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Inspired by geological structures formed by magmatic intrusions that deform the Earth’s
crust, we investigate the elastohydrodynamic growth of a viscoplastic blister under an
elastic sheet resting on a prewetted substrate. By combining experiments, scaling analysis
and numerical simulations, we reveal new regimes for the elastoviscoplastic growth
dynamics of the blister. The blister height and its apparent radius grow as h(0, t) ∼ t5/9

and R(t) ∼ t2/9 if the fluid pressure is set by bending of the sheet, and as h(0, t) ∼ t5/13 and
R(t) ∼ t4/13 if the fluid pressure is set by stretching of the sheet. A plug-like flow inside
the blister dictates its dynamics, whereas the blister takes a self-similar shape given by a
balance of the fluid’s yield stress and the pressure gradient induced by the deformation of
the elastic sheet.

Key words: thin films, plastic materials

1. Introduction

The intrusion of a liquid underneath an elastic sheet resting on a non-deformable solid
has been utilized as a generic model to understand the formation of geological structures
such as magmatic sills and laccoliths (Pollard & Johnson 1973; Lister & Kerr 1991;
Michaut 2011) and ice sheet relaxation (Lai et al. 2021). In models of e.g. sill and laccolith
emplacement, the intruding magma is commonly assumed to be Newtonian, and the solid
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Figure 1. (a) Schematic drawing of the studied system. An incompressible elastic sheet, of Young’s modulus
E, thickness d, and Poisson ratio ν, rests on top of the prewetted layer with thickness h0, of yield stress fluid
made from a solution of Carbopol mixed with water. A solution of the same Carbopol–water mixture as that in
the prewetted layer is injected at a constant flux Q beneath the elastic sheet through a small tube of radius
rt. The resulting blister’s height profile h(r, t) is measured by tracking a laser line (on top of the sheet).
(b) An illustration of the two-dimensional cross-section along the lasing line from the injection point to the
edge of the sheet. We define the apparent radius R(t) as the first radial coordinate where the blister height
profile matches the prewetted layer thickness, h(r = R(t), t) = h0. The region around this point is referred to as
the intrusion tip. Note that the aspect ratio between the fluid depth h(r, t) and the thickness of the elastic sheet
d is exaggerated for easier visualization of the intrusion.

is assumed to deform by elastic bending and tensile fracturing. However, there is growing
evidence that some magmas exhibit highly non-Newtonian behaviour (Balmforth et al.
2000; Caricchi et al. 2007; Cordonnier et al. 2012), such that the magma can transport as
plug flow (Morgan et al. 2008). Moreover, rock layers along which magma is emplaced
can also exhibit a complex viscoplastic rheological response to magma flow (Scheibert,
Galland & Hafver 2017; Galland et al. 2019). To what extent these nonlinear phenomena
affect the dynamics of these geophysical systems is still unclear. To model the complex
dynamics in geophysical flow, we consider an elastic sheet separated from a rigid substrate
by a prewetted layer of viscoplastic fluid, and study the formation of a blister formed as we
inject the same viscoplastic fluid in between the elastic sheet and the rigid substrate (see
the illustration in figure 1a).

Fluid models that account for viscoplasticity have provided a more realistic
representation of mud, glacier and magma flows on the Earth’s surface (Liu & Mei
1989; Balmforth et al. 2000; Petford 2003). Recently, viscoplastic fluids have also
attracted interest in interfacial flows, where they were demonstrated to affect coating, drop
spreading, bursting and coalescence (Smit et al. 2019; Jalaal, Stoeber & Balmforth 2021;
Sanjay, Lohse & Jalaal 2021; Kern, Sæter & Carlson 2022). For an elastic sheet resting on
a solid prewetted by a Newtonian fluid film, it has been shown that the growth dynamics
when injecting the same fluid underneath the sheet is determined by a coupling between
local effects at the intrusion tip (see figure 1b) and the quasi-static shape of the sheet
(Lister, Peng & Neufeld 2013). The dynamic changes, e.g. if there is vapour at the intrusion
tip (Wang & Detournay 2018), if there is dry adhesion between the elastic surface and the
supporting solid (Hosoi & Mahadevan 2004; Ball & Neufeld 2018; Lister, Skinner & Large
2019), if gravitational effects dominate (Hewitt, Balmforth & De Bruyn 2015), if the ratio
of the deformation and the prewetted film thickness changes (Pedersen et al. 2019), if the
supporting solid is porous (Chase, Lai & Stone 2021; Lai et al. 2021), or in the case of
the effect from thermal fluctuations at small scales (Carlson 2018). The influence of a
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deformable elastic sheet on the resulting flow has also been demonstrated in the presence
of an interface, resulting in e.g. the suppression of viscous fingering in a Hele-Shaw
geometry (Pihler-Puzović et al. 2018). This paper looks at another elastohydrodynamic
phenomenon, where a working fluid is viscoplastic. Large stresses near the solid surfaces
and at the intrusion tip can fluidize the material locally, while the bulk of the viscoplastic
liquid forming the blister may remain in a solid-like state. In this paper, we show that
having yielded and unyielded regions of the viscoplastic fluid generates growth dynamics
distinct from the case of Newtonian fluids.

