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Local entrainment across a TNTI and a TTI
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Local instantaneous exchanges of volume, momentum and buoyancy across turbulent/
non-turbulent interfaces (TNTIs) and turbulent/turbulent interfaces (TTIs) are studied
using data from direct numerical simulations of a turbulent forced fountain. We apply
a novel algorithm that enables independent calculation of the instantaneous local
entrainment and detrainment fluxes, and therefore, for the first time, the entrainment and
detrainment coefficients according to the fountain model (Bloomfield & Kerr, J. Fluid
Mech., vol. 424, 2000, pp. 197–216) are determined explicitly. Across the interface between
the fountain and the ambient fluid, which is a TNTI, only volume entrainment occurs,
and it is well predicted by the fountain model. Across the interface between the rising
upflow and falling downflow within the fountain, which is a TTI, both entrainment and
detrainment of volume, momentum and buoyancy occur – with the magnitude of both
entrainment and detrainment typically being large compared with the net for all exchanges.
However, the model seems to be unable to capture the momentum exchanges due to its
ignorance of the pressure. We find that each conditional entrainment and detrainment rate,
of volume, momentum and buoyancy, can be described accurately by Gaussian profiles,
while the net exchange that is the superposition of the entrainment and detrainment cannot.
Moreover, the entrainment exchange rate has its maximum closer to the fountain centreline
than that of detrainment, explaining the tendency for net entrainment closer to the fountain
centreline and net detrainment further away.

Key words: plumes/thermals, turbulent mixing

1. Introduction

The majority of research on turbulent entrainment has focused on turbulent/non-turbulent
interfaces (TNTIs), where a turbulent fluid interacts with a non-turbulent ambient.
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Many canonical flows fall into this category, including jets, plumes, mixing layers,
boundary layers and gravity currents (Turner 1986; Fernando 1991; Da Silva et al. 2014).
However, in many practical situations, the ambient is in fact turbulent, which implies
the presence of a turbulent/turbulent interface (TTI) demarcating regions of different
turbulence intensity. The physics of TTIs is substantially more complex than that of TNTIs.
The key difference between TNTIs and TTIs is that TTIs feature turbulent transport of
momentum, buoyancy and other scalars (van Reeuwijk, Vassilicos & Craske 2021), while
TNTIs feature mean transport only. These exchanges have been found to be affected by
the turbulence intensity on both sides (Gaskin, Mckernan & Xue 2004; Kankanwadi &
Buxton 2020) and can lead to transport in the opposite direction as the mean entrainment
components (Huang, Burridge & van Reeuwijk 2023).

Turbulent forced fountains (Hunt & Burridge 2015) are canonical flows that feature
both TNTIs and TTIs. Our recent study presenting an analysis of a Reynolds-averaged
turbulent forced fountain (Huang et al. 2023) demonstrated that the TTI between the
fountain upflow (the upflowing core rising from the source) and downflow (which shrouds
the upflowing core), hereafter referred to as the ‘inner boundary’ of the fountain, exhibits
strong turbulence on both sides. The turbulence was shown to drive exchanges of volume,
momentum and buoyancy in either direction. For example, we found that below a particular
height across the inner boundary, there is volume entrainment into the upflow, whilst
above it, there is volume detrainment out of the upflow, which raises questions as
to the extent, and importance, of the local instantaneous bi-directional exchanges that
underlie statistics of the Reynolds-averaged exchanges within fountains. The entrainment
parametrisations of the Bloomfield & Kerr (2000) model were investigated, and it was
shown that particularly the momentum exchanges across the inner boundary were poorly
represented. The parametrisations however, feature different velocities for entrainment and
detrainment, which it was not possible to study using a Reynolds-averaged approach.

Here, we use the data from Huang et al. (2023) to conditionally sample the flow field to
analyse the instantaneous behaviour of the fountain. We present a methodology, based on
Yurtoglu, Carton & Storti (2018), van Reeuwijk et al. (2021) and Blakeley, Olson & Riley
(2022), that allows us to measure the magnitude and direction of the local instantaneous
exchanges of volume, momentum and buoyancy. We are particularly interested in the
exchanges across two of the natural interfaces within fountain flows: the inner boundary
(as introduced above) and the ‘outer boundary’ of the fountain, which is the fountain
envelope that contains (almost) all of the fountain fluid. The latter is a well-defined TNTI.
The advantage of working with the instantaneous exchanges is that we can conditionally
sample based on entrainment or detrainment events.

This paper is laid out as follows. We introduce the framework of equations underlying
our analysis and algorithms in § 2, and the simulation details in § 3. In § 4, we show
the results including the boundary statistics and conditional entrainment statistics. We
compare the entrainment coefficients with those of the Reynolds-averaged fountain and
fountain model, and finally, investigate the normalised entrainment density. Concluding
remarks are made in § 5.

2. Theoretical framework

2.1. Interface definition
Quantifying entrainment and detrainment simultaneously requires a precise definition
of the domain of interest Ω across whose boundary fluid mass, and other properties,
can be exchanged. Herein, this domain is defined as all points for which a field χ(x, t)

977 A13-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

94
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.947


Local entrainment across a TNTI and TTI in a forced fountain
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Figure 1. Definition sketch of interface properties. The bold black line highlights the interface determined by
the threshold in the field χ(x, t). The coloured region represents the inside of the domain (χ > χ0), and ζ is
the direction tangential to N⊥. The local normal vector N and relative velocity V are shown, including their
decomposition into components. The length of the unit normal vector N is 1 by definition.

is larger than a threshold value χ0, where x = (x, y, z) denotes the Cartesian location,
and t denotes time. Note that at any instant, the flow domain Ω may consist of many
disconnected regions. The boundary surface will be denoted ∂Ω , on which N = ∇χ/|∇χ |
is a three-dimensional unit normal pointing into the domain of interest (see figure 1). We
define a masking function

I = H(χ − χ0), (2.1)

where H is the Heaviside function. Inclusion of this masking allows integration over the
domain of interest (which is inherently irregular and three-dimensional, and potentially
can consist of numerous disconnected regions) to be replaced by integration over an
unbounded domain, via

∫
Ω

X dV = ∫
IX dV , where X is an arbitrary scalar or vector

component field.

2.2. Conditionally averaged plume equations
The Navier–Stokes equation in the Boussinesq approximation is given by

∇ · u = 0, (2.2)

∂u
∂t

+ ∇ · uu + ∇p = ν ∇2u + bez, (2.3)

∂b
∂t

+ ∇ · ub = κ ∇2b, (2.4)

where u is the velocity, t is the time, p is the kinematic pressure, b is the buoyancy, ez is the
unit vector in the z-direction, ν is the kinematic viscosity, and κ is the thermal diffusivity.
The fountain evolves in the vertical direction z with associated velocity component w.
Integration of the continuity, vertical momentum equation and the buoyancy equation over
the domain Ω in the x–y plane, in the high Reynolds number and Péclet number limit,
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results in (van Reeuwijk et al. 2021)

∂Â
∂t

+ ∂Q̂
∂z

= −q̂, (2.5)

∂Q̂
∂t

+ ∂M̂
∂z

+ ∂P̂
∂z

= B̂ − m̂, (2.6)

∂B̂
∂t

+ ∂F̂
∂z

= −f̂ , (2.7)

where

Â(z, t) = 1
π

∫
Ω

d A, Q̂(z, t) = 1
π

∫
Ω

w d A, M̂(z, t) = 1
π

∫
Ω

w2 d A, (2.8a–c)

P̂(z, t) = 1
π

∫
Ω

p d A, B̂(z, t) = 1
π

∫
Ω

b d A, F̂(z, t) = 1
π

∫
Ω

wb d A, (2.9a–c)

are the instantaneous surface area, vertical volume flux, vertical momentum flux, integral
pressure, integral buoyancy and vertical buoyancy flux, respectively. The ·̂ symbols
emphasise that these are instantaneous counterparts of the classical Reynolds-averaged
integral quantities (see Huang et al. 2023), and the integrals have been divided by π to
remain consistent with classical plume theory (Hunt & Kaye 2005; van Reeuwijk et al.
2016; Burridge et al. 2017; Huang et al. 2023). The hatted lowercase symbols signify
instantaneous exchanges across the boundary ∂Ω and are defined as

q̂(z, t) = 1
π

∮
∂Ω

Vn

|N⊥| d�, (2.10)

m̂(z, t) = 1
π

∮
∂Ω

Vnw − pNz

|N⊥| d�, (2.11)

f̂ (z, t) = 1
π

∮
∂Ω

Vnb
|N⊥| d�, (2.12)

which represent the instantaneous volume, vertical momentum and buoyancy fluxes
perpendicular across the interface, respectively.

