BOUNDARY-VALUE PROBLEMS OF A DEGENERATE SOBOLEV-TYPE DIFFERENTIAL EQUATION
 By
 C. V. PAO

Abstract

The purpose of this paper is to study a degenerate Sobolev type partial differential equation in the form of $M u_{t}+L u=$ f, where M and L are second order partial differential operators defined in a domain $(0, T] \times \Omega$ in R^{n+1}. The degenerate property of the equation is in the sense that both M and L are not necessarily strongly elliptic and their coefficients may vanish or be negative in some part of the domain $(0, T] \times \Omega$. Two types of boundary conditions are investigated.

1. Introduction. Let Ω be a bounded domain in R^{n} and let L, M be differential operators defined by:

$$
L u=\sum_{i, j=1}^{n}\left(a_{i j}(t, x) u_{x_{i}}\right)_{x_{i}}-a(t, x) u, \quad M u=\sum_{i, j=1}^{n}\left(b_{i j}(t, x) u_{x_{j}}\right)_{x_{i}}-b(t, x) u .
$$

We consider the following Sobolev type differential equation

$$
\begin{equation*}
M u_{t}+L u=f(t, x) \quad(t \in(0, T], x \in \Omega) \tag{1.1}
\end{equation*}
$$

This equation is of regular Sobolev type when the operators L and M are uniformly strongly elliptic and the function b is positive on the closure \bar{D} of $D \equiv(0, T] \times \Omega$. In this paper, we treat a degenerate equation in the sense that the operators L and M are not necessarily strongly elliptic and the function b may not be strictly positive in D. Specifically, we allow the function b taking zero or negative values in D and the matrices $A \equiv\left(a_{i j}\right), B=\left(b_{i j}\right)$ being positive semi-definite in D. (In fact, A and B may even be indefinite.) In particular, if $b_{i j} \equiv 0$ for all i, j Eqn. (1.1) becomes a degenerate parabolic equation and if, in addition, $b \equiv 0$, it is reduced to a degenerate elliptic equation. When $b_{i j}$ and b are not all zero we consider the following boundary and initial conditions

$$
\begin{gather*}
u(t, x)=0 \quad(t \in(0, T], x \in \Gamma) \tag{1.2}\\
u(0, x)=u_{0}(x) \quad(x \in \Omega) \tag{1.3}
\end{gather*}
$$

Received by the editors March 1, 1976 and, in revised form, July 28, 1976.
where Γ is the boundary of Ω. However, if L, M are in the form

$$
\begin{equation*}
L u=\sum_{i, j=1}^{n}\left(a_{i j}(x) u_{x_{i}}\right)_{x_{i}}-a(t, x) u, \quad M u=\sum_{i, j=1}^{n}\left(\alpha(x) a_{i j}(x) u_{x_{j}}\right)_{x_{i}}-b(t, x) u \tag{1.4}
\end{equation*}
$$

we treat the following more general boundary condition
$(1.2)^{\prime} \quad \partial u / \partial \nu+\beta(x) u=0\left(x \in \Gamma_{1}\right), \quad u(t, x)=0\left(x \in \Gamma_{2}\right), \quad(t \in(0, T])$
where $\alpha \geq 0, \beta \geq 0, \Gamma=\Gamma_{1} \cup \Gamma_{2}$ and $\partial / \partial \nu$ is the conormal derivative on Γ_{1} with respect to the matrix $B=\left(\alpha a_{i j}\right)$, that is, $\partial u / \partial \nu=\nu \cdot(B \nabla u)$. In the boundary condition (1.2)', either Γ_{1} or Γ_{2} is allowed to be empty. The purpose of this paper is to study the existence and uniqueness of a weak solution for the above boundary value problems.