2. Experimental set-up

Our experiments adapted the design and measurement technique from previous Newtonian
elastohydrodynamics studies (Lister et al. 2013; Berhanu et al. 2019). A schematic
representation of the experimental system is shown in figure 1(a). An elastic sheet is
placed atop a substrate prewetted with a thin film of Carbopol–water mixtures, which have
well-characterized rheological properties and minor thixotropic effects (Coussot 2014).
A thin elastic sheet covers the Plexiglas plate underneath the liquid film. The dynamics are
generated by an influx of the same viscoplastic fluid used to prewet the substrate through
an inlet at the centre of the elastic sheet. The sides of the elastic sheets facing the fluid
are rough, as Carbopol is known to have significant slip effects on several smooth surfaces
(Jalaal, Balmforth & Stoeber 2015).

To avoid clumping, Carbopol 940 (CAS. 9003-01-4) was briefly mixed in deionized
water using a Silverson L5M high shear laboratory mixer set to between 300 and 1000
revolutions per minute until the polymer dissolved. 1M NaOH was added to the dissolved
solution in an 8 : 1 wt:wt% ratio of 1M NaOH:Carbopol 940. The solution was then gently
mixed mechanically using a Kenwood Chef XL Titanium mixer for approximately 10 days.
The amount of dissolved Carbopol was controlled to vary the yield stress, and ranged from
0.8 g l−1 to 2 g l−1, resulting in yield stresses τ0 = 3.9, 11.3, 31.7, 47.3 Pa. The Carbopol
solutions were characterized using an Anton Paar Rheometer 702 with the striated parallel
plate geometry (PP50/P2) to prevent slip. The surface roughness amplitude for the striated
plate from Anton Paar was 500 μm, with wavelength 1 mm. Before each measurement, a
pre-shear step was included to break and reheal the material’s microstructure (Medhi et al.
2020). In figure 2(a), we have plotted the shear stress τ0 versus the shear rate γ̇ , and fitted
the curves with the Herschel–Bulkley model, τ = τ0 + Kγ̇ n. The results of this fit in terms
of the yield stress τ0, consistency index K and flow index n are listed in table 2. Figure 2(b)
shows the viscosity curves as a function of the shear rate for the different samples.

The prewetted layer was made by pouring the desired amount of Carbopol–water
mixture over a surface area corresponding to the area of the elastic sheet, placing the
sheet on top of this layer, and then covering it with a rigid plate with uniformly distributed
weight 70 kg for ≈1 h. Afterwards, excess fluid was removed at the edge of the sheet, and
the system was weighed to obtain the deposited Carbopol mass, allowing us to calculate
the prewetted film height. The height of the prewetted layer of the Carbopol–water
mixture was h0 ≈ 0.2 mm in experiments with the two lowest yield stress samples,
and h0 ≈ 0.2–0.4 mm in experiments with the two fluids with the highest yield stress.
However, the results were insensitive to the precise value within this range of h0 values.

The elastic sheets were moulded on a coated rough wood plate (Huntonit Classique
1220 HV, product number 231001) using a silicone-based elastomer (Zhermack, Elite
Double (ED)), thus ensuring roughness on one side of the sheets. Profilometry
measurements of the rough surface were performed on an S Neox optical profiler
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Figure 2. (a) Experimental curves (markers) for τ versus γ̇ , with a Herschel–Bulkley model (line) fitted with
the values listed in table 1. (b) Plot of the viscosity μ versus γ̇ . (c,d) Corresponding measurements of the two
highest yield stress fluids, but with smooth and rough walls of elite double (ED) instead of the striated plate
geometry.