Within the line integrals above, Vn is the local entrainment velocity across the boundary,
which is defined by projecting the relative velocity V = v − u, where v is the interface
velocity, u is the fluid velocity, and Vn is the component of V projected onto N , i.e.
Vn = V · N . This velocity can be linked to the scalar field χ using (Dopazo, Martín &
Hierro 2007; Holzner & Lüthi 2011)

Vn = − 1
|∇χ |

Dχ

Dt
, (2.13)

where D/Dt = ∂/∂t + u · ∇ is the material derivative. The term |N⊥| is the magnitude
of the three-dimensional normal N in the x–y plane (figure 1). Its function in the
integrands of (2.10)–(2.12) is to account for the local surface area of the interface since
dS = |N⊥|−1 d� dz (van Reeuwijk et al. 2021). Note that vectors with a ‘perpendicular’
symbol (⊥) as a subscript denote the horizontal (two-dimensional) components
perpendicular to the z-direction, e.g. N = [N⊥, Nz]T or ∇⊥ = [∂/∂x, ∂/∂y]T. When the
relative velocity satisfies Vn < 0, due to the inward-pointing normal, entrainment of
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Local entrainment across a TNTI and TTI in a forced fountain

the properties (specifically, in the integrals above, volume, momentum and buoyancy,
respectively) into the domain of interest is occurring; conversely, Vn > 0 indicates the
occurrence of detrainment. We note that N⊥ = 0 where the surface is perfectly horizontal,
which renders the integrands of (2.10)–(2.12) infinite. However, subsequent integration
over z remains finite (van Reeuwijk et al. 2021, for further discussion, see). Moreover, it is
very unlikely that surface elements are perfectly horizontal, so occurrences of the singular
integrand are rare.

Note that, unlike the other two integrals, the integral momentum exchange (2.11)
comprises two terms that affect the momentum from two different mechanisms – we
separate this exchange as

m̂ = m̂V + m̂p, (2.14a)

where

m̂V = 1
π

∮
∂Ω

Vnw
|N⊥| d�, (2.14b)

m̂p = 1
π

∮
∂Ω

−pNz

|N⊥| d�. (2.14c)

The first term, m̂V , is induced by the relative velocity transferring the momentum across
the boundary. Consistent with the volume (2.10) and buoyancy (2.12), this represents
the momentum entrainment when Vn < 0, as opposed to detrainment when Vn > 0. The
additional term m̂p is the momentum exchange induced by the pressure at the boundary.
Noting the signs, (2.6) indicates that the pressure effect m̂p tends to reduce the vertical
momentum flux M̂ within the flow.

Time-averaging the integral equations (2.5)–(2.7) yields the conditionally averaged
plume equations

d〈Q̂〉
dz

= −〈q̂〉, (2.15)

d〈M̂〉
dz

+ d〈P̂〉
dz

= 〈B̂〉 − 〈m̂V〉 − 〈m̂p〉, (2.16)

d〈F̂〉
dz

= −〈 f̂ 〉, (2.17)

where 〈·〉 = (1/T)
∫ T

0 · dt is the time-averaging operator, with T the averaging duration.
These equations are identical in form to the classical plume equations of the boundary
fluxes (van Reeuwijk & Craske 2015, e.g. before parametrisation), but note that no
Reynolds averaging has been used, therefore 〈M̂〉 and 〈F̂〉 represent the total fluxes rather
than the Reynolds-averaged mean fluxes.

2.3. Pointwise exchange rates
Following Yurtoglu et al. (2018), we convert the line integral to a surface integral,
since surface integrals are simpler to evaluate computationally than line integrals. To
do so, we first define an x–y plane normal nn = ∇⊥χ/|∇⊥χ | that again points into the
domain of interest. For the line integral of an arbitrary scalar or vector component X,
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after using n · n = 1, the two-dimensional divergence theorem (taking into account the
inward-pointing normal) and partial integration, we obtain∮

∂Ω

X d� =
∮

∂Ω

Xn · n d� = −
∫

I ∇⊥ · (Xn) d A =
∫

X ∇⊥I · n d A. (2.18)

Here, the term ∇⊥I · n represents a delta distribution that samples the boundary ∂Ω .
When substituting X = 1 into (2.18), the perimeter of the boundary ∂Ω can be written

as a surface integral

πl̂ =
∫

el d A, el = ∇⊥I · n, (2.19a,b)

where el is the pointwise boundary length. The quantity el(x, t) is local and instantaneous,
and is zero everywhere except at the position of the interface, ∂Ω . Due to the presence of
the delta distribution, the expression is singular in the theoretical limit, while its numerical
approximation will be dependent on the spatial resolution – hence only spatial integrals
can be examined meaningfully.

Similarly, q̂, m̂ and f̂ can be expressed in terms of surface integrals as

πq̂ =
∫

eq d A, πm̂ =
∫

em d A, πf̂ =
∫

ef d A, (2.20a–c)

eq = Vn

|N⊥| el, em = Vnw
|N⊥| el︸ ︷︷ ︸

em,V

+ −pNz

|N⊥| el︸ ︷︷ ︸
em,p

, ef = Vnb
|N⊥| el. (2.21a–c)

Here, eq is the pointwise volume exchange rate (of dimension T−1), em is the pointwise
vertical-momentum exchange rate (of dimension LT−2), and ef is the pointwise buoyancy
exchange rate (of dimension LT−3). Note that, consistent with Vn(x, t), a negative value of
eq(x, t) represents entrainment of volume flux into the domain of interest, and a positive
value represents detrainment.

As the fountain is statistically axisymmetric, we introduce a Reynolds-averaging
operator defined as (e.g. Craske & van Reeuwijk 2015; van Reeuwijk et al. 2016; Huang
et al. 2023)

X̄(r, z) ≡ 1
2πT

∫ T

0

∫ 2π

0
X(r, θ, z, t) dθ dt, (2.22)

where X is an arbitrary field, and θ is the azimuthal direction. Time averaging of (2.19a,b)
and (2.20a–c), and using the definition of the Reynolds average above, yields

〈l̂〉 = 2
∫ ∞

0
ēl r dr, 〈q̂〉 = 2

∫ ∞

0
ēqr dr, (2.23a,b)

〈m̂〉 = 2
∫ ∞

0
ēm r dr, 〈 f̂ 〉 = 2

∫ ∞

0
ēf r dr, (2.24a,b)

which provides an explicit link between the time-averaged boundary integral (e.g.
〈q̂〉) and the integral of the Reynolds-averaged pointwise exchanges (e.g. ēq) over
the horizontal area. Since Reynolds averaging involves integration over the azimuthal
direction, the quantities ē are not resolution-dependent and have a clearly defined
meaning: they represent the interface length or the net exchange across the interface at
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Local entrainment across a TNTI and TTI in a forced fountain

radius r, respectively. Radially integrating the Reynolds-averaged pointwise length ēl and
net exchange ēq, ēm, ēf then provides the averaged integral length 〈l̂〉 and net exchange 〈q̂〉,
〈m̂〉, 〈 f̂ 〉, respectively, on a particular horizontal plane.

2.4. Splitting entrainment and detrainment processes
Some parametrisations distinguish between entrainment and entrainment definitions, e.g.
for turbulent fountains (Bloomfield & Kerr 2000) or turbulent clouds (De Rooy &
Siebesma 2008). The current framework allows explicit calculation of these quantities.
Using that eq < 0, eq > 0 (whose sign is consistent with Vn) represent entrainment and
detrainment, respectively, the pointwise exchange rates can be written as

eX = e+
X + e−

X , e−
X = eX H(−eq), e+

X = eX H(eq), (2.25a–c)

where X is l, q, m or f . With (2.19a,b) and (2.20a–c), this implies that the boundary
integrals can be decomposed as

l̂ = l̂+ + l̂−, q̂ = q̂+ + q̂−, m̂ = m̂+ + m̂−, f̂ = f̂ + + f̂ −. (2.26a–d)

The momentum exchange term m̂ can be split into an entrainment term m̂V = ∫
em,V d A

and a pressure term m̂p = ∫
em,p d A, which each can be decomposed as

m̂V = m̂+
V + m̂−

V , m̂p = m̂+
p + m̂−

p . (2.27a,b)

Note that the superscript represents only the integral over the area where fluid entrainment
(indicated by ‘−’) and detrainment (indicated by ‘+’) occur, but not the sign of the term
itself. Due to the linearity of the time-averaging operator, (2.26a–b) also hold for the
averaged quantities.