Sobolev type equations arise from various physical phenomena such as in the non-steady flow of fluids, heat conduction, resonant radiation in a gas and seepage of liquids in fissured rocks (cf. [1, 2, 11, 12]). These equations and their generalizations have recently been discussed in [5, 9, 10]. In most of these papers, it is assumed that L and M are uniformly strongly elliptic and b is positive on \bar{D}. These requirements insure that M is invertible and the composite operator $M^{-1} L$ generates a semi-group (in fact, a group) of bounded operators in some function space. However, for a degenerate operator M the invertibility of M no longer holds and even if M is not degenerate it is not clear whether $M^{-1} L$ is the generator of a semi-group when L is degenerate. In this paper, we use a variational approach to the problem and seek a weak solution in a suitable function space. Our essential idea is the construction of a suitable norm for this function space.
2. The main results. Throughout the paper we assume that $a_{i j}=a_{j i}, b_{i j}=b_{j i}$ and the coefficients of L and M together with their first partial derivatives and the mixed partial derivatives of $b_{i j}$ in t and x are all bounded measurable in D. The functions f, u_{0}, α, β are assumed bounded measurable in their respective domains. We also assume that $b(0, x) \geq 0$ in Ω and the matrix $B_{0}(x) \equiv\left(b_{i j}(0, x)\right)$ is positive semi-definite in Ω.

Let $C^{2}(D)$ be the set of functions $\phi(t, x)$ such that ϕ is continuous on \bar{D} and ϕ_{t} and its second partial derivatives in x are continuous in D. Set

$$
\begin{aligned}
C_{0}^{2}(D)=\left\{\phi \in C^{2}(D) ; \quad \phi(t, x)=0 \quad \text { in } \quad[0, T] \times \Gamma\right. \\
\left.\quad \text { and } \phi(T, x)=\phi_{x_{i}}(T, x)=0 \text { in } \Omega\right\} .
\end{aligned}
$$

For any $\phi, \psi \in C_{0}^{2}(D)$ and any $n \times n$ matrix $P \equiv\left(p_{i j}(t, x)\right)$ we set

$$
\left\{\begin{array}{l}
\langle\phi, \psi\rangle=\int_{D} \phi(z) \psi(z) d z, \quad\|\phi\|=\langle\phi, \phi\rangle^{1 / 2} \tag{2.1}\\
\langle\phi, \psi\rangle_{P}=\int_{D} \sum_{i, j=1}^{n} p_{i j}(z) \phi_{x_{i}}(z) \psi_{x_{i}}(z) d z
\end{array}\right.
$$

where $d z=d x d t$. When P is positive semi-definite in D we write $\|\phi\|_{P}=$ $\langle\phi, \phi\rangle_{P}^{1 / 2}$. Similarly, we set for $\phi, \psi \in C_{0}^{2}(D)$,

$$
\begin{cases}(\phi, \psi)_{b_{0}}=\int_{\Omega} b^{\prime}(0, x) \phi(0, x) \psi(0, x) d x, & \|\phi\|_{b_{0}}=(\phi, \phi)_{b_{0}}^{1 / 2} \tag{2.2}\\ (\phi, \psi)_{B_{0}}=\int_{\Omega} \sum_{i, j=1}^{n} b_{i j}(0, x) \phi_{x_{1}}(0, x) \psi_{x_{j}}(0, x) d x, & \|\phi\|_{B_{0}}=(\phi, \phi)_{B_{0}}^{1 / 2}\end{cases}
$$

Our main idea for insuring the existence problem of (1.1)-(1.3) is the introduction of the functional
$\langle\psi, \phi\rangle_{A}=\langle\psi, \phi\rangle_{A}-\frac{1}{2}\langle\psi, \phi\rangle_{B_{t}}+\left\langle\psi,\left(a-b_{t} / 2\right) \phi\right\rangle+\frac{1}{2}(\psi, \phi)_{B_{0}}+\frac{1}{2}(\psi, \phi)_{b_{0}}$

$$
\begin{equation*}
\left(\phi, \psi \in C_{0}^{2}(D)\right) \tag{2.3}
\end{equation*}
$$

where $\langle\psi, \phi\rangle_{A}$ and $\langle\psi, \phi\rangle_{B_{t}}$ are defined in (2.1) with $P=A$ and $P=B_{t} \equiv\left(\left(b_{i j}\right)_{t}\right)$, respectively. Since the matrices A and B are symmetric it is clear that $\langle\circ, 0\rangle_{H}$ is a symmetric bilinear functional on $C_{0}^{2}(D)$. Assume that for some constant $\delta>0$,

$$
\begin{equation*}
\langle\phi, \phi\rangle_{H} \geq \delta\langle\phi, \phi\rangle \quad\left(\phi \in C_{0}^{2}(D)\right) . \tag{2.4}
\end{equation*}
$$

Then $\langle\circ, \circ\rangle_{H}$ defines an inner product on $C_{0}^{2}(D)$. We denote the completion of $C_{0}^{2}(D)$ with respect to the norm $\|\phi\|_{H}=\langle\phi, \phi\rangle_{H}^{1 / 2}$ by H. In view of (2.4), the space H is contained in $L^{2}(D)$ both algebraically and topologically.