controlled with the SensoSCAN 6.7 software (Sensofar, Barcelona, Spain). Samples
were scanned in confocal mode with white, green, red and blue light with an EPI 20×
objective with lateral resolution 0.4μm. All images were levelled by the least squares
method and had filled-in non-measured points (<5 %) before analysis. The surface
parameters were obtained from image analysis, and all image processing was done
using SensoMap Standard 7.4 (Sensofar, Digital Surf’s Mountains Technology�, Spain).
Different roughness parameters measured by the profilometer can be found in table 2. In
addition to the elastic sheet on top, made of ED 8, a very thin rough elastic sheet made
of ED 32 with thickness d = 1.7 mm ± 0.1 mm was used to cover the Plexiglas plate
underneath the prewetted Carbopol layer, to prevent slip at both surfaces. Strong adhesion
forces between the Plexiglas and ED 32 render this layer immobile during the experiments.
For ED 8, E = 0.25 MPa, and for ED 32, E = 1.2 MPa; both have a Poisson ratio ν ≈ 0.5
(Coulais et al. 2015). To study different deformation regimes, two versions of the top sheet
of ED 8 were made, with thicknesses d = 9.5 mm ± 0.5 mm (diameter D = 600 mm)
and d = 1.5 mm ± 0.1 mm (D = 400 mm), resulting in a bending modulus of the sheets
B = Ed3/12(1 − ν2) = 0.024 N m and B = 9.4 × 10−7 N m, respectively. In addition, to
ensure our roughened elastomer minimized slip, similar measurements of the Carbopol
properties as with the striated plates were carried out, but with small circular samples of
the elastic sheets as bounding walls. Rough and smooth elastomer layers were tested to
characterize how the surface roughness affected the measurements. In figures 2(c) and
2(d), the corresponding curves for the measured shear stress and viscosity versus the shear
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Symbol n τ0 (Pa) K (Pa sn)

• 0.42 3.9 1.99
� 0.39 11.1 3.93
� 0.36 31.7 11.08
� 0.36 47.3 16.33

Table 1. Values for τ0, K and n after fitting the sample measurements from figure 2(a) with the
Herschel–Bulkley model.

Mean SD Median

Sa (μm) 30.8 8.1 27.2
Sq (μm) 38.5 9.4 35.3
Sz (μm) 134.3 27.5 121.8
Ssk (–) −0.1 0.2 0.0
Sku (–) 2.5 0.2 2.4

Table 2. Different roughness parameters measured by the profilometer. Here, we present the mean, standard
deviation (SD) and median values for five different measurements of different samples. Amplitude parameters
(Sa, Sq, Sz, Ssk and Sku) were calculated with advanced software (SensoMap Plus 4.1, Sensofar, Terrassa, Spain).
Here, Sa is the average height deviation from the mean plan, Sq is the root mean square value of ordinate values
within the defined area, Sz is defined as the sum of the largest peak height value and the largest pit depth value
within the defined area, Ssk is the surface skewness, and Sku is the surface kurtosis.

rate are plotted for Carbopol samples of the highest yield stresses with both smooth and
rough ED surfaces. Figures 2(c) and 2(d) measurements suggest that the surface roughness
reduces slip effects significantly. However, even with the rough surface configuration, the
measured yield stress still deviates from the measurement on the striated plates. We note,
however, that the form of the two curves is similar. The discrepancy can be caused by a slip
or the custom-built set-up, e.g. a slight non-uniformity in the thickness of the ED samples.
To quantify the effects of slip in our experiment, we compare experimental values using
rough or smooth sides of the sheets in § 5.2. Otherwise, rough boundaries apply to the
results reported.

Our experiment is conducted by injecting the Carbopol–water mixture through
a tube with radius rt = 2 mm, at the centre of the plate at a controlled flux
Q = 1.7, 3.3, 6.7 × 10−7 m3 s−1, using two Merck-Millipore-Sigma syringe pumps,
injecting a total volume of approximately 180 ml. A laser line is used to visualize the
sheet’s deflection h(r, t) as the blister grows in time and space, and we track the profile
with a digital camera, imaging with angle 17◦ relative to the horizontal plane. The
experimental interface profiles are obtained by fitting a Gaussian distribution to the colour
intensity along each column of pixels and extracting the mean vertical coordinate. We
define the height at the centre of the blister, h(0, t), as the maximum deformation of the
profile, and the apparent spreading radius R(t) as described in figure 1(b). For each set
of parameters, two experiments were carried out to demonstrate the reproducibility of the
results. The error bars correspond to the standard deviation of measurements with the same
parameter settings.
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3. Theoretical framework