3. Case description and boundary specification

For the data analysis, use will be made of the highly resolved simulation of a turbulent
forced fountain described in Huang et al. (2023). This is a high-Reynolds-number forced
fountain (Burridge, Mistry & Hunt 2015; Hunt & Burridge 2015) with source Reynolds
number Re0 = w0r0/ν = 1667 and source Froude number Fr0 = w0/

√|b0| r0 = 21,
where w0 > 0 is the uniform source vertical velocity, r0 is the source radius, b0 < 0
is the uniform source buoyancy, and ν is the fluid viscosity. The simulation domain
has size 160r0 × 160r0 × 100r0. The height is approximately twice the fountain height
in the quasi-steady state to ensure that the domain top does not affect the fountain
motion. Neumann boundary conditions for both velocity and buoyancy are applied at
the domain top. At the domain bottom, a Neumann boundary condition is applied for
buoyancy, and a free-slip boundary condition for velocity except for the source. Periodical
boundary conditions are applied at four sides. In terms of the jet length LF = r0Fr0 (Turner
1966), which will be used to scale all lengths, the radius is r0 ≈ 0.05LF. The simulation
was performed with SPARKLE (Craske & van Reeuwijk 2015), a fully parallelized
code for direct numerical simulation, which solves the incompressible Navier–Stokes
equations under the Boussinesq approximation with fourth-order accuracy in space, and
third-order accuracy in time. The domain is discretized with a uniform Cartesian grid of
12803 cells. The simulation duration was 5400 s, which is equivalent to 24.5 TF, where
TF = √

r0/|b0| Fr0 is the dominant time scale for forced fountains (Burridge & Hunt
2013). Herein, we use these scales and fountain source momentum flux M0 and buoyancy
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flux F0 to normalise all quantities, making our findings applicable directly to all turbulent
fountain flows with source Froude number Fr0 � 4 (Hunt & Burridge 2015). For example,
we use qF = L2

F/TF = M1/2
0 , mF = M0/LF and fF = F0/LF to normalise all quantities

concerning the entrainment of volume, momentum and buoyancy, respectively. For further
simulation details, including a full validation of these simulations, see Huang et al. (2023).

As introduced, we focus on entrainment statistics across two instantaneous fountain
boundaries – the outer boundary and the inner boundary. The instantaneous outer
boundary (hereafter denoted by the subscript f ) is identified using the buoyancy, i.e.
χ = |b| with χ0 = |bc|, where |b| represents the absolute value of the buoyancy field.
The threshold is set to |bc| = 3.6 × 10−3 |b0|, consistent with the threshold in Huang et al.
(2023), which is deduced from the buoyancy at the height of the cap base. Huang et al.
(2023) reported that the outer boundary encloses almost all (negatively) buoyant fluid, and
showed that reasonable variation of the threshold does not influence statistics significantly,
including those concerning entrainment by the fountain.

The inner boundary (hereafter denoted by the subscript i) is harder to define. It is
intuitive to argue that w > 0 is the natural criterion. Indeed, this is the default criterion to
identify the upflow when analysing Reynolds-averaged quantities (Williamson, Armfield
& Lin 2011; Huang et al. 2023). However, since the flow is turbulent, a threshold of
zero would result in unwanted fluid being contained in the upflow; for example, slowly
falling rotating turbulent fluid may contain regions of fluid that are, instantaneously,
travelling upwards, i.e. patches of fluid with vertical velocity w > 0 are contained within
the turbulent downflow – we see evidence of this within our data. In addition, there
are irrotational patches of fluid within the ambient for which w > 0, which renders this
criterion unhelpful. One could consider more complex composite criteria to solve this
issue (for example, conditioning on both the velocity and buoyancy field simultaneously);
however, this would require sophisticated and more computationally intensive algorithms
that are beyond the scope of the current study.

Herein, we opt for a simpler, yet effective, solution by using χ = w with a small positive
threshold χ0 = 0.07w0. Selection of this threshold was based on a sensitivity study –
there being no uniquely appropriate choice, mathematically. We tested thresholds in the
range 0 ≤ χ0 ≤ 0.10w0. As expected, lower thresholds within this range gave rise to the
inclusion of unwanted fluid within the domain of interest; for example, fluid clearly within
the downflow being included in the fountain upflow, and vice versa. Thresholds in the
range 0.07w0 ≤ χ0 ≤ 0.09w0 were deemed broadly suitable, with a threshold 0.07 being
selected as the smallest threshold that captures the most instantaneous upflow region but
is broadly unaffected by the presence of unwanted fluid. For our data, this threshold is
relatively small compared to the characteristic velocity over most heights of the fountain.
In addition, as we demonstrate in § 4, our choice is not expected to have substantially
affected the vertical profile of exchanges.

4. Results

4.1. Boundary statistics
Figure 2 shows a greyscale image of the forced fountain constructed in two halves; the left
and right halves show snapshots of the instantaneous and Reynolds-averaged buoyancy
fields, respectively. The greyscale map of the buoyancy field is normalised by |b0|/Fr0.
A thin white layer at the bottom over the horizontal region relatively far from the source,
namely |x/LF| ≥ 0.4, can be observed, due to the manually set nudging area that avoids
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Figure 2. The forced fountain. Left half: a snapshot of the instantaneous buoyancy field together with the
time-averaged characteristic inner and outer radii 〈r̂i〉, 〈r̂f 〉 (solid lines), and the location of r50 of the fountain
outer boundary and the upflow (dash-dotted lines), with the coloured band marking the interval between
r95 (left bound) and r5 (right bound). Right half: Reynolds-averaged buoyancy field, together with interface
positions of the inner and outer boundary ri, rf inferred from Reynolds-averaged statistics, and the streamlines
(black lines). The horizontal dashed lines on both sides present the location of the fountain cap base of the
time-averaged conditional fountain and Reynolds-averaged fountain, respectively.

accumulation of buoyancy at the bottom boundary (Huang et al. 2023). Overlaid on the
right-hand side are the Reynolds-averaged inner boundary ri, the outer boundary rf , and
the streamlines (see Huang et al. 2023): the inner boundary ri is composed of the points
of zero Reynolds-averaged vertical velocity, and the outer boundary rf is composed of
the points where the Reynolds-averaged (absolute) buoyancy reduces to |bc|, the same
threshold as we define for the instantaneous boundary.

In order to develop an understanding of the location of the instantaneous interface,
the radial locations associated with the areas within the inner and outer boundaries are
determined according to

〈r̂i〉2 = 〈Âi〉, 〈r̂f 〉2 = 〈Âf 〉, (4.1a,b)

where 〈Âi〉 and 〈Âf 〉 are the time-averaged areas of the upflow and the whole fountain,
respectively. These boundaries are marked by solid blue and orange lines on the left-hand
side of figure 2, respectively. At the particular instant shown, the outer boundary of the
fountain (as inferred from the instantaneous buoyancy field) can, for example, be seen to
lie well within, and well outside the solid orange line marking 〈r̂f 〉.

In order to quantify the variability of the instantaneous interface location, we selected
three radial locations, r5, r50 and r95, for both the inner (blue) and outer (orange)
boundaries, that correspond to 5 %, 50 % and 95 % of the contribution to 〈l̂〉, specifically
via 2

∫ rα
0 el r dr = (α/100)〈l̂〉, where α is a percentage. Note that near the fountain top,

i.e. z/LF � 1.9 for the inner boundary and z/LF � 2.3 for the outer boundary, the vertical
variation of rα is not reliable as there are insufficient samples for accurate statistics.
The band between r95 and r5 shows that the instantaneous boundaries of both the outer
and inner boundaries exhibit broad fluctuations, with r95 about twice as large as r5 for
both boundaries. Note that for z/LF � 1, r95 is close to the Reynolds-averaged boundary
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(i.e. ri or rf in the right half of figure 2), and r50 is very close to the time-averaged
characteristic radius (i.e. 〈r̂i〉 or 〈r̂f 〉).

The total height of the fountain, indicated by the time-averaged outer boundary 〈r̂f 〉, is
z/LF ≈ 2.40, which is consistent with the Reynolds-averaged statistics on the right and
the heights reported by the literature (for a review, see Hunt & Burridge 2015). In the
statistically steady state, the fluid in the region near the top experiences a number of
large-scale fluctuations characterised by the formation and collapse of large-scale fluid
structures, i.e. the direction of the fluid reverse near the top. We identify this near-top
region as a ‘fountain cap’ to consider the fountain fluid that is influenced by the dynamics
near the top. The fountain cap is defined above a height that is termed the fountain cap base.
Consistent with Huang et al. (2023), we define the fountain cap base at a height where
the averaged radius of upflow is the largest. Using this definition, the present conditional
statistics yield a time-averaged cap base location z/LF = 1.58, very close to the height
z/LF = 1.62 from the Reynolds-averaged statistics (Huang et al. 2023). The two cap
bases are labelled with horizontal dashed lines on both sides of figure 2. Indeed, different
definitions of the fountain cap base have been proposed in the literature (Mcdougall 1981;
Shrinivas & Hunt 2014; Awin et al. 2018). However, Huang et al. (2023) have clarified
that all these different definitions resulted in some very similar fountain cap bases to our
fountain statistics. Hereafter, the cap base will be marked in the figures when necessary,
as a reminder of the influence of the top.

4.2. Entrainment statistics
Figure 3 shows an instantaneous snapshot of the pointwise exchange rate eq across the
fountain outer boundary and inner boundary, at the three selected planes: one central
vertical plane, and two different horizontal planes at z/LF = 1.62 and 1.18, which are
approximately the fountain cap base and the fountain half-height, respectively.