A function $u \in H$ is said to be a weak solution of (1.1)-(1.3) if
$\langle u, \phi\rangle_{A}-\langle u, \phi\rangle_{B_{t}}-\left\langle u, \phi_{t}\right\rangle_{B}+\left\langle u, a \phi-(b \phi)_{t}\right\rangle=\left(u_{0}, \phi\right)_{B_{0}}+\left(u_{0}, \phi\right)_{b_{0}}-\langle f, \phi\rangle$

$$
\begin{equation*}
\left(\phi \in C_{0}^{2}(D)\right) \tag{2.5}
\end{equation*}
$$

Equation (2.5) is obtained from (1.1) by a formal integration by parts and using the conditions (1.2), (1.3). In obtaining the equation we have used the relations
$\left\langle M u_{t}, \phi\right\rangle=-\left\langle u_{t}, \phi\right\rangle_{B}-\left\langle u_{t}, b \phi\right\rangle$

$$
\begin{gather*}
=\left(u_{0}, \phi\right)_{B_{0}}+\langle u, \phi\rangle_{B_{t}}+\left\langle u, \phi_{t}\right\rangle_{B}+\left(u_{0}, \phi\right)_{b_{0}}+\left\langle u,(b \phi)_{t}\right\rangle, \quad\left(\phi \in C_{0}^{2}(D)\right) \tag{2.6}\\
\langle L u, \phi\rangle=-\langle u, \phi\rangle_{A}-\langle u, a \phi\rangle, \quad\left(\phi \in C_{0}^{2}(D)\right) . \tag{2.7}
\end{gather*}
$$

Let $\phi \in C_{0}^{2}(D)$ be fixed. Define a linear functional $B\left[{ }^{\circ}, \phi\right]$ on H by:

$$
\begin{equation*}
B[\psi, \phi]=\langle\psi, \phi\rangle_{A}-\langle\psi, \phi\rangle_{B_{t}}-\left\langle\psi, \phi_{t}\right\rangle_{B}+\left\langle\psi, a \phi-(b \phi)_{t}\right\rangle \quad(\psi \in H) . \tag{2.8}
\end{equation*}
$$

It will be shown in the following section that for each $\phi \in C_{0}^{2}(D), B\left[{ }^{\circ}, \phi\right]$ is a bounded linear functional on H and there exists a closable operator $S: C_{0}^{2}(D) \rightarrow H$ such that $B[u, \phi]=\langle u, S \phi\rangle_{H}$ for $u \in H, \phi \in C_{0}^{2}(D)$. Denote the closure of S by \bar{S}. Then we have the following result.

Theorem 1. Assume that (2.4) holds for some $\delta>0$. Then the problem (1.1)-(1.3) has a weak solution $u \in H$. Furthermore, for any two solutions $u_{1}, u_{2} \in H$ there exists $w \in R^{\perp}(\bar{S})$ such that $u_{1}=u_{2}+w$, where

$$
R^{\perp}(\bar{S})=\{\psi \in H ;\langle\psi, \phi\rangle=0 \quad \text { for all } \quad \phi \in R(\bar{S})\} .
$$

For the mixed boundary-value problem (1.1), (1.2)', (1.3), where L and M are in the form of (1.4) we seek a solution in the Hilbert space \tilde{H} which is defined as follows: Let

$$
\zeta_{0}^{2}(D)=\left\{\phi \in C_{0}^{2}(D) ; \phi(t, x)=0 \quad \text { on } \quad[0, T] \times \Gamma_{2}, \phi(T, x)=\phi_{x_{1}}(T, x)=0 \text { in } \Omega\right\} .
$$