3.1. Mathematical model
To give a theoretical description of the elastohydrodynamics of the viscoplastic intrusion,
we assume a small aspect ratio, viscous flow and axial symmetry around the injection
point, allowing us to adopt the lubrication theory. To capture the principal viscoplastic
effect, we use the Bingham model, which can be combined with the integrated lubrication
equations to derive an expression for the vertical yielding line Y(r, t) of the fluid, where
the shear stress |τrz| equals the yield stress τ0 (Liu & Mei 1989; Balmforth et al. 2000,
2006):

Y(r, t) = max

⎛
⎜⎜⎝0,

h(r, t)
2

− τ0∣∣∣∣∂p(r, t)
∂r

∣∣∣∣

⎞
⎟⎟⎠ . (3.1)

Since we have two solid surfaces, we expect the shear profile |τrz| to be symmetric, so
it will have another corresponding yielding position along z(r, t) = h(r, t) − Y(r, t). We
have a plug flow between the two yielding lines that flows with a constant speed and zero
shear rate (Balmforth & Craster 1999). We follow the standard procedure to derive the
thin film equation, where the additional term Y(r, t) appears from employing the Bingham
model for |τrz| > τ0 (Liu & Mei 1989; Oron, Davis & Bankoff 1997; Balmforth et al. 2000,
2006):

∂h(r, t)
∂t

= 1
6μr

∂

∂r

(
r Y(r, t)2(3h(r, t) − 2Y(r, t))

∂p(r, t)
∂r

)
+ w(r), (3.2)

p(r, t) = B ∇4h(r, t) + ρg (h(r, t) − z) . (3.3)

Here, we have introduced w(r) = (2Q/πr2
t )(1 − (r/rt)

2) for r ≤ rt, which is the
Poiseuille flow through the tube with radius rt, allowing us to prescribe the influx Q.
Note that a no-slip condition has been applied at both solid surfaces, and that μ is the
effective fluid viscosity. The pressure p(r, t) consists of two terms, with the first term
representing the elastic bending (Landau et al. 1986), where ∇4 is the bi-Laplacian
operator in cylindrical coordinates. The second term is the hydrostatic pressure with g the
gravitational acceleration and ρ the density of the Carbopol solution, set equal to the water
density. Note that the Föppl–von Kármán equations describe the effect of elastic stretching
of the sheet, discussed further in § 4.2, but not considered in the numerical simulations of
(3.2).

Equation (3.2) has two particularly interesting limits. If Y(r, t) = h(r, t)/2, then
Newtonian flow is recovered, and the blister grows with a height ∼ t8/22 (Lister et al.
2013). As Y(r, t) → 0, we expect a plug flow to form and the flow to be dominated by the
effects of τ0.

3.2. Numerical simulations
The experiments are complemented by numerical solutions of the axisymmetric
non-dimensional version of (3.2). The equation is discretized by linear finite elements
and an implicit time marching method (Pedersen et al. 2019). We make (3.1) and
(3.2) non-dimensional by scaling h(r, t) and r with length scale L = (B/τ0)

1/3, and
time t with time scale T = B/Qτ0, giving a non-dimensional number Π1 = B/6μQ
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in front of the first term on the right-hand side of (3.2), which describes the ratio
between elastic and viscous forces. In the simulation that includes gravity, we get another
non-dimensional number in front of the hydrostatic pressure term, Π2 = ρgB1/3/τ

4/3
0 ,

representing the ratio between elasto-gravity and the yield stress. We assume that the
shear rate will set the effective viscosity in our experiments in the regions where the
fluid is yielded, determining the viscous time scale. We estimate the effective viscosity by
assuming a parabolic velocity profile for z > h(r, t) − Y(r, t) and z < Y(r, t), and obtain
γ̇max ≈ (∂u/∂z)|z=0,z=h ∼ Q/R(t) Y(r, t)2. Setting Q ≈ 10−7 m3 s−1, R(t) ≈ 10−1 m and
Y(r, t) ≈ 10−4 m gives γ̇max ≈ 100 s−1. This is a conservative estimate for the shear
rate, and we therefore assume γ̇ ≈ 10–100 s−1 in the experiments. From the rheological
viscosity curves in figure 2, we can then estimate the effective viscosity μ ≈ 0.1–10 Pa s,
which translates to Π1 ≈ 102–104. We use an adaptive time-stepping routine with a time
step limit 	t/T = 9 × 10−6, and discretization in space 	r/L ∈ [0.00025–0.015]. We
have defined

Y(r, t) = max

⎛
⎜⎜⎝ε, h(r, t)/2 − 1∣∣∣∣ ∂

∂r
∇4h(r, t)

