order partial differential operators 
defined in a domain (0, T]xft in jRn+1. The degenerate property of 
the equation is in the sense that both M and L are not necessarily 
strongly elliptic and their coefficients may vanish or be negative in 
some part of the domain (0, T] x ft. Two types of boundary condi
tions are investigated. 

1. Introduction. Let ft be a bounded domain in Rn and let L, M be 
differential operators defined by: 

n n 

Lu= £ (aiJ(r,x)Mx.)Xi-a(r5x)w, Mu= £ (Mf,x)ux,)Xi-b(f, x)u. 

We consider the following Sobolev type differential equation 

(1.1) Mut + Lu = f(tyx) (fe(0, T],jc<Eft). 

This equation is of regular Sobolev type when the operators L and M are 
uniformly strongly elliptic and the function b is positive on the closure D of 
D = (0, T]xft. In this paper, we treat a degenerate equation in the sense that 
the operators L and M are not necessarily strongly elliptic and the function b 
may not Jbe strictly positive in D. Specifically, we allow the function b taking 
zero or negative values in D and the matrices A = (<**,), B = (fei;) being positive 
semi-definite in D. (In fact, A and B may even be indefinite.) In particular, if 
bij = Q for all i, / Eqn. (1.1) becomes a degenerate parabolic equation and if, in 
addition, b = 0, it is reduced to a degenerate elliptic equation. When by and b 
are not all zero we consider the following boundary and initial conditions 

(1.2) ii((,x) = 0 ( fe(0,T] ,xeD 

(1.3) u(0,x) = iio(x) Oceft), 
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where T is the boundary of ft. However, if L, M are in the form 
n n 

(1.4) Lu=Ya {aij{x)uXi)Xi-a{t,x)u, Mu= £ (a(x)a0(x)wXj)Xi-ft(r, x)w 
U = i U = i 

we treat the following more general boundary condition 

(1.2)' du/dv + (3(x)u = 0 (JC e I\), u(f, x) = 0 (JC G r2), (f € (0, T]) 

where a^O, /3>0, r = r i U r 2 and d/di> is the conormal derivative on I \ with 
respect to the matrix B = (aciij), that is, du/dv = v • (BVu). In the boundary 
condition (1.2)', either I \ or T2 is allowed to be empty. The purpose of this 
paper is to study the existence and uniqueness of a weak solution for the above 
boundary value problems. 

Sobolev type equations arise from various physical phenomena such as in the 
non-steady flow of fluids, heat conduction, resonant radiation in a gas and 
seepage of liquids in fissured rocks (cf. [1, 2, 11, 12]). These equations and 
their generalizations have recently been discussed in [5, 9, 10]. In most of these 
papers, it is assumed that L and M are uniformly strongly elliptic and b is 
positive on D. These requirements insure that M is invertible and the compo
site operator M~XL generates a semi-group (in fact, a group) of bounded 
operators in some function space. However, for a degenerate operator M the 
invertibility of M no longer holds and even if M is not degenerate it is not clear 
whether M~XL is the generator of a semi-group when L is degenerate. In this 
paper, we use a variational approach to the problem and seek a weak solution 
in a suitable function space. Our essential idea is the construction of a suitable 
norm for this function space. 

2. The main results. Throughout the paper we assume that a*, = ajh fc^ = &/4 

and the coefficients of L and M together with their first partial derivatives and 
the mixed partial derivatives of by in t and x are all bounded measurable in D. 
The functions /, u0, a, j8 are assumed bounded measurable in their respective 
domains. We also assume that fc(0, x)^0 in ft and the matrix Bo(x) = (bij(0, x)) 
is positive semi-definite in ft. 

Let C2(D) be the set of functions <f>(t, x) such that <f> is continuous on D and 
<t>t and its second partial derivatives in x are continuous in D. Set 

CO(D) = {4>GC 2(D); <t>(t,x) = 0 in [0, T]xT 
and <MT, x) = </>Xi(T, x) = 0 in ft}. 