Define a symmetric bilinear functional on $\zeta_{0}^{2}(D)$ by
$\langle\psi, \phi\rangle_{\tilde{H}}=\langle\psi, \phi\rangle_{A}+\langle\psi, \phi\rangle_{\beta}+\left\langle\psi,\left(a-b_{t} / 2\right) \phi\right\rangle+\frac{1}{2}\left[(\psi, \phi)_{B_{0}}+(\psi, \phi)_{\beta_{0}}+(\psi, \phi)_{b_{0}}\right]$
$\left(\psi, \phi \in \zeta_{0}^{2}(D)\right)$,
where $\langle\psi, \phi\rangle_{A},\langle\psi, \phi\rangle,(\psi, \phi)_{B_{0}},(\psi, \phi)_{b_{0}}$ are given in (2.1), (2.2) and

$$
\begin{array}{ll}
\langle\psi, \phi\rangle_{\beta}=\int_{0}^{T} \int_{\Gamma_{1}} \beta(x) \psi(t, x) \phi(t, x) d S d t, & \|\phi\|_{\beta}=\langle\phi, \phi\rangle_{\beta}^{1 / 2} \tag{2.10}\\
(\psi, \phi)_{\beta_{0}}=\int_{\Gamma_{1}} \alpha(x) \beta(x) \psi(0, x) \phi(0, x) d S, & \|\phi\|_{\beta_{0}}=(\phi, \phi)_{\beta_{0}}^{1 / 2}
\end{array}
$$

Assume that for some constant $\delta>0$,

$$
\begin{equation*}
\langle\phi, \phi\rangle_{\tilde{H}} \geq \delta\langle\phi, \phi\rangle \quad\left(\phi \in \zeta_{0}^{2}(D)\right) . \tag{2.11}
\end{equation*}
$$

Then $\langle\circ, \circ\rangle_{\tilde{H}}$ defines an inner product in $\zeta_{0}^{2}(D)$. We denote by \tilde{H} the completion of $\zeta_{0}^{2}(D)$ with respect to the norm $\|\phi\|_{\tilde{H}}=\langle\phi, \phi\rangle_{\tilde{H}}^{1 / 2}$. A function $u \in \tilde{H}$ is called a weak solution of (1.1), (1.2)', (1.3) if
$\langle u, \phi\rangle_{A}-\left\langle u, \phi_{t}\right\rangle_{B}+\left\langle u, \phi-\alpha \phi_{t}\right\rangle_{\beta}+\left\langle u, a \phi-(b \phi)_{t}\right\rangle$

$$
\begin{equation*}
=\left(u_{0}, \phi\right)_{B_{0}}+\left(u_{0}, \phi\right)_{\beta_{0}}+\left(u_{0}, \phi\right)_{b_{0}}-\langle f, \phi\rangle \quad\left(\phi \in \zeta_{0}^{2}(D)\right) . \tag{2.12}
\end{equation*}
$$

As in the previous case the definition of a weak solution is obtained from (1.1) by a formal integration by parts and using the conditions (1.2)', (1.3). In the present situation the formal integration yields the relations
$\left\{\begin{array}{l}\begin{array}{l}\left\langle M u_{t}, \phi\right\rangle=\left\langle u, \phi_{t}\right\rangle_{B}+\left\langle u, \alpha \phi_{t}\right\rangle_{\beta}+\left\langle u,(b \phi)_{t}\right\rangle+\left(u_{0}, \phi\right)_{B_{0}}+\left(u_{0}, \phi\right)_{\beta_{0}}+\left(u_{0}, \phi\right)_{b_{0}} \\ \\ \\ \langle L u, \phi\rangle=-\langle u, \phi\rangle_{A}-\langle u, \phi\rangle_{\beta}-\langle u, a \phi\rangle\end{array} \quad\left(\phi \in \zeta_{0}^{2}(D)\right)\end{array}\right.$

For each $\phi \in \zeta_{0}^{2}(D)$ we define a linear functional on \tilde{H} by

$$
\begin{align*}
\tilde{B}[\psi, \phi]=\langle\psi, \phi\rangle_{A}-\left\langle\psi, \phi_{t}\right\rangle_{\mathrm{B}}+\left\langle\psi, \phi-\alpha \phi_{t}\right\rangle_{\beta}+\left\langle\psi, a \phi-(b \phi)_{t}\right\rangle \tag{2.14}\\
\left(\phi \in \zeta_{0}^{2}(D)\right) .
\end{align*}
$$

It is easily shown that for each $\phi \in \zeta_{0}^{2}(D), \tilde{B}[\circ, \phi]$ is a bounded linear functional on \tilde{H} and there exists a closable operator $S_{1}: \zeta_{0}^{2}(D) \rightarrow \tilde{H}$ such that $\tilde{B}[\psi, \phi]=$ $\left\langle\psi, S_{1} \phi\right\rangle$ for $\psi \in \tilde{H}, \phi \in \zeta_{0}^{2}(D)$. Denoting by \bar{S}_{1} the closure of S_{1}, we have the following conclusion:

Theorem 2. Assume that (2.11) holds for some $\delta>0$: Then the problem (1.1), (1.2)', (1.3) with M and L given by (1.4) has a weak solution $u \in \tilde{H}$. Furthermore, for any two solutions $u_{1}, u_{2} \in \tilde{H}$ there exists $w \in R^{\perp}\left(\bar{S}_{1}\right)$ such that $u_{1}=$ $u_{2}+w$.