∣∣∣∣

⎞
⎟⎟⎠ , (3.4)

with a regularization parameter ε = 10−6 similar to that of Jalaal et al. (2021). We tested
that the results are unaffected by this choice of ε. The simulations are started with Y(r, t) =
h(r, t)/2, and the plug flow is introduced gradually until t/T = 10−4. We initialize the
profile with the shape known from the Newtonian case (Lister et al. 2013), taking the form
of a small bump,

h(r, t = 0)

L
= h0

L

(
1 −

(
4r
L

)2
)2

for r/L ≤ 1/4, (3.5)

on top of a prewetted layer h0/L = 0.007. As boundary conditions, we set the first three
odd derivatives of h(r, t) to vanish at the axis of symmetry,

∂h(r = 0, t)
∂r

= ∂3h(r = 0, t)
∂r3 = ∂5h(r = 0, t)

∂r5 = 0, (3.6)

and at the edge of the domain,

∂h(r = 3L, t)
∂r

= ∂3h(r = 3L, t)
∂r3 = ∂5h(r = 3L, t)

∂r5 = 0. (3.7)

Note that in all simulations, the domain’s boundary is far from the apparent spreading
radius and does not affect the blister dynamics, nor does the choice of the boundary
conditions at the edge (as long as they are also satisfied by the initial profile).

4. Scaling analysis

We investigate the dynamics when we have a balance between the driving pressure gradient
and the opposing fluid’s yield stress force, such that Y → 0 in (3.1). We follow Balmforth
et al. (2000), who looked at the gravitational spreading of a viscoplastic dome. An
assumption of a quasi-static equilibrium between the hydrostatic pressure gradient and the
resisting yield stress leads to Nye’s asymptotic solution (Nye 1952), and gravity-driven
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viscoplastic spreading of the dome: h(0, t) ∼ t1/5 and R(t) ∼ t2/5. New scaling laws are
described below for the cases when bending or tension in the elastic sheet sets the fluid
pressure of the viscoplastic blister.

4.1. Elastic bending regime
We describe the regime where the pressure is dominated by elastic bending, giving
p(r, t) ∼ B ∇4h(r, t). If we scale the height h(r, t) with h(0, t), and the radial direction
r with R(t), while assuming unidirectional flow from r = 0 and outwards in the limit
Y(r, t) → 0, then (3.1) gives ∂p(r, t)/∂r ∼ B h(0, t)/R(t)5 ∼ 2τ0/h(0, t). We impose
conservation of mass, where the volume V = ∫ R(t)

0 2π h(r, t) r dr ∼ h(0, t) R(t)2 ∼ Qt is
implicit in (3.2). Together, this gives the scaling laws for the blister height h(0, t) and
radius R(t):

h(0, t) ∼
(

4τ 2
0 Q5

B2

)1/9

t5/9 ∼ LT−5/9t5/9, (4.1)

R(t) ∼
(

Q2B
2τ0

)1/9

t2/9 ∼ LT−2/9t2/9. (4.2)

The length scale L = (B/τ0)
1/3 and time scale T = B/Qτ0 appear in (4.1) and (4.2),

which characterize our system.
In the limit Y(r, t) → 0, (3.1) reduces to a nonlinear ordinary differential equation

(ODE)

−d5h(r)
dr5 − 2

r
d4h(r)

dr4 + 3
r2

d3h(r)
dr3 − 3

r3
d2h(r)

dr2 + 3
r4

dh(r)
dr

= 2τ0

B h(r)
sign(h(r) − h0),

(4.3)

and the height prediction becomes independent of time, i.e. h(r, t) → h(r). By scaling h(r)
and r with L, (4.3) becomes parameter-free. Solving this (4.3) for h(r) should therefore
yield the same universal shape as obtained when scaling the blister profile with the
predicted scaling laws given by (4.1) and (4.2).

From Jalaal et al. (2021), it follows that the sign of the pressure gradient must correspond
to the sign of (h0 − h). To regularize the step function, we replace it with tanh(Θ(h0 − h))

and solve the ODE numerically using Θ = 1010, which is large enough for the solution to
be insensitive to this parameter. We aid the numerical solver by starting with a guess based
on a numerical profile from our numerical solution of (3.2). Five boundary conditions are
needed to define our problem. We choose three conditions at the centreline, where we pin
the height to the maximum height of the simulation profile hmax, i.e. h(0) = hmax, and
set the odd derivatives ∂h(0)/∂r = 0 and ∂3h(0)/∂r3 = 0 at the symmetry axis. Defining
R̃ as the radial coordinate corresponding to the minimum value hmin of the numerical
blister profile h(r, t), we apply the additional two boundary conditions h(R̃) = hmin and
∂h(R̃)/∂r = 0. We solve (4.3) with the solver Solve_bvp retrieved from the scipy package
in Python.