For any c/>, if/e Cl(D) and any nxn matrix P = (pij(t, x)) we set 

I <<*>, </>>=[ Mzmz) dz, w=<4>,4>>i/2 

(2.1) JD 

<<k *>P = I £ 0/(*)<M*)«Mz) dz 
L JD i,y=i 
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where dz = dxdt. When P is positive semi-definite in D we write ||4>||P = 

<</>, <£>p/2. Similarly, we set for <j>, if/eCl(D), 

(2.2) 
(4>, t)bo = I 6(0, x)4>(0, x)*(0, x) dx, ||4>||bo = (<t>, ft1* 

(4. *)*> = I I ^ ( 0 , x ) ^ ( 0 , x )^ (0 , x) dx, \\4\U = (<f>, <(>) 1/2 
Bo 

Our main idea for insuring the existence problem of (1.1)—(1.3) is the introduc
tion of the functional 

<fc *).* = <*, < « A - 5 < * , 4>>B,+<</', (a-fc/2)<fr>+è(ifc <»*+*(*, 4>)bo 

(2.3) (<k<freCg(D)) 

where (^, <f>)A and (i/f, 0)B, are defined in (2.1) with P = A and P = B, s ((biy)t), 
respectively. Since the matrices A and B are symmetric it is clear that (°, °)H is 
a symmetric bilinear functional on Cl(D). Assume that for some constant 
S > 0 , 

(2.4) < * , < M H ^ 8 < < M > (<freCg(D)). 

Then <°, °)H defines an inner product on Cl(D). We denote the completion of 
Co(D) with respect to the norm ||^||H = <4>, 4>)H2 by H. In view of (2.4), the 
space H is contained in L2(D) both algebraically and topologically. 

A function ueH is said to be a weak solution of (1.1)—(1.3) if 

<u, 4>>A-<w, <t))Bt-(u, <MB+<W, a<t>-(b(t))t) = (u0, </>)Bo + (wo, <f>)b0~(f, 4>> 

(2.5) (*eCS(D)). 

Equation (2.5) is obtained from (1.1) by a formal integration by parts and using 
the conditions (1.2), (1.3). In obtaining the equation we have used the relations 

(Mut, <f>) = -<w„ <\>)B ~(ut, b(f)) 

(2.6) = (u0, 4>)B0 + <", 4>>B+<W, <fc>B+(Ko, </>)b0 + <"> (&*)*>, ( * € Cg(D)) 

(2.7) (LW, </>> = -<u, <j>)A -<u, a<f>>, (4 e C§(D)). 

Let </> € Co(D) be fixed. Define a linear functional B[°, </>] on H by: 

(2.8) B[>, <H = <ifc 4>>A -<fc 4>>B, "<<fc </>*>B + <*, a<t> - (*></>),) (i/f e H). 
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It will be shown in the following section that for each <f> e Cl(D), B[°, <f>] is a 
bounded linear functional on H and there exists a closable operator 
S:Co(D)-»H such that B[u, <j)] = (u, S<f>)H for ueH, QeC&D). Denote the 
closure of S by S. Then we have the following result. 

THEOREM 1. Assume that (2.4) holds for some 8>0. Then the problem 
(1.1)—(1.3) has a weak solution ueH. Furthermore, for any two solutions 
Mi, u2eH there exists weR±(S) such that ux — u2 + w, where 

R±(S)^{^eH;(ilf,<t>) = 0 for all <j>eR(S)}. 

For the mixed boundary-value problem (1.1), (1.2)', (1.3), where L and M 
are in the form of (1.4) we seek a solution in the Hilbert space H which is 
defined as follows: Let 

£2o(D) = {<l>eC2o(D);<l>(t,x) = 0 on [0, T]xT2, <t>(T,x) = <t>Xi(T,x) = 0 in O}. 

Define a symmetric bilinear functional on £l(D) by 

<*, 4>>H = <*, 4>>A+ <</>, <̂ >+<«fc {a-btl2)<\>)+\[(^ tftBoHh * ) * + (*> *) J 

(2.9) (fc*efo(D)), 

where <i/r, <f>)A, <ifc </>>, (i/r, </>)Bo, (i/,, 0)bo are given in (2.1), (2.2) and 

1/2 
0 

(2.10) 
<ft </>>e = J [ P(x)*(<i *)4>U x) dS dr, ||</4 = <</>, <£>, 

(fc </>k = [ a(x)|3(xM0, x)*(0, x) dS, Uplift, = (<j>, <fr)J* 

Assume that for some constant ô > 0, 

(2.11) <*,*>*^8<<M> (<t>e^0(D)). 