Remarks. (a) By a transformation $u \rightarrow e^{-\lambda t} u$ in the problem (1.1)-(1.3) for some real constant λ, the condition (2.4) is satisfied if either one of the following conditions holds:
(i) $\left(A+\lambda B-B_{t} / 2\right)$ is positive semi-definite and $a+\lambda b-b_{t} / 2 \geq \delta$ in \bar{D}.
(ii) $\left(A+\lambda B-B_{t} / 2\right)$ is positive definite and $a+\lambda b-b_{t} / 2 \geq 0$ in \bar{D}.

In particular, if Eqn. (1.1) is of the form

$$
\sum_{i=1}^{n}\left(b^{*}(t, x) u_{t x_{i}}\right)_{x_{i}}-b(t, x) u_{t}+\sum_{i=1}^{n}\left(a^{*}(t, x) u_{x_{i}}\right)_{x_{i}}-a(t, x) u=f(t, x)
$$

which was considered in $[1,2,10,11,12]$ then the above conditions become, respectively,
(i) $a^{*}+\lambda b^{*}-b_{t}^{*} / 2 \geq 0$ and $a+\lambda b-b_{t} / 2 \geq \delta$ in \bar{D},
(ii) $a^{*}+\lambda b^{*}-b_{t}^{*} / 2 \geq \delta$ and $a+\lambda b-b_{t} / 2 \geq 0$ in \bar{D}.
(b) If $B \equiv 0$, the problem (1.1)-(1.3) becomes the degenerate parabolic equation considered in [8] (see also [3, 4, 7]) and if, in addition, $b \equiv 0$ it reduces to a degenerate elliptic equation (cf. [8]). In the latter situation, the initial condition (1.3) should be disregarded.

3. Proof of the theorems

Proof of Theorem 1. For any $\phi, \psi \in C_{0}^{2}(D)$, the relation

$$
\begin{align*}
\left|\langle\psi, \phi\rangle_{P}\right| & =\left|\int_{D} \sum_{i, j=1}^{n} p_{i j}(z) \psi_{x_{i}}(z) \phi_{x_{j}}(z) d z\right| \\
& =\left|\int_{D} \psi(z) \sum_{i, j=1}^{n}\left(p_{i j}(z) \phi_{x_{i}}(z)\right)_{x_{i}} d z\right| \tag{3.1}
\end{align*}
$$

with P representing A, B, and B_{t}, respectively, implies that

$$
\begin{equation*}
|B[\psi, \phi]| \leq K_{\phi}\|\psi\| \leq \delta^{-1 / 2} K_{\phi}\|\psi\|_{H} \quad\left(\psi \in C_{0}^{2}(\bar{D})\right), \tag{3.2}
\end{equation*}
$$

where K_{ϕ} is a constant depending only on ϕ and the matrices A, B. Thus
$B\left[{ }^{\circ}, \phi\right]$ is a bounded linear functional on $C_{0}^{2}(D)$ and so it can be extended to H. In view of (2.5) and (2.8), it suffices to find a $u \in H$ such that

$$
B[u, \phi]=\left(u_{0}, \phi\right)_{B_{0}}+\left(u_{0}, \phi\right)_{b_{0}}-\langle f, \phi\rangle \quad\left(\phi \in C_{0}^{2}(D)\right) .
$$

Now for each $\phi \in C_{0}^{2}(D)$ the Riesz Theorem insures the existence of $S \phi \in H$ such that

$$
\begin{equation*}
B[u, \phi]=\langle u, S \phi\rangle_{H} \quad\left(u \in H, \phi \in C_{0}^{2}(D)\right) . \tag{3.4}
\end{equation*}
$$