4.2. Elastic stretching regime
In order to predict how stretching of the sheet links to fluid pressure, we must consider
the Föppl–von Kármán equations for the deformation of an axisymmetric sheet
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(Landau et al. 1986; Lister et al. 2013; Peng et al. 2015; Pihler-Puzović et al. 2015):

B ∇4h(r, t) − ∇ · (Λ(r, t)∇h(r, t)) = p(r, t), (4.4)

1
r

∂

∂r

(
r3 ∂Λ(r, t)

∂r

)
+ Ed

2

(
∂h(r, t)

∂r

)2

= 0. (4.5)

Here, Λ(r, t) = dσrr is the tension in the sheet, where σ is the Cauchy stress tensor,
and the subscript refers to the radial stress component in the sheet. Equation (4.4) is
the momentum balance on the elastic sheet and couples the vertical sheet deflection
to the pressure exerted by the fluid, p(r, t). The second equation (4.5) describes
the force balance along the radial direction of the sheet and is used to obtain
the tension Λ(r, t). If we consider intrusion processes where h(0, t) 	 d, then the
term p(r, t) ∼ (1/r)(∂/∂r)(r Λ(r, t) ∂h(r, t)/∂r) dominates the pressure. By scaling the
pressure gradient with the tension from elastic stretching of the sheet, (3.1) in the limit
Y → 0 now gives ∂p(r, t)/∂r ∼ Λ(r, t) h(0, t)/R(t)3 ∼ 2τ0/h(0, t). From (4.5), we obtain
a scaling for the tension in the sheet, Λ(r, t) ∼ Ed/2(h(0, t)/R(t))2. Combining this
with conservation of the blister’s mass, the regime governed by the balance between the
stretching of the elastic sheet and the opposing yield stress reads

h(0, t) ∼
(

16τ 2
0 Q5

(Ed)2

)1/13

t5/13 ∼ LΛT−5/13
Λ t5/13, (4.6)

R(t) ∼
(

EdQ4

4τ0

)1/13

t4/13 ∼ LΛT−4/13
Λ t4/13. (4.7)

This scaling yields new length and time scales LΛ = Ed/τ0 and TΛ = (Ed)3/τ 3
0 Q . In

the limit as Y → 0, (3.1) becomes

d
dr

(
1
r

d
dr

(
r Λ(r)

dh
dr

))
= 2τ0

h(r)
sign(h(r) − h0). (4.8)

In the case when the stretching of the sheet is isotropic, the equation takes the form similar
to an arrested viscoplastic droplet (Jalaal et al. 2021), with Λ then interpreted as the surface
tension coefficient.

5. Results

5.1. Elastic bending
We use the blister’s maximal height h(0, t) as a metric to test the predictions from (4.1)
and (4.2). In these experiments, we use the thick membrane (d = 9.5 mm) with bending
stiffness B = 0.024 N m. Thus we can consider small deformations compared with the
sheet thickness (h(0, t) ≤ d), similar to those estimated in natural sills and laccoliths
(e.g. Castro et al. 2016; Magee et al. 2016), and we expect the elastic bending pressure
to dominate the tension in the sheet. The spatiotemporal growths of the blister for two
Carbopol solutions, τ0 = 3.9 Pa and 47.3 Pa, are shown in figure 3(a). A distinct effect of
τ0 on the growth of the blister’s apparent radius R(t) and its height at the centre h(0, t) is
observed.

To explore further the effects of the yield stress and the influx on the dynamics, we
vary these parameters systematically while keeping the bending stiffness fixed. Figure 3(b)
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Figure 3. (a) Experimental profiles h(r, t) of the elastic sheet at t = 100, 200, 300 s when injecting a fluid
with low (τ0 = 3.9 Pa) and high (τ0 = 47.3 Pa) yield stresses between the rough surfaces. (b) Plots of the
experimental results with the rough surfaces for the blister height h(0, t) − h0 for different yield stresses τ0 and
fluxes Q. (c) Results from (b) scaled by the length L = (B/τ0)

1/3 and the time T = B/Qτ0 while comparing
with the numerical simulations of the non-dimensional version of (3.2). The black dash-dotted line shows the
derived scaling law of (4.1), where we have determined α = 0.35.

shows how h(0, t) is affected by τ0 and Q. To see these effects clearly, the experimental
data can be rescaled by h(0, t)/L and t/T , as shown in figure 3(c). By scaling the data in
figure 3(b), we notice that it collapses onto a single curve in figure 3(c), which has a slope
in agreement with the proposed scaling law of (4.1).