Here, eq is displayed using a symmetric colour map that ranges from blue (eq < 0,
entrainment) to red (eq > 0, detrainment); a colour bar is not shown since eq contains a
delta distribution implying that its value depends on the grid size. As expected, figure 3
shows that there is only instantaneous entrainment at the outer boundary. Note that no
results are shown below z/LF = 0.66; in this region, the downflow is affected by the
bottom boundary (see the outer boundary and streamlines in figure 2), so that this region
is excluded from all further analyses. At the inner boundary, entrainment (blue) and
detrainment (red) co-exist instantaneously. Although the value of eq is not meaningful
in itself, the relative magnitude is worthy of comparison. The magnitude of eq at the
inner boundary is generally larger than that at the outer boundary, which is in accord
with the stronger local turbulence at the inner boundary evident within our data (not
shown), presumably due to the shearing interactions between the rising upflow and falling
downflow. The colour also indicates the momentum and buoyancy exchanges. At the inner
boundary the buoyancy is always negative and the vertical velocity is 0.07w0 due to the
threshold, therefore in the blue area, these properties are entrained into the upflow, while in
the red area they are detrained. However, the momentum exchange driven by the pressure
still requires more specific statistics.

Figure 4 shows the time-averaged length fractions of the entrainment and detrainment
to the total boundary perimeter, respectively. Here, 〈l̂−i /l̂i〉 and 〈l̂+i /l̂i〉 are the ratios of
inner boundary, and 〈l̂−f /l̂f 〉 and 〈l̂+f /l̂f 〉 are the ratios of the outer boundary. At the outer
boundary, consistent with the observation in figure 3, most of the length of the boundary
entrains, while only an insignificant ratio of the length detrains. At the inner boundary,
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Figure 3. Instantaneous pointwise volume exchange eq across the inner and outer boundaries using a
symmetric colour scale ranging from blue (entrainment) to red (detrainment). The darker colour represents
the larger magnitude of the exchange. Plotted in the background is the instantaneous buoyancy field: (a) central
vertical plane, (b) horizontal plane z/LF = 1.62, (c) horizontal plane z/LF = 1.18. The horizontal dashed line
represents the height of the fountain cap base.

reassuringly, both entrainment and detrainment occur. Near the source, the entrainment
length is larger than the detrainment length. However, generally, the entrainment length
decreases and the detrainment length increases with the height – at z/LF ≈ 1.00, half of
the total boundary entrains and half detrains. Above that, the detrainment length is longer
than the entrainment length. This indicates that near the source, the entrainment dominates
the exchange, while near the top, the detrainment dominates.

Figure 5(a) shows the vertical variation of the time-averaged volume entrainment
and detrainment at the outer boundary, 〈q̂−

f 〉, 〈q̂+
f 〉, respectively. The width of

the correspondingly coloured shading highlights one standard deviation about the
time-averaged mean. Also shown in the figure is the net volume exchange qf across the
Reynolds-averaged boundaries rf (Huang et al. 2023). Reassuringly, only entrainment is
significant, with 〈q̂−

f 〉 = 〈q̂f 〉. It can be seen that the Reynolds-averaged net entrainment
qf is generally greater than the conditional time-averaged entrainment 〈q̂−

f 〉, especially
near the top (e.g. z/LF � 2.0). Clearly, this will provide a larger total entrainment flux
when integrating from a reference height up to the fountain height. The reason is that
the radial position of the time-averaged instantaneous interface 〈r̂f 〉 is smaller than the
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Figure 4. The time-averaged length fraction of entrainment and detrainment to the total perimeter across
(a) the outer boundary and (b) the inner boundary. The coloured band marks the first standard deviation interval
of the time average. The ratio very near the top of the upflow, i.e. z/LF � 1.9, and the fountain, i.e. z/LF � 2.3,
is not shown due to the lack of sampled data. The horizontal dashed lines represent the heights of the fountain
cap base.

Reynolds-averaged interface rf , particularly near the top (see figure 2), which in turn
implies a lower amount of entrained fluid. Reassuringly, if we use the position of 〈r̂f 〉
as the interface to calculate the Reynolds-averaged entrainment flux qf , then we find that
it is close to 〈q̂−

f 〉.
Figures 5(b,c) show the momentum and buoyancy exchanges across the outer boundary,

respectively. As expected, and consistent with the Reynolds average, there are insignificant
time-averaged momentum and buoyancy exchanges across the outer boundary due to the
very low magnitude of the momentum, pressure and buoyancy there. Figure 5(d) shows
the volume exchanges at the inner boundary, and highlights that the net exchange 〈q̂i〉
agrees closely with the Reynolds-average net exchange qi (as reported in Huang et al.
2023). This provides confirmation that the methodology concerning the analysis of the
instantaneous measurements, including the choice of velocity threshold, is appropriate.
When 〈q̂i〉 is segregated into entrainment and detrainment events, it becomes apparent that
at almost all heights, 〈q̂i〉 is small compared with either the entrainment fluxes 〈q̂−

i 〉 or the
detrainment fluxes 〈q̂+

i 〉 – evidence that entrainment and detrainment co-exist at the inner
boundary, and that, typically, the two fluxes are comparable. The net volume exchange 〈q̂i〉
intersects zero at z/LF ≈ 1.0, close to its Reynolds-averaged counterpart. Note that this is
also very close to the location where entrainment and detrainment have an equal length
in figure 4(b). The time-averaged instantaneous entrainment peaks at 〈q̂−

i 〉 ≈ −0.39qF (at
z/LF ≈ 0.82), and the detrainment peaks at 〈q̂+

i 〉 ≈ 0.43qF (at z/LF ≈ 1.31).
Figure 5(e) shows the time-averaged momentum exchange 〈m̂i〉 at the inner boundary,

including the decomposed contributions of entrainment, 〈m̂−
i 〉, and detrainment, 〈m̂+

i 〉.
For z/LF � 0.45, 〈m̂i〉 is positive, indicating that the momentum exchange at the inner
boundary decreases the upward vertical momentum flux within the upflow over most of
the fountain height. This is broadly consistent with the Reynolds-averaged quantity mi
at the inner boundary (Huang et al. 2023; black line). Figure 5( f ) shows the negative
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Figure 5. The time-averaged entrainment (with superscript −, yellow line (a–c) and green line in (d–f )),
detrainment (with superscript +, brown line in (a–c) and blue line in (d–f )), and the net exchange (the sum
of entrainment and detrainment, purple line in (d–f )) of (a,d) volume, (b,e) momentum and (c, f ) buoyancy
variation with the height. The panes (a–c) present those at the outer boundary, and the panels (d–f ) present the
inner boundary. The exchanges are compared with the net exchanges of the Reynolds-averaged fountain (black
solid lines). The coloured band marks the first standard deviation interval of the time average. The dotted
lines in (e) represent the time-averaged momentum exchange associated with the relative velocity 〈m̂V 〉 and
its segregation. The difference between the dotted line and the solid line indicates the momentum exchange
associated with the pressure, i.e. 〈m̂p,i〉 and its segregation.

buoyancy exchanges at the inner boundary, with the horizontal axis normalised by fF
(which is negative); therefore, the direction of exchange is aligned with that of the volume
exchange. The quantity 〈 f̂i

−〉 represents the negative buoyancy entrained into the upflow,

while 〈 f̂i
+〉 represents the negative buoyancy detrained out of the upflow. The net 〈 f̂i〉

generally agrees well with the Reynolds average fi with the zero point at z/LF ≈ 0.90,

slightly lower than that of 〈qi〉. The buoyancy entrainment peaks at 〈 f̂ −
i 〉 ≈ −0.39fF

(at z/LF ≈ 0.82), and the detrainment peaks at 〈 f̂ +
i 〉 ≈ 0.43fF (at z/LF ≈ 1.31).
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Figure 6. (a) The time-averaged net momentum exchange 〈m̂i〉 and its components net 〈m̂V,i〉 and net 〈m̂p,i〉,
overlaid with the integral negative buoyancy of the upflow 〈B̂u〉, and the Reynolds-averaged momentum
exchange mi. (b) The pressure effect of net momentum exchange 〈m̂p,i〉 conditioned to the entrainment 〈m̂−

p,i〉
and detrainment 〈m̂+

p,i〉 components.

The net momentum exchange 〈m̂i〉 is comprised of two contributions: one due to
entrainment 〈m̂V,i〉, and one due to pressure 〈m̂p,i〉 (§ 2). These quantities are examined in
figure 6(a), and shown, for comparison, alongside the Reynolds-averaged net momentum
exchange mi (Huang et al. 2023), and the integral buoyancy of the upflow 〈B̂u〉, the latter
being a term on the right-hand-side of momentum equation (2.16). The figure shows that
the exchange types are equal in magnitude and comparable to the integral buoyancy, so
no terms are negligible a priori. The quantity 〈m̂V,i〉 is trivially related to 〈q̂i〉 since
substitution of the constant threshold value 0.07w0 (which identifies the inner boundary)
into (2.14), and exploiting (2.10), yields directly 〈m̂V,i〉 = 0.07w0〈q̂i〉. This fact is borne
out by our data (cf. the shape of 〈m̂V,i〉 marked by the dotted lines in figure 5(e), and that
of 〈q̂i〉 in figure 5d).