Then (°, °)H defines an inner product in £o(D). We denote by H the completion 
of £o(D) with respect to the norm ||$||H = {<t>, $)#2. A function ueH is called a 
weak solution of (1.1), (1.2)', (1.3) if 

<M, <f>)A-(u, 4>t)B+(u,4>-a4>t)p+{u, a<l>-(b<t>)t) 

(2.12) =(M0 , 4>)B0 + (U0, 4>)e0 + ("o, < ^ k - a 4>> (<t>e &(D)). 
As in the previous case the definition of a weak solution is obtained from (1.1) 
by a formal integration by parts and using the conditions (1.2)', (1.3). In the 
present situation the formal integration yields the relations 

(Mut, 4>> = <M, 4>t)B +<M, a<f>t)p +<M, (b<£)t> + (M0, </>)B0 + (W0, 4>)0O + ( " 0 , <t>)b0 

(^€fg(D)) 

(Lu, <t>) = ~<M, <f>)A-(u, <t>)p-(u, a$) 

(2.13) 
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For each $ e £o(D) we define a linear functional on H by 

(2.14) B [ I M ] = < I M > A - < * , * > B ^ ^ 

(<j>e(l(D)). 

It is easily shown that for each <f> e Ço(D), B[°, <f\ is a bounded linear functional 
on H and there exists a closable operator Si:£o(D)-> H such that É[ifj, <£] = 
(if/, Si(/>) for ij/eH, <j>eÇl(D). Denoting by Sx the closure of Si, we have the 
following conclusion: 

THEOREM 2. Assume that (2.11) holds for some 8 > 0. Then the problem (1.1), 
(1.2)', (1.3) with M and L given by (1.4) has a weak solution ueH. Further
more, for any two solutions uuu2eH there exists w€i?x(Si) such that ux = 
u2+w. 

REMARKS, (a) By a transformation u-> e~ktu in the problem (1.1)—(1.3) for 
some real constant À, the condition (2.4) is satisfied if either one of the 
following conditions holds: 

(i) (A + XB — BJ2) is positive semi-definite and a + kb — bJ2>8 in D. 

(ii) (A + KB-BJ2) is positive definite and a + Ab-fc,/2>0 in D. 
In particular, if Eqn. (1.1) is of the form 

n n 

Z (b*(t,x)utXi)Xi-b(t,x)ut+Y< (a*(f,x)uJXj-a(r,x)w=/(f,x) 
i = l i = l 

which was considered in [1, 2, 10, 11, 12] then the above conditions become, 
respectively, 

(i) a* + Ab*-fcf/2>0 and a + kb-bJ2>8 in D, 
(ii) a* + \b*-b*/2>8 and a + Àfr-ïv/2^0 in D. 

(b) If B = 0, the problem (1.1)—(1.3) becomes the degenerate parabolic 
equation considered in [8] (see also [3, 4, 7]) and if, in addition, £> = 0 it 
reduces to a degenerate elliptic equation (cf. [8]). In the latter situation, the 
initial condition (1.3) should be disregarded. 

3. Proof of the theorems 

Proof of Theorem 1. For any </>, ijj e Cl(D), the relation 

l<& 4>)p\ = Z PijU)<Mz)<Mz) dz\ 
(3.1) I J D U = 1 ' 

J n I 

tl*(z) Z (Pij(z)<t>Xj(z))Xidz\ 
D i,/ = l I 

with P representing A, B, and Bt, respectively, implies that 
(3.2) |B[fc * ] | =s K* ll^ll* 8-ll2K* II^IH (tfr G CS(D», 
where JK̂  is a constant depending only on </> and the matrices A, B. Thus 

https://doi.org/10.4153/CMB-1977-035-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1977-035-5


226 C. V. PAO [June 

B[°, <j>] is a bounded linear functional on Cl(D) and so it can be extended to 
H. In view of (2.5) and (2.8), it suffices to find a u e H such that 

B[u, <« = (iio, 4>)B0 + ("O, </>k-</, <t>) (<t>eC2
0(D)). 

Now for each $ e Cl(D) the Riesz Theorem insures the existence of S<t>eH 
such that 

(3.4) B[u, ct>] = (u, S<t>)H (ueH,<t>e C2
0(D)). 

Clearly, S is a linear operator on Cl(D) to H. We show that S is closable. For 
each fixed ijje Cl(D), the second equality in (2.6) and the relation (3.1) imply 
that 

|<fc <t>)Bt + < f c <fc>B +<l fc (b<t>)t)\ = |<lfc 4>>B + < * , * * > + ( * , * ) B O + ( * * ) J 

^x;||*||+||^||*k+ll*LII*L 
(3.5) *=K;||<M|H (*€CS(D)), 

where KJ,, K£ are some constants independent of (f>. In view of (3.4), (2.8), 
(3.5), and (3.1) we have 

|<fc S<t>)H\ < |<fc <f>)A + < ,̂ a</>>| + K ; ||*||„ ^ K* ||*||H (* e Cg(D)) 

for some constant K^. The above relation shows that Cl(D) is contained in the 
domain D(S*) of S*, where S* is the adjoint operator of S. Now if {<j)k} is a 
sequence in Cl(D) such that <£k -> 0 and S<j>k -» g as k -> » then for each 