The results of the numerical simulations based on (3.2) and (3.3) are plotted together
with the experimental data in figure 3(c). These results show how the blistering growth is
relatively insensitive to the non-dimensional numbers Π1 and Π2, and recover the scaling
law from (4.1). The time shift separating the experiments and the simulations (a factor of
1.33 in time) can be caused by a combination of small slip effects, the simplified influx
condition, or the minimal rheological model that we use to describe the Carbopol solutions
(Coussot 2014). As shown in figure 2, the Carbopol solutions are shear-thinning fluids,
and our samples are well fitted with a Herschel–Bulkley model using n ≈ 0.4. In our
mathematical model, we neglect this shear-thinning effect, assuming the viscosity to be
constant, which serves as a source for error.

Next, we check if the interfacial dynamics of the blister adopts a self-similar shape
by using the predicted scaling laws (4.2) and (4.1) to rescale the height profiles.
Figures 4(a)–4(d) show the experimental blister’s evolution in time for four experiments
when injecting fluids of different yield stress. In figures 4(e)–4(h), we scale h(r, t)/h(0, t)
with h(0, t) as predicted by (4.1), and r/R(t) with R(t) given by (4.2). It is clear from
scaling the experimental blister profiles that they collapse onto what appears to be a
universal shape that becomes increasingly apparent as τ0 increases.

In figure 5(a), we show two numerical profiles at different time instants, and their
corresponding yielding lines (dashed lines) from (3.1). A significant part of the fluid
volume is between the yielding lines and moves as a plug flow, while the yielded flow
with a viscous gradient is limited to narrow regions. For a shear-thinning fluid, the
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Figure 4. (a–d) Plots of four experimental blister profiles from t = 136 s to t = 376 s, with time interval 80 s
between each profile, for the different yield stress values with rough surfaces. (e–h) Experimental profiles
collapsed into a self-similar shape scaling, with the time T and length L from (4.1) and (4.2).

viscosity and the resistance to the flow will decrease in the small pockets close to the
boundaries because of the high shear rate. Therefore, including shear-thinning effects in
the viscosity could facilitate more fluid flowing radially inside the blister, leading to an
even closer agreement with the experiments. We note that despite the simplification in
the mathematical model, the simulations capture the elastohydrodynamic growth of the
blister well, and the results show consistency concerning the scaling laws from (4.1) and
(4.2), and the proposed physical picture based on a plug flow. In figure 5(b), we collapse
nine numerical profiles in between these two time instants (t/T = 0.12–0.3) onto the
universal shape by scaling the height profiles and the radial coordinate with (4.1) and (4.2),
respectively. Apparent time independence of the shape is demonstrated. Furthermore, as
shown in figure 5(c), the blister shape predicted by (4.3) is in excellent agreement with the
profiles from experiments and the numerical model, normalized with

hmax = (h(0, t) − h0)T5/9

Lt5/9 and rmax = R(t) T2/9

Lt2/9 . (5.1a,b)

This suggests that the blister attains the self-similar shape.

5.2. Elastic bending: slip effect
To address the effect of slip in our experiment, we made a set of experiments with
Carbopol–water mixtures of the lowest and highest yield stress on both rough and smooth
surfaces, with B = 0.024 Nm of the overlying elastic sheet, and Q = 3.3 × 10−7m3 s−1.
In figure 6(a), we show the results from these experiments in terms of h(0, t) versus time,
demonstrating that preventing slip by introducing a rough surface causes a significant
increase in the maximum deformation for the high yield stress fluid. Slip decreases the
resistance of the fluid along the walls, allowing for faster radial fluid flow in the blister.
The effect of slip is less apparent for fluids of lower yield stress. In figure 6(b), we plot the
data of figure 6(a) using logarithmic axes, and show that the power law is still recovered
when there is slip at the surfaces, implying that only the time shift and not the power-law
growth is a consequence of slip. Moreover, this further strengthens our argument that the
dynamics is dominated by plug flow.
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Figure 5. (a) Blister profiles extracted from the numerical simulations based on the non-dimensional version
of (3.2) with Π1 = 1000. Dashed lines for each profile represent the corresponding non-dimensional yield
limits Y(r, t)/L and (h(r, t) − Y(r, t))/L; plug flow occurs in between the yield lines. (b) Two profiles
from (a) collapsed together with nine profiles in between t/T = 0.12 and t/T = 0.3 by scaling with the
time dependence of (4.1) and (4.2), which reveals the time-independent shape. (c) Normalization of our
experimental and numerical similarity profiles from figures 4(h) and 5(b) (11 profiles for t/T ∈ [0.12–0.3])
by using hmax = (h(0, t) − h0)T5/9/Lt5/9 and rmax = R(t) T2/9/Lt2/9, where L = (B/τ0)