Note that the difference between the dotted lines and solid lines in figure 5(e) indicates
the pressure-induced momentum exchange (e.g. 〈m̂−

p,i〉 and 〈m̂−
p,i〉). These data demonstrate

that conditional momentum entrainment or detrainment is caused primarily by the
decomposed components associated with entrainment or detrainment velocities. However,
there is no intrinsic physical relevance to the term 〈m̂V,i〉, because of the need to impose
a non-zero vertical velocity threshold (in our case, 0.07w0) to avoid unexpected fluid in
the upflow (see § 3). In theory, a zero vertical velocity threshold value is a natural choice
for the inner boundary, which would result in the term 〈m̂V,i〉 being zero, leaving only
the pressure exchange term 〈m̂p,i〉 of the dynamically active terms within the momentum
exchange. Figure 6(a) compares the net momentum exchange across the inner boundaries
when conditionally averaged, 〈m̂p,i〉, with that for the Reynolds-averaged net momentum
exchange mi, which in the case of Reynolds averaging is indeed to set the loci of zero
vertical velocity (Huang et al. 2023). The conditionally averaged 〈m̂p,i〉 term agrees well
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Figure 7. (a) Time-averaged absolute entrainment and detrainment velocity normalised with the fountain
source vertical velocity w0. (b) Exchanged vertical velocity wi normalised by w0. (c) Exchanged buoyancy
bi at the inner boundary normalised by the absolute source buoyancy |b0|.

with the Reynolds-averaged momentum exchange mi below z/LF ≈ 0.8, and marginally
lower than mi above that.

Figure 6(b) shows the pressure exchange term decomposed in its entrainment and
detrainment terms. As can be seen, both 〈m̂−

p,i〉 and 〈m̂+
p,i〉 are positive. Recall that the

conditioning is based on the local value of Vn (§ 2) and the pressure has a negative sign
in momentum equation (2.16), the fact that both are positive implies that pressure acts
to remove momentum from the upflow both during entrainment and detrainment events.
From the observation that 〈m̂−

p,i〉 is slightly larger than 〈m̂+
p,i〉, we can conclude that the

pressure effect is slightly larger during entrainment events.
Figure 7 shows the time-averaged ratio of the integrals, which represents the local

entrainment/detrainment velocity q̂/l̂, the locally exchanged vertical velocity m̂/q̂, and the
locally exchanged buoyancy f̂ /q̂, respectively. Note that the exchanged vertical velocity
(momentum) and buoyancy across the outer boundary are not presented since these are
insignificant. Figure 7(a) shows the local entrainment/detrainment velocities. As in earlier
figures, the thick lines represent the mean value, and the shaded bands represent the range
from the first standard deviation interval of the time average. The entrainment velocity
at the outer boundary 〈q̂−

f /l̂−f 〉 is approximately constant over the entire fountain height
and has very little fluctuation with time. Note that here, the absolute value is presented
to show the magnitude of the velocity. At the inner boundary, beyond the near-source
region, the entrainment velocity 〈q̂−

i /l̂−i 〉 and detrainment velocity 〈q̂+
i /l̂+i 〉 both decrease

approximately linearly with height. Both are large compared with the entrainment velocity
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at the outer boundary. Combined with figure 4(b), we find that below z/LF ≈ 1.0, both the
entrainment length and entrainment velocity are greater than those of detrainment, while
above that, they are the opposite.

Data for the averaged exchanged velocity 〈m̂i/q̂i〉/w0 are shown in figure 7(b), and
indicate that over most of the fountain height, i.e. z/LF � 0.45, the exchanged velocity
is approximately 0.05 for entrainment and 0.08 for detrainment. Note that these averaged
quantities would both be the constant 0.07 were it not for the contribution due to pressure
within the momentum exchange. Figure 7(c) examines the time-averaged entrained and
detrained buoyancy over the inner boundary 〈 f̂ −

f /q̂−
f 〉 and 〈 f̂ +

f /q̂+
f 〉, respectively. The

values are normalised by the absolute source value |b0| to keep the negative sign of
the buoyancy. We note that over the main interval of the upflow, 0.5 ≤ z/LF ≤ 2.0,
the time-averaged entrained buoyancy is approximately −0.33 |b0| while the detrained
buoyancy is −0.37 |b0|, i.e. the averaged detrained buoyancy is always more negative than
the averaged entrained buoyancy. This is because the detrainment transfers the upflow
buoyancy outwards, while the entrainment transfers the downflow buoyancy into the
upflow. The downflow buoyancy is inherently less negative than the upflow.

4.3. Entrainment coefficients
The entrainment model of Morton, Taylor & Turner (1956) (hereinafter MTT) related the
entrainment velocity across the plume edge to local characteristic scales via a constant
entrainment coefficient, to characterise the bulk entrainment of a plume. Bloomfield &
Kerr (2000) (hereinafter BK00) developed a bulk-averaged fountain model applying the
entrainment coefficients to estimate the entrainment within the fountain. They separated
the fountain into an upflow and a downflow, where the upflow is assumed to entrain
from and detrain into the downflow, and the downflow entrains from and detrains into
the upflow, and entrains from the environment. In this subsection, we recalculate the
entrainment coefficients of the model of BK00 using conditional statistics, and compare
them with measurements.

The BK00 parametrisation for the downflow entrainment flux across the outer boundary
is given by

〈q̂−
f 〉 = 2rdωf , (4.2)

with rd the characteristic radius of the downflow, and ωf the entrainment velocity given
by

ωf = −γ |wd|, (4.3)

where |wd| is the absolute value of the characteristic downflow velocity, γ is the
entrainment coefficient at the outer boundary, and the negative sign represents the
entrainment velocity pointing into the flow in our framework.

At the inner boundary, BK00 assume that the upflow entrains from, and detrains into,
the downflow with velocities ωi and ωd, respectively, producing an entrainment and
detrainment flux given by

〈q̂−
i 〉 = 2ruωi, 〈q̂+

i 〉 = 2ruωd, (4.4a,b)

where ru is the characteristic radius of the upflow. BK00 parametrised the detrainment
velocity as

ωd = β |wd|, (4.5)
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where β is the detrainment coefficient. For the entrainment velocity ωi, BK00 proposed
two possible parametrisations:

ωI
i = −αI(wu + |wd|), ωII

i = −αIIwu, (4.6a,b)

with associated entrainment coefficients αI and αII , respectively. The first parametrisation
assumed that the entrainment velocity should be proportional to the difference in velocity
between the upflow and downflow, while the second assumed that the entrainment velocity
depends solely on the velocity within the upflow. Here, the characteristic values are
associated with the vertical fluxes of the upflow (subscript u) and downflow (subscript
d) (Bloomfield & Kerr 2000; Huang et al. 2023), given by

wu ≡ 〈M̂u〉
〈Q̂u〉

, ru ≡ 〈Q̂u〉
〈M̂u〉1/2

, wd ≡ 〈M̂d〉
〈Q̂d〉

, rd ≡
√

〈Q̂u〉2

〈M̂u〉
+ 〈Q̂d〉2

〈M̂d〉
. (4.7a–d)

BK00 assumed that the downflow entrains similarly to a line plume, therefore taking
γ00 = β00 = 0.147 according to the entrainment coefficient of the line plume, where
the subscript 00 represents BK00. They assumed the upflow entrainment coefficient
αI

00 = αII
00 = 0.085, which is the average of the jet value and plume value. With these

coefficients, combining the exchange equations with the governing equations, the fountain
model, which is a closed set of equations, can be solved. The result presented in BK00
was tuned to agree with the experimental data for the statistics of the steady mean fountain
height. A sensitivity examination revealed that the predicted fountain height depends
strongly on the choice of γ00, but is almost not affected by β00.

Figure 8 presents α, β and γ calculated using (4.2)–(4.7a–d). Figure 8(a) shows that the
coefficient γ is marginally greater than γ00 but generally smaller than 0.20, which supports
the BK00 assumption that the downflow at the outer boundary is likely to entrain as a line
plume. Figure 8(b) shows that near the source, below z/LF ≈ 0.6, the upflow entrainment
coefficients αI and αII increase from below 0.085 to over 0.147. Above that, the two
coefficients become approximately constant with the height: αI ≈ 0.16 and αII ≈ 0.21,
respectively. The coefficient αI is more constant with height than αII , which suggests that
the parametrisation I, which accounts for the total shear between the upflow and downflow,
is the better parametrisation.

Figure 8(c) shows that the detrainment coefficient of the upflow is β ≈ 0.80 beyond
the near source field, which is much larger than β00. This is because in our data, the
detrainment flux is comparable with the entrainment flux (as shown in figure 5d), but the
characteristic downflow velocities wd are small compared with the characteristic upflow
velocities wu, resulting in the large detrainment coefficients determined herein. However,
as mentioned before, BK00 showed that β does not have a significant effect on predicting
the fountain height.