Clearly, S is a linear operator on $C_{0}^{2}(D)$ to H. We show that S is closable. For each fixed $\psi \in C_{0}^{2}(D)$, the second equality in (2.6) and the relation (3.1) imply that

$$
\begin{align*}
\left|\langle\psi, \phi\rangle_{B_{i}}+\left\langle\psi, \phi_{t}\right\rangle_{B}+\left\langle\psi,(b \phi)_{t}\right\rangle\right| & =\left|\left\langle\psi_{t}, \phi\right\rangle_{B}+\left\langle\psi_{t}, b \phi\right\rangle+(\psi, \phi)_{B_{0}}+(\psi, \phi)_{b_{0}}\right| \\
& \leq K_{\psi}^{\prime}\|\phi\|+\|\psi\|_{B_{0}}\|\phi\|_{B_{0}}+\|\psi\|_{b_{0}}\|\phi\|_{b_{0}} \\
& \leq K_{\psi}^{\prime \prime}\|\phi\|_{H} \quad\left(\phi \in C_{0}^{2}(D)\right), \tag{3.5}
\end{align*}
$$

where $K_{\psi}^{\prime}, K_{\psi}^{\prime \prime}$ are some constants independent of ϕ. In view of (3.4), (2.8), (3.5), and (3.1) we have

$$
\left|\langle\psi, S \phi\rangle_{H}\right| \leq\left|\langle\psi, \phi\rangle_{A}+\langle\psi, a \phi\rangle\right|+K_{\psi}^{\prime \prime}\|\phi\|_{H} \leq K_{\psi}\|\phi\|_{H} \quad\left(\phi \in C_{0}^{2}(D)\right)
$$

for some constant K_{ψ}. The above relation shows that $C_{0}^{2}(D)$ is contained in the domain $D\left(S^{*}\right)$ of S^{*}, where S^{*} is the adjoint operator of S. Now if $\left\{\phi_{k}\right\}$ is a sequence in $C_{0}^{2}(D)$ such that $\phi_{k} \rightarrow 0$ and $S \phi_{k} \rightarrow g$ as $k \rightarrow \infty$ then for each $\psi \in C_{0}^{2}(D)$,

$$
\langle\psi, g\rangle_{H}=\lim _{k \rightarrow \infty}\left\langle\psi, S \phi_{k}\right\rangle_{H}=\lim _{k \rightarrow \infty}\left\langle S^{*} \psi, \phi_{k}\right\rangle_{H}=0
$$

Since $C_{0}^{2}(D)$ is dense in H we conclude that $g=0$ and thus S is closable. It follows from the closed property of \bar{S} and (3.4) that

$$
\begin{equation*}
B[u, \phi]=\langle u, \bar{S} \phi\rangle_{H} \quad(u \in H, \quad \phi \in D(\bar{S})) \tag{3.6}
\end{equation*}
$$

where $D(\bar{S})$ is the domain of \bar{S}. We next show that

$$
\begin{equation*}
\langle\phi, \bar{S} \phi\rangle_{H}=\|\phi\|_{H}^{2} \quad(\phi \in D(\bar{S})) \tag{3.7}
\end{equation*}
$$

Since for $\phi \in C_{0}^{2}(D)$,

$$
\begin{align*}
&\left\langle\phi,(b \phi)_{t}\right\rangle=\left\langle\phi, b_{t} \phi\right\rangle+\left\langle\phi, b \phi_{t}\right\rangle=\left\langle\phi, b_{t} \phi\right\rangle-\frac{1}{2}(\phi, \phi)_{b_{0}}-\frac{1}{2}\left\langle\phi, b_{t} \phi\right\rangle \\
&=\frac{1}{2}\left(\left\langle\phi, b_{t} \phi\right\rangle-(\phi, \phi)_{b_{0}}\right) \tag{3.8}\\
&\langle\phi, \phi\rangle_{B_{t}}+\left\langle\phi, \phi_{t}\right\rangle_{B}=\int_{D} \sum_{i, j=1}^{n} \phi_{x_{i}}\left(b_{i j} \phi_{x_{j}}\right)_{t} d z=-(\phi, \phi)_{B_{0}}-\left\langle\phi, \phi_{t}\right\rangle_{B},
\end{align*}
$$