1/3 and T = B/Qτ0.
The self-similar shape is described by the solution of the non-dimensional form of (4.3).
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with different yield stress. (b) Results show that slip clearly introduces a time shift with respect to the results on
the no-slip surfaces, but that the bending regime discovered in § 4.1 is still recovered. The marker configuration
in (a) also applies in (b).
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Figure 7. (a) Plots of h(0, t) in experiments with rough walls (experimental parameters d = 1.5 mm, E =
0.25 MPa, B = 9.4 × 10−7 N m, Q = 3.3 × 10−7 m3 s−1 and τ0 = 47.3 Pa), h(0, t) 	 d, together with the
scaling law in (4.6), where we have determined β = 0.67. (b) Plots of four experimental blister profiles from t =
80 s to t = 200 s with time interval 40 s between each profile. (c) The self-similarity is shown by rescaling the
horizontal and vertical axis of the experimental profiles using the scaling laws in (4.7) and (4.6), respectively.
The results are non-dimensionalized using ŁΛ = Ed/τ0 and TΛ = (Ed)3/τ 3

0 Q.

5.3. Elastic stretching
Next, we investigate experimentally the limit when the tension dominates elastic bending,
h(0, t) 	 d, in the elastic sheet. The thin elastic sheet has thickness d = 1.5 mm and
Young’s modulus E = 0.25 MPa, giving bending stiffness B = 9.4 × 10−7 Nm. The influx
Q = 3.3 × 10−7 m3s−1 and the yield stress τ0 = 47.3 Pa are also used. The deformation
of the sheet in the experiments reaches h(0, t) ≈ 10d. In figure 7(a), the scaling prediction
from tension given by (4.6) is recovered, also demonstrated by the collapse of experimental
profiles from figures 7(b) and 7(c), when scaling the vertical and horizontal coordinates
with the respective time dependencies from (4.6) and (4.7). The shape of the profiles in
figure 7(c) is in close agreement with the shape from the ODE describing an arrested
viscoplastic droplet as solved by Jalaal et al. (2021) and discussed in § 4.2, which would
hold only if the tension in the sheet is close to isotropic (∂Λ/∂r ≈ 0).

6. Conclusion

The intrusion of flowing matter with complex rheological properties underneath an elastic
layer or inside an elastic matrix appears in many geological processes. Both nonlinear
magma plug flow (Morgan et al. 2008) and viscoplastic deformation of magma intrusions
in host rocks (Galland et al. 2019) have been documented to play a key role in magma
emplacement in the Earth’s crust. Our study quantifies the dynamics of a viscoplastic
blister’s growth underneath an elastic sheet when the pressure is dominated by bending or
stretching of the sheet; see table 3. The blister adopts a self-similar quasi-static shape in
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Regime Apparent radius Blister height

Bending R(t) ∼
(

Q2B
2τ0

)1/9

t2/9 h(0, t) ∼
(

4τ 2
0 Q5

B2

)1/9

t5/9

Stretching R(t) ∼
(

EdQ4

4τ0

)1/13

t4/13 h(0, t) ∼
(

16τ 2
0 Q5

(Ed)2

)1/13

t5/13

Table 3. Summary of the elastoviscoplastic growth regimes of the blister with the influx Q, sheet thickness d,
bending modulus B, Young’s modulus E and yield stress τ0.

time that is set by the balance between the pressure gradient induced by the deformation
of the elastic sheet and the yield stress of the intruding fluid, independent of the slip
in the system. The experimental results have a time shift with respect to the numerical
simulations. This time shift could result from our use of the Bingham model, a simplified
rheological model that neglects shear-thinning effects, or some remaining slip in our
experimental system that would also lead to faster radial growth of the blister. These
results point to how the growth of geological structures such as sills and laccoliths may
exhibit distinct dynamics from those predicted by a Newtonian model if the intruding
fluid can support critical stress before starting to flow. Our work gives a first look at the
elastohydrodynamics of a growing viscoplastic blister. Clearly, however, there are many
more configurations that remain to be studied, for instance, additional non-Newtonian
effects in the bulk and the elastic sheet (Ball & Balmforth 2021), or a combination of
the yield stress intrusion model with an elastic fracture toughness at the tip.
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