As the BK00 model is a bulk model, the momentum and buoyancy exchange across the
inner boundary is modelled as the product of the volume exchange and the characteristic
velocity and buoyancy, where the characteristic values are, in effect, assumed to be those
transported, i.e.

〈m̂−
i 〉 = 〈q̂−

i 〉wd, 〈 f̂ −
i 〉 = 〈q̂−

i 〉bd, (4.8a,b)

〈m̂+
i 〉 = 〈q̂+

i 〉wu, 〈 f̂ +
i 〉 = 〈q̂+

i 〉bu. (4.9a,b)

Equations (4.8a,b) model the momentum and buoyancy entrained into the upflow,
respectively, and (4.9a,b) model those entrained into the downflow. Note that BK00 did
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Figure 8. The entrainment and detrainment coefficients at (a,b) the inner boundary and (c) the outer boundary,
overlaid with vertical dashed lines showing the entrainment coefficients used in BK00, 0.085 and 0.147. All
the coefficients are shown up to the fountain cap base z/LF = 1.62.

not attempt to model the pressure effect on the momentum exchange. Consistent with
(4.7a–d), the characteristic buoyancy is defined as

bu ≡ 〈B̂u〉〈M̂u〉
〈Q̂u〉2

, bd ≡ 〈B̂d〉〈M̂d〉
〈Q̂d〉2

. (4.10a,b)

Figure 9 compares the observed volume exchange and buoyancy exchange with the
predictions of the entrainment parametrisations using the parameter values αI = 0.16,
β = 0.80 and γ = 0.19. (We choose αI and its corresponding parametrisation simply due
to the coefficient αI being more constant with height than αII over most fountain heights.
However, we believe that αII and parametrisation II will not make substantial difference.)
Here, the subscript M denotes the predicted fluxes. Note that the predictions for the
quantities of the upflow start above z/LF = 0.66 since the model requires characteristic
values of the downflow in order to calculate predictions of the upflow – we attain reliable
data for the downflow only above z/LF = 0.66. Figures 9(a,b) show that the predicted
volume exchanges are in agreement with the simulation for both boundaries, which
shows that the revised coefficients capture the volume entrainment and detrainment of
the fountain well. Figure 9(c) shows that the model tends to underpredict the negative
buoyancy entrained into the upflow, and overpredict the negative buoyancy detrained out of
the upflow. This is because the characteristic buoyancy cannot represent the local transport
buoyancy at the boundary appropriately – considering the distance from the centreline, the
characteristic buoyancy of the upflow, bu, is more negative than the local boundary value,
which is, further, more negative than the characteristic buoyancy of the downflow, bd. The
net exchange of negative buoyancy tends to be overpredicted by the model.

The prediction of the momentum exchanges is more challenging, as mentioned before
and argued in the following discussion. First, a substantial part of the momentum exchange
at the inner boundary is determined by mV,i. Since the inner boundary was defined
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Figure 9. The modelled exchanges compared with the simulation exchanges for: (a) volume flux across the
outer boundary; (b) volume flux across the inner boundary; and (c) buoyancy exchange across the inner
boundary. The data presented here are for 0.66 ≤ z/LF ≤ 1.62, and the parameter values used are αI = 0.16,
β = 0.80 and γ = 0.19. The diagonal dashed lines represent perfect agreement.

using a threshold 0.07w0, mV,i is given simply by 0.07w0〈q̂i〉. This relation is shown in
figure 10(a), and reassuringly shows excellent agreement between the parametrisation
and the simulation data. However, this threshold was chosen by trial and error, and
did not emerge from any fundamental insight or theoretical considerations; naturally,
as mentioned, one would – for the momentum exchange only – desire to select a zero
velocity threshold, in which case only the pressure term 〈m̂p,i〉 would contribute to
the momentum exchange. Therefore, the net momentum exchange predicted by BK00,
(4.8a,b), is compared with the pressure term 〈m̂p,i〉 in figure 10(b). Although we are
aware that these two plotted quantities are induced by different mechanisms (note that the
modelled term 〈m̂i〉M is associated with the entrainment velocity), their comparison is still
worthy since they both represent the momentum exchange across the inner boundary. The
figure shows that the parametrisation grossly overpredicts the simulation data. However,
we note that this does not mean that 〈m̂p,i〉 is negligible – figure 6 shows that this quantity
is of magnitude similar to the buoyancy term 〈B̂〉. Our results therefore suggest that the
BK00 parametrisation is not appropriate for predicting the momentum exchange.

4.4. Normalised entrainment density

By rearranging (2.23a,b) to be
∫∞

0 2ēlr/〈l̂〉 dr = 1, the quantities 2ēlr/〈l̂〉 evidence how
〈l̂〉 is distributed over the radial direction r, i.e. 2ēlr/〈l̂〉 represents a normalised exchange
length density. Figure 11 shows the radial profiles of the normalised exchange length
density at the two boundaries conditioned by entrainment and detrainment events, for
both the inner and outer boundaries. Data are shown at the two vertical planes depicted in
figure 3, i.e. z/LF = 1.18 and 1.62; vertical dash-dotted lines mark the local time-averaged
characteristic radii 〈r̂f 〉 and 〈r̂i〉. Figures 11(a,b) show the normalised exchange length
associated with the outer boundary 2ēl,f r/〈l̂f 〉 at both heights. Here, the first subscript (l)
represents the exchange length, and the second subscript ( f ) indicates that it is associated
with the outer boundary; similarly hereinafter. Consistent with figure 4(a), there is mainly
entrainment occurring at the fountain outer boundary, thus ēl,f ≈ ē−

l,f and 〈l̂f 〉 ≈ 〈l̂−f 〉.
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Figure 10. (a) The product of the volume exchange 〈q̂i〉 (including the conditional components) and the
constant threshold 0.07w0 compared with the measured momentum exchange 〈m̂V,i〉. (b) The modelled net
momentum exchange compared with the measured net momentum exchange 〈m̂p,i〉. The diagonal dashed lines
represent perfect agreement.

The location of the time-averaged characteristic radius 〈r̂f 〉 is close to the location of the
maximum value of 2ēl,f r/|〈l̂f 〉| at both heights. The profiles can be approximated well by
a Gaussian profile (black dashed line)

2ēr

|〈l̂〉| ≈ sgn(〈l̂〉) 1√
2π σg

exp

(
−(r − rg)

2

2σ 2
g

)
, (4.11)

of which the distribution parameters rg/〈r̂f 〉 and σg/〈r̂f 〉 are listed within the figure. Note
that 〈r̂f 〉/LF = 0.60, 0.69 at z/LF = 1.62, 1.18, respectively.

Figures 11(c,d) show the normalised exchange length associated with the inner boundary
at both heights. Like the outer boundary, the normalised exchange length density 2ēl,ir/〈l̂i〉
at the inner boundary is also well fitted by a Gaussian profile. The exchange length
density peaks near the location of the time-averaged characteristic radius 〈r̂i〉 at both
heights. When segregating to the conditional exchange length densities, the entrainment
length density 2ē−

l,ir/|〈l̂i〉| and the detrainment length density 2ē+
l,ir/|〈l̂i〉| are also both

well approximated by Gaussian profiles, i.e. the entire exchange perimeter, which is
Gaussian-like, results from the superposition of two Gaussian-like profiles each associated
with entrainment or detrainment. Note that the normalisation uses the total length |〈l̂i〉| to
compare directly the entrainment and detrainment densities, implying that (4.11) needs
to be multiplied by an enhancement |〈l̂−i 〉|/|〈l̂i〉| or |〈l̂+i 〉|/|〈l̂i〉| for the entrainment and
detrainment expressions, respectively. Again, the distribution parameters for the Gaussian
profile, here normalised by the averaged radius of the inner boundary, rg/〈r̂i〉 and σg/〈r̂i〉,
are listed in the figure. We find the radius 〈r̂i〉/LF = 0.19, 0.17 at z/LF = 1.62, 1.18,
respectively. The parameters confirm that the total and conditional profiles have practically
identical rg and σg, so they can remain in the Gaussian profile while in the superposition.

Analogous to the length, rearranging (2.23a,b) and (2.24a,b) in terms of q, m and f ,
respectively, we obtain the normalised exchange density of volume 2ēqr/|〈q̂〉|, momentum
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Figure 11. Normalised exchange length density 2ēl,f r/|〈l̂f 〉| as a function of r associated with the outer
boundary, plotted at (a) z/LF = 1.62 and (b) z/LF = 1.18. Normalised exchange length density 2ēl,ir/|〈l̂i〉|
associated with the inner boundary at (c) z/LF = 1.62 and (d) z/LF = 1.18. Vertical dash-dotted lines mark the
local time-averaged characteristic radius of the outer boundary 〈r̂f 〉 and inner boundary 〈r̂i〉, correspondingly.
Gaussian profiles fitted to the data are marked as dashed curves, whose distribution parameters are listed in the
figure in the corresponding colour.