and since the latter relation implies that

$$
\begin{equation*}
\langle\phi, \phi\rangle_{B_{t}}+\left\langle\phi, \phi_{t}\right\rangle_{B}=\frac{1}{2}\left(\langle\phi, \phi\rangle_{B_{t}}-(\phi, \phi)_{B_{0}}\right) \quad\left(\phi \in C_{0}^{2}(\bar{D})\right), \tag{3.9}
\end{equation*}
$$

we see from (2.8), (3.8), (3.9), and (2.3) that

$$
B[\phi, \phi]=\langle\phi, \phi\rangle_{A}-\frac{1}{2}\langle\phi, \phi\rangle_{B_{t}}+\frac{1}{2}(\phi, \phi)_{B_{0}}+\left\langle\phi,\left(a-\frac{1}{2} b_{t}\right) \phi\right\rangle+\frac{1}{2}(\phi, \phi)_{b_{0}}=\langle\phi, \phi\rangle_{H} .
$$

It follows from (3.4) that the relation (3.7) holds for $\phi \in C_{0}^{2}(D)$. The closed property of \bar{S} implies that (3.7) also holds for $\phi \in D(\bar{S})$. At this point, the proof of the existence of a solution follows from a theorem of Lion's (cf. [6]). However, in order to show the second part of the theorem we use a different argument. In view of (3.7), the inverse \bar{S}^{-1} exists and $\left\|\bar{S}^{-1} \psi\right\|_{H} \leq\|\psi\|_{H}$ for $\psi \in R(\bar{S})$. By the closed range theorem we have $R\left(\bar{S}^{*}\right)=H$, where \bar{S}^{*} is the adjoint of \bar{S}. But the functional

$$
F(\phi) \equiv\left(u_{0}, \phi\right)_{B_{0}}+\left(u_{0}, \phi\right)_{b_{0}}-\langle f, \phi\rangle \quad\left(\phi \in C_{0}^{2}(D)\right)
$$

is bounded on $C_{0}^{2}(D)$. By extending F to H we can find $v \in H$ such that $F(\phi)=\langle v, \phi\rangle_{H}\left(\phi \in C_{0}^{2}(D)\right)$. Let $u \in D\left(\bar{S}^{*}\right)$ such that $\bar{S}^{*} u=v$. Then by (3.6),

$$
B[u, \phi]=\langle u, \bar{S} \phi\rangle_{H}=\left\langle\bar{S}^{*} u, \phi\right\rangle_{H}=\langle v, \phi\rangle_{H}=F(\phi) \quad\left(\phi \in C_{0}^{2}(D)\right) .
$$

This shows that u is a solution of (3.3). Now if u_{1}, u_{2} are two solutions of (3.3) then $w \equiv u_{1}-u_{2}$ satisfies the relation

$$
\langle w, \bar{S} \phi\rangle_{H}=B[w, \phi]=0 \quad(\phi \in D(\bar{S})) .
$$

Hence $w \in R^{\perp}(\bar{S})$ which completes the proof of the theorem.
Proof of Theorem 2. It is readily seen from the positive semi-definite property of the matrix $\left\{a_{i j}(x)\right\}$ that for each $\phi \in \zeta_{0}^{2}(D)$

$$
\begin{aligned}
|\tilde{B}[\psi, \phi]| & \leq\|\psi\|_{A}\|\phi\|_{A}+\|\psi\|_{B}\left\|\phi_{t}\right\|_{B}+\|\psi\|_{\beta}\left\|\phi-\alpha \phi_{t}\right\|_{\beta}+\|\psi\|\left\|a \phi-(b \phi)_{t}\right\| \\
& \leq \tilde{K}_{\phi}\|\psi\|_{\tilde{H}}, \quad\left(\psi \in \zeta_{0}^{2}(D)\right)
\end{aligned}
$$

where \tilde{K}_{ϕ} is a constant independent of ψ. Thus we may extend $\tilde{B}\left[{ }^{\circ}, \phi\right]$ to \tilde{H}. In view of (2.12), (2.14) it suffices to find a $u \in \tilde{H}$ such that

$$
\begin{equation*}
\tilde{B}[u, \phi]=\left(u_{0}, \phi\right)_{B_{0}}+\left(u_{0}, \phi\right)_{\beta_{0}}+\left(u_{0}, \phi\right)_{b_{0}}-\langle f, \phi\rangle \tag{3.10}
\end{equation*}
$$