<& g>H = lim <ifc S(/>k)H = lim <S*>, <^k)H = 0. 
k—>oo fc—»ao 

Since Co(D) is dense in H we conclude that g = 0 and thus S is closable. It 
follows from the closed property of S and (3.4) that 

(3.6) B[u,<t>] = (u,S<j>)H (ueH, <f>eD(S)). 

where D(S) is the domain of S. We next show that 

(3.7) <<M<MH = |I*IIH (4>eD(S)) 

Since for <J> e Co(D), 

<4>, (b<t>)t) = (<!>, bt<f>) + (<t>, b<t>t) = (<t>, bt<t>)-k<t>, < / > ) b 0 - è < ^ M>> 

(3.8) = è«</>, M>-(<M)J 

(<k 4>>B, + <<fc <MB = L <i>Xi{bi$x})t dz = -(<£, <t>)Bo-((f), <f>t)B, 
JD i,j = l 

and since the latter relation implies that 

(3.9) <<£, 0>B, +<*, <M„ = §«</>, *>B, - ( * , 4>)B0) (* e CS(D)), 
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we see from (2.8), (3.8), (3.9), and (2.3) that 

B[<t>, <« = <& </>>A-è<4>, 4>>B,+è(<k </>)Bo+<<k (a-hbt)<f>)m<t>, 4>)bo = (<t>, 4>>H. 

It follows from (3.4) that the relation (3.7) holds for (j>eCl(D). The closed 
property of S implies that (3.7) also holds for (j> e D(S). At this point, the proof 
of the existence of a solution follows from a theorem of Lion's (cf. [6]). 
However, in order to show the second part of the theorem we use a different 
argument. In view of (3.7), the inverse S - 1 exists and | | S~V | |H^IM|H for 
ij/eR(S). By the closed range theorem we have JR(S*) = H, where S* is the 
adjoint of S. But the functional 

F(</>)^(u0, 4>)B0+("O, 4>)bo-<f, 4>> (*e Cg(D)) 

is bounded on Cl(D). By extending F to H we can find veH such that 
F(4>) = (v, </))H (<t>eCl(D)). Let ueD(S*) such that S*u = u. Then by (3.6), 

B[M, <t>] = (u, §4>)H = <S*w, <t>)H = <t>, 4>>H = F(<f>) (4> e C2
0(D)). 

This shows that u is a solution of (3.3). Now if uu u2 are two solutions of (3.3) 
then w = ui-u2 satisfies the relation 

<W,S<Ê>H = B[W,4>] = 0 (<t>eD(S)). 

Hence w G R^iS) which completes the proof of the theorem. 

Proof of Theorem 2. It is readily seen from the positive semi-definite 
property of the matrix {a^x)} that for each </>e £o(D) 

|B[fc <H| ̂  WMU ll*IU + MB MB +|M|, ||* - «M, + |M| ||o* - (ft*),|| 
< X J | ^ | | H , (*etf(D)) 

where K^ is a constant independent of i/f. Thus we may extend B[°, </>] to H. In 
view of (2.12), (2.14) it suffices to find a u e H such that 

(3.10) É[u, 4>] = (u0, 4>)B0 + (WO, 4>)eo + ("o, *)*-</, <t>) 

By the Riesz Theorem, there exists a closable operator Si : Ço(D) —» H such 
that 

(3.11) B[fc$] = <fcS!*>H (*eD(Si) ,*eH) 

where Si is the closure of Si. Since by direct integration, 

(3.12) 2(<t>, </>,)B = -(</>, </>)B0, 2<*, a^>p = -(</>, * )* , (</> G fg(D)). 

We obtain from (2.14), (3.12), (3.8), and (2.9) that 

B[(f>, 4>] = <</>, 4 > > A + I ( 4 > , 4>)B0 + (4>, 4>)e +à(<fc * ) * + <*> U - W 2 ) * > + è ( ^ </>)*><> 

= <</>, 0> f l ( 0 e f g ( D ) ) . 
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It follows from the closed property of Sx and (3.11) that 

<<Mi*HI*§ (<f>eD(S)). 
Using the above relation and the closed range theorem, a similar argument as 
in the proof of Theorem 1 leads to the existence of ueD(S*) satisfying the 
relation 

B[U, <t>] = {Sfu, <\>)H =(W0, 4>)BO + K , 4>)0o+ ("0, 4>)b0-</> 4>>-

This proves the existence problem. The second part of the theorem follows 
directly from the above relation. 
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