2ēmr/|〈m̂〉|, and buoyancy 2ēf r/|〈 f̂ 〉|, respectively, presented in figure 12. Figures 12(a,b)
show the volume exchange density associated with the outer boundary 2ēq,f r/|〈q̂f 〉| at both
heights. The absolute value of 〈q̂f 〉 is used in order to keep the signs of the exchange density
consistent with the rest of the paper: negative represents entrainment, while positive
represents detrainment, as labelled in the figure. Consistent with figure 5(d), there is only
volume entrainment at the fountain boundary, thus ēq,f ≈ ē−

q,f . Again, the profiles can
be approximated well by a Gaussian profile with the distribution parameters rg/〈r̂f 〉 and
σg/〈r̂f 〉. The location of the time-averaged characteristic radius 〈r̂f 〉 is close to the location
of the maximum value of 2ēq,f r/|〈q̂q,f 〉| at both heights, as reassured by the ratio rg/〈r̂f 〉
being unity. As figure 5(e, f ) have shown, the momentum and buoyancy exchanges at the
outer boundary are insignificant, therefore the momentum exchange density and buoyancy
exchange density at the outer boundary are not presented here.

Figures 12(c–h) show the radial variation of volume exchange density, momentum
exchange density and buoyancy exchange density associated with the inner boundary,
respectively, at both heights. Here again, due to the normalisation, each profile has
been multiplied by a corresponding enhancement, e.g. |〈q̂−

i 〉|/|〈q̂i〉|. It is striking that
all the conditional entrainment and detrainment densities of volume, momentum and
buoyancy (coloured lines), at both heights, are well approximated by the Gaussian
profiles (distribution parameters rg/〈r̂f 〉 and σg/〈r̂f 〉 are marked within the figure).
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Figure 12. Normalised volume exchange density 2ēq,f r/|〈q̂f 〉| as a function of r associated with the outer
boundary, plotted at (a) z/LF = 1.62 and (b) z/LF = 1.18. Normalised (c, f ) volume exchange density
2ēq,ir/|〈q̂i〉|, (d,g) momentum exchange density 2ēm,ir/|〈m̂i〉| and (e,h) buoyancy exchange density 2ēf ,ir/|〈 f̂i〉|
associated with the inner boundary, at (c–e) z/LF = 1.62 and ( f –h) z/LF = 1.18. Vertical dash-dotted lines
mark the local time-averaged characteristic radius of the outer boundary 〈r̂f 〉 and inner boundary 〈r̂i〉,
correspondingly. Gaussian profiles fitted to the data are marked as dashed curves. As labelled in (a), the area
above the horizontal axis belongs to detrainment, while that below belongs to entrainment for all the exchanges.

However, all the net normalised exchange densities, which are the superposition of the
entrainment and detrainment events, are clearly non-Gaussian-like (solid black lines).
The net profile shape depends strongly on z – for z/Lf = 1.18 (figures 12 f,h), there is
remarkable entrainment of volume and buoyancy for r � 〈r̂i〉 and detrainment further away
from the fountain centreline. However, at the higher level, z/Lf = 1.62 (figures 12c,e),
insignificant net entrainment of volume and buoyancy is observed. Since, for each case,
the distribution parameters σg/〈r̂〉 in the conditional entrainment and detrainment profiles
are approximately identical, the non-Gaussian-like profile of net exchange is due to the
distribution parameters rg/〈r̂i〉 in the two conditional profiles being different (i.e. the
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difference is generally greater than 0.10). Here, the fact that for all the exchanges, the
entrainment and detrainment exchange densities have a larger amplitude than the net
exchange density confirms once more that the conditional entrainment and detrainment
terms are large compared with the net (consistent with figures 5d–f ).

The second feature noted for all kinds of exchanges, i.e. of volume, momentum and
buoyancy, is that rg/〈r̂i〉 of conditional profiles at both heights are all close to 1, with
rg/〈r̂i〉 of the entrainment profile always smaller than that of the detrainment. This
shows that the maximum value of the entrainment (and detrainment) density is close
to the location of the time-averaged characteristic radius 〈r̂i〉. However, the conditional
entrainment density peaks closer to the fountain centreline than the detrainment, which
explains the propensity for net entrainment closer to the fountain centreline, and
detrainment further away. This is possible due to the anisotropy and inhomogeneity of
the turbulence within the fountain, which are worthy of further study.

Moreover, we note that figures 12(d,g) show the normalised momentum exchange
densities at the inner boundary 2ēm,ir/|〈m̂i〉|, including the entrainment and detrainment
events. As illustrated before, the momentum exchange should be consistent with the
volume exchange if only 〈m̂V〉 was considered. Hence the difference between the profiles
of volume (figures 12c, f ) and momentum (figures 12d,g) is driven by the pressure
effect. The pressure does not affect entrainment and detrainment significantly on the
Gaussian fit. However, the parameter rg/〈r̂i〉 indicates that the pressure makes the peaks
of conditional momentum densities, especially the entrainment density, occur closer to the
centreline compared with the volume. Additionally, the pressure also affects the amplitude
enhancement significantly.

Recall that the net normalised exchange length densities (figure 11) are approximately
Gaussian-like, while net normalised exchange densities of volume, momentum and
buoyancy are not (figure 12), due to the relatively large difference between the distribution
parameters rg/〈r̂〉 of entrainment and detrainment events. This is suspected to be
influenced by the averaged exchange velocity, momentum and buoyancy across the
boundary that separates rg/〈r̂〉 of entrainment and detrainment further. Therefore, figure 13
shows the radial distribution of the averaged entrainment velocity ēq/ēl, averaged
exchanged vertical velocity ēm/ēq and averaged exchanged buoyancy ēf /ēq across the
interface, segregated into entrainment and detrainment where relevant (i.e. over the
intrusion level to the cap base 0.66 ≤ z/LF ≤ 1.62). Note that the radial axis represents
the normalised distance to the time-averaged boundary because we have shown that rg
is always close to the time-averaged boundary 〈r̂i〉 or 〈r̂f 〉 in figures 11 and 12. Over the
range of two standard deviations, −2.0 ≤ (r − rg)/σg ≤ 2.0, which contains approximate
95 % total entrainment or detrainment, the radial profiles of different heights (which are
indicated by transparency) collapse well to a single profile, indicating that the averaged
transport properties depend solely on the radial location rather than the height – such
as figure 13(a), which shows that the entrainment velocity associated with the outer
boundary gets lower as it gets further away from the fountain centre, regardless of the
height. Figure 13(b) shows that the entrainment and detrainment velocities intersect at
(r − rg)/σg ≈ −1.0, and it is clear that further away from the centreline, over 1.0 � (r −
rg)/σg ≤ 2.0, the averaged detrainment velocity is greater than the averaged entrainment
velocity. Note that the velocities across both inner boundary and outer boundary seem
not to vary substantially with the radius, indicating that the movement of the interface
causes the Gaussian profile for the volume entrainment and detrainment rather than the
distribution of the velocities. Figures 13(c,d) show the magnitude of transport properties,
including vertical momentum and buoyancy. The detrained buoyancy is more negative than
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Figure 13. The radial profiles of (a) the averaged entrainment velocity at the outer boundary, (b) the averaged
entrainment and detrainment velocity at the inner boundary, (c) the averaged entrained and detrained vertical
momentum, and (d) the averaged entrained and detained buoyancy. The velocities in (a,b) are shown in absolute
values. The vertical axis is normalised with the source values w0 or |b0|, and the radial axis is rescaled by the
corresponding distribution parameters in the Gaussian profile, associated with the distance from the location
of maximum density rg. The vertical dashed lines mark the locations of two standard deviations of the density
distribution. The lines represent the data from different heights between the intrusion level and the cap base,
the darker colour representing the higher level.

the entrained buoyancy, which is consistent with the results from figure 7. Beyond this
region, −2.0 ≤ (r − rg)/σg ≤ 2.0, the data scatter due to the insufficient samples there.

5. Conclusion

Data from a direct numerical simulation of a forced fountain were used to examine
the instantaneous local exchanges of volume, momentum and buoyancy at the inner
boundary (TTI) and the outer boundary (TNTI), conditioning the data on entrainment and
detrainment events. Consistent with expectation and previous fountain studies (Bloomfield
& Kerr 2000; Shrinivas & Hunt 2014; Huang et al. 2023), the evidence shows that at the
outer boundary, there is only entrainment into the fountain. At the inner boundary, the
volume entrainment and the volume detrainment co-exist. The statistics show further that
the magnitude of detrainment is similar to entrainment, being smaller than entrainment at
lower heights, and larger than entrainment at higher heights – crucially, though, the net
volume exchange is typically much smaller than both entrainment and detrainment. This
is also observed in the exchanges of momentum and buoyancy. At TTIs such as the inner
boundary of the fountain, the entrainment and detrainment fluxes transfer different fluid
properties across the interface in different directions; examining only the net exchanges
risks missing these potentially important transfers. The methodology presented herein
provides insight into these processes, and we hope that it will be used to improve the
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understanding and modelling of the exchanges across TTIs and TNTIs in fountains and
other canonical turbulent flows.