By the Riesz Theorem, there exists a closable operator $S_{1}: \zeta_{0}^{2}(D) \rightarrow \tilde{H}$ such that

$$
\begin{equation*}
\tilde{B}[\psi, \phi]=\left\langle\psi, \bar{S}_{1} \phi\right\rangle_{\tilde{H}} \quad\left(\phi \in D\left(\bar{S}_{1}\right), \psi \in \tilde{H}\right) \tag{3.11}
\end{equation*}
$$

where \bar{S}_{1} is the closure of S_{1}. Since by direct integration,

$$
\begin{equation*}
2\left\langle\phi, \phi_{t}\right\rangle_{B}=-(\phi, \phi)_{B_{0}}, 2\left\langle\phi, \alpha \phi_{t}\right\rangle_{\beta}=-(\phi, \phi)_{\beta_{0}}, \quad\left(\phi \in \zeta_{0}^{2}(D)\right) . \tag{3.12}
\end{equation*}
$$

We obtain from (2.14), (3.12), (3.8), and (2.9) that

$$
\begin{aligned}
\tilde{B}[\phi, \phi]=\langle\phi, \phi\rangle_{A}+\frac{1}{2}(\phi, \phi)_{B_{0}}+(\phi, \phi)_{\beta}+\frac{1}{2}(\phi, \phi)_{\beta_{0}}+\langle\phi, & \left.\left(a-b_{t} / 2\right) \phi\right\rangle+\frac{1}{2}(\phi, \phi)_{b_{0}} \\
& =\langle\phi, \phi\rangle_{\tilde{H}} \quad\left(\phi \in \zeta_{0}^{2}(D)\right) .
\end{aligned}
$$

It follows from the closed property of \bar{S}_{1} and (3.11) that

$$
\left\langle\phi, \bar{S}_{1} \phi\right\rangle=\|\phi\|_{\tilde{H}}^{2} \quad(\phi \in D(\bar{S})) .
$$

Using the above relation and the closed range theorem, a similar argument as in the proof of Theorem 1 leads to the existence of $u \in D\left(\bar{S}_{1}^{*}\right)$ satisfying the relation

$$
\tilde{B}[u, \phi]=\left\langle\bar{S}_{1}^{*} u, \phi\right\rangle_{\tilde{H}}=\left(u_{0}, \phi\right)_{B_{0}}+\left(u_{0}, \phi\right)_{\beta_{0}}+\left(u_{0}, \phi\right)_{b_{0}}-\langle f, \phi\rangle .
$$

This proves the existence problem. The second part of the theorem follows directly from the above relation.

References

1. G. Barenblat, I. Zheltor, and I. Kochiva, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286-1303.
2. P. Chen and M. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614-627.
3. W. T. Ford, The first initial boundary-value problem for a non-uniform parabolic equation, J. Math. Anal. Appl., 40 (1972), 131-137.
4. A. V. Ivanov, A boundary value problem for degenerate second order parabolic linear equations (Russian), Zap. Nauch. Sem. Leningrad Otdel. Math. Inst. Steklov., 14 (1969), 48-88.
5. J. Lagnese, General boundary value problems for differential equations of Sobolev-Galpern type, SIAM J. Math. Anal., 3 (1972), 105-119.
6. J. L. Lions, Equations Differentielles Operationelles, Springer-Verlag, Berlin, 1961.
7. O. A. Oleinnik, On the smoothness of the solutions of degenerate elliptic and parabolic equations, Soviet Math. Dokl., 6 (1965), 972-976.
8. C. V. Pao, On a non-uniform parabolic equation with mixed boundary condition, Proc. Amer. Math. Soc., 49 (1975), 83-89.
9. V. R. Gopala Rao and T. W. Ting, Solutions of pseudo-heat equations in whole space, Arch. Rational Mech. Anal., 49 (1972), 57-78.
10. R. E. Showalter, Degenerate evolution equations and applications, Indiana Univ. Math. J., 23 (1974), 655-677.
11. V. V. Sobolev, A Treatise on Radiative Transfer, Van Nostrand, New York, 1963.
12. T. W. Ting, Certain non-study flows of second order fluids, Arch. Rational Mech. Anal., 14 (1963), 1-26.

Dept. of Math,
North Carolina State University, Raleigh, North Carolina 27607
U.S.A.

Address until June 30, 1977:
II. Mathematisches Institut

Universitat Graz
A-8010, Steyrergasse 17/5
Graz, Austria.