The BK00 entrainment parametrisations for forced fountains were tested based on the
conditional exchanges quantified herein, thereby allowing, for the first time, entrainment
and detrainment coefficients to be determined explicitly from data. The parameter values
obtained were not too dissimilar to those used previously, despite being based on
conditional statistics rather than Reynolds-averaged statistics. The BK00 parametrisation
was unable to capture the momentum exchanges at the inner boundary due to them not
modelling the contribution from the pressure.

It is interesting to compare the results of this study – which uses conditional statistics
(CS) – with Huang et al. (2023), which examined the same forced fountain data but
using Reynolds-averaged statistics (RAS). Both approaches identified the inner and outer
boundaries of the fountain using consistent velocity and buoyancy thresholds, respectively.
The RAS boundaries are marginally wider than the CS boundaries due to intermittency
effects. The net volume and buoyancy exchanges agree well between CS and RAS at
both boundaries. In both approaches, the momentum exchange is poorly represented by
the BK00 parametrisation. For RAS, the BK00 model is unable to capture the turbulent
exchange of momentum across the inner layer. For CS, the BK00 model is unable to
capture the momentum exchange due to pressure. In terms of the entrainment coefficients,
both RAS and CS had similar values for the entrainment coefficient of the outer boundary.
However, the coefficients at the inner boundary are much more complex due to the
co-existence of entrainment and detrainment. The net entrainment coefficient obtained
from the net volume entrainment with RAS varies in sign with height, and cannot therefore
be used to present the momentum and buoyancy exchange. An advantage of CS is that it
becomes possible to segregate the net exchanges into entrainment and detrainment events,
and it further allows for the calculation of the entrainment and detrainment coefficients of
the volume exchange individually. Although the values differed somewhat from the BK00
values, the coefficients from the conditional study were almost independent of the height,
at least within a portion of the fountain height. Moreover, the coefficients well predicted
the volume exchanges and broadly predicted the buoyancy exchanges. Therefore, the BK00
model, although derived using a Reynolds-averaged description, seems to better model
forced fountains when applied to conditionally averaged statistics.

The radial profiles of the net exchange densities of volume, momentum and buoyancy
associated with the inner boundary are not Gaussian-like and show a propensity for net
entrainment closer to the fountain centreline and net detrainment further away. However,
examination of the conditional entrainment and detrainment exchange rates shows that
these conditional profiles are in fact Gaussian-like, with entrainment having its maximum
closer to the fountain centreline than detrainment. As the standard deviations are nearly
indistinguishable, this offset fully explains the non-Gaussian shape of the radial profiles
of the net exchanges. Across both interfaces, entrainment and detrainment events are most
likely to occur at locations close to the local characteristic radius of the interface.

Funding. The computations were performed on the UK National Supercomputing Service ARCHER2 and
were made possible by the EPSRC-funded UK Turbulence Consortium (grant reference EP/R029326/1).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Jingzi Huang https://orcid.org/0000-0003-1668-1034;
Henry C. Burridge https://orcid.org/0000-0002-0719-355X;
Maarten van Reeuwijk https://orcid.org/0000-0003-4840-5050.

977 A13-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

94
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-1668-1034
https://orcid.org/0000-0003-1668-1034
https://orcid.org/0000-0002-0719-355X
https://orcid.org/0000-0002-0719-355X
https://orcid.org/0000-0003-4840-5050
https://orcid.org/0000-0003-4840-5050
https://doi.org/10.1017/jfm.2023.947


J. Huang, H.C. Burridge and M. van Reeuwijk

REFERENCES

AWIN, L.A., ARMFIELD, S.W., KIRKPATRICK, M.P., WILLIAMSON, N. & LIN, W. 2018 Entrainment in the
crown region of forced turbulent fountains. In 21st Australasian Fluid Mechanics Conference, Adelaide,
Australia. Australasian Fluid Mechanics Society.

BLAKELEY, B.C., OLSON, B.J. & RILEY, J.J. 2022 Self-similarity of scalar isosurface area density in a
temporal mixing layer. J. Fluid Mech. 951, A44.

BLOOMFIELD, L.J. & KERR, R.C. 2000 A theoretical model of a turbulent fountain. J. Fluid Mech. 424,
197–216.

BURRIDGE, H.C. & HUNT, G.R. 2013 The rhythm of fountains: the length and time scales of rise height
fluctuations at low and high Froude numbers. J. Fluid Mech. 728, 91–119.

BURRIDGE, H.C., MISTRY, A. & HUNT, G. 2015 The effect of source Reynolds number on the rise height of
a fountain. Phys. Fluids 27 (4), 047101.

BURRIDGE, H.C., PARKER, D.A., KRUGER, E.S., PARTRIDGE, J.L. & LINDEN, P.F. 2017 Conditional
sampling of a high Péclet number turbulent plume and the implications for entrainment. J. Fluid Mech.
823, 26–56.

CRASKE, J. & VAN REEUWIJK, M. 2015 Energy dispersion in turbulent jets. Part 1. Direct simulation of
steady and unsteady jets. J. Fluid Mech. 763, 500–537.

DA SILVA, C.B., HUNT, J.C., EAMES, I. & WESTERWEEL, J. 2014 Interfacial layers between regions of
different turbulence intensity. Annu. Rev. Fluid Mech. 46 (1), 567–590.

DE ROOY, W.C. & SIEBESMA, A.P. 2008 A simple parameterization for detrainment in shallow cumulus.
Mon. Weath. Rev. 136 (2), 560–576.

DOPAZO, C., MARTÍN, J. & HIERRO, J. 2007 Local geometry of isoscalar surfaces. Phys. Rev. E 76, 056316.
FERNANDO, H.J.S. 1991 Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23 (1), 455–493.
GASKIN, S., MCKERNAN, M. & XUE, F. 2004 The effect of background turbulence on jet entrainment: an

experimental study of a plane jet in a shallow coflow. J. Hydraul. Res. 42 (5), 533–542.
HOLZNER, M. & LÜTHI, B. 2011 Laminar superlayer at the turbulence boundary. Phys. Rev. Lett. 106, 134503.
HUANG, J., BURRIDGE, H.C. & VAN REEUWIJK, M. 2023 The internal structure of forced fountains. J. Fluid

Mech. 961, A31.
HUNT, G.R. & BURRIDGE, H.C. 2015 Fountains in industry and nature. Annu. Rev. Fluid Mech. 47 (1),

195–220.
HUNT, G.R. & KAYE, N.B. 2005 Lazy plumes. J. Fluid Mech. 533, 329–338.
KANKANWADI, K.S. & BUXTON, O.R.H. 2020 Turbulent entrainment into a cylinder wake from a turbulent

background. J. Fluid Mech. 905, A35.
MCDOUGALL, T.J. 1981 Negatively buoyant vertical jets. Tellus 33 (3), 313–320.
MORTON, B.R., TAYLOR, G.I. & TURNER, J.S. 1956 Turbulent gravitational convection from maintained

and instantaneous sources. Proc. R. Soc. Lond. 234 (1196), 1–23.
VAN REEUWIJK, M. & CRASKE, J. 2015 Energy-consistent entrainment relations for jets and plumes. J. Fluid

Mech. 782, 333–335.
VAN REEUWIJK, M., SALLIZONI, P., HUNT, G. & CRASKE, J. 2016 Turbulent transport and entrainment in

jets and plumes: a DNS study. Phys. Rev. Fluids 1, 074301.
VAN REEUWIJK, M., VASSILICOS, J.C. & CRASKE, J. 2021 Unified description of turbulent entrainment.

J. Fluid Mech. 908, A12.
SHRINIVAS, A.B. & HUNT, G.R. 2014 Unconfined turbulent entrainment across density interfaces. J. Fluid

Mech. 757, 573–598.
TURNER, J.S. 1966 Jets and plumes with negative or reversing buoyancy. J. Fluid Mech. 26 (4), 779–792.
TURNER, J.S. 1986 Turbulent entrainment: the development of the entrainment assumption, and its application

to geophysical flows. J. Fluid Mech. 173, 431–471.
WILLIAMSON, N., ARMFIELD, S.W. & LIN, W. 2011 Forced turbulent fountain flow behaviour. J. Fluid

Mech. 671, 535–558.
YURTOGLU, M., CARTON, M. & STORTI, D. 2018 Treat all integrals as volume integrals: a unified, parallel,

grid-based method for evaluation of volume, surface, and path integrals on implicitly defined domains.
J. Comput. Inf. Sci. Engng 18 (2), 021013.

977 A13-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

94
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.947

	1 Introduction
	2 Theoretical framework
	2.1 Interface definition
	2.2 Conditionally averaged plume equations
	2.3 Pointwise exchange rates
	2.4 Splitting entrainment and detrainment processes

	3 Case description and boundary specification
	4 Results
	4.1 Boundary statistics
	4.2 Entrainment statistics
	4.3 Entrainment coefficients
	4.4 Normalised entrainment density

	5 Conclusion
	References

