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ON THE FACTORIZATION OF PARTIAL 
DIFFERENTIAL EQUATIONS 

W. DALE BROWNAWELL 

1. Introduction and statement of results. In [4] N. Steinmetz used 
Nevanlinna theory to establish remarkably versatile theorems on the 
factorization of ordinary differential equations which implied numerous 
previous results of various authors. (Here factorization is taken in the 
sense of function composition as introduced by F. Gross in [2].) The thrust 
of Steinmetz' central results on factorization is that if g(z) is entire and 
f(z) is meromorphic in C such that the composite fog satisfies an 
algebraic differential equation, then so do f(z) and, degenerate cases 
aside, g(z). In addition, the more one knows about the equation for fog 
(e.g. degree, weight, autonomy), the more one can conclude about the 
equations for / and g. 

In this note we generalize Steinmetz' work to show the following: 
a) Steinmetz' two basic results, Satz 1 and Korollar 1 of [4] can be seen 

as one-variable specializations of a single two variable result, and 
b) the function g(z) can itself be allowed to be a function of several 

variables. 
The recursive scheme of proof remains as in [4], but we apply 

Nevanlinna theory for functions of several variables, especially the 
beautiful results of A. Vitter [5] establishing the full several variables 
analogues of the Lemma of the Logarithmic Derivative and the Second 
Main Theorem, along with the Defect Relation. 

Our results on the factorization of differential equations will follow 
from a theorem which does not explicitly involve differentiation. 
Nevertheless let us state our results in increasing generality in order to 
illustrate the use of the central result. First of all, we make specific what 
we mean by an algebraic differential equation. For a meromorphic 
function h on an open set in Cw, a differential polynomial QJh in h is a 
polynomial in the variables zl5 . . . , zn and h and the derivatives (partial if 
n > 1) of h. &h will be called autonomous if none of zl9 . . . , zn is involved 
in Qfo and trivial if, as an ordinary polynomial, @h = 0. A differential 
polynomial which is a product of a polynomial in zl5 . . . , zn with a power 
product of h and its derivatives will be called a differential monomial in h. 
A (non-trivial) algebraic differential equation for h is simply an equation of 
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the form Qfo = 0, where 3h is a (non-trivial) differential polynomial in h. 
The equation will be said to be autonomous or trivial if Qfo is autonomous 
or trivial. The main content of Satz 3 and Satz 5 of [4] is given by the case 
n = 1 in the following result, where we write, e.g., Mf\ for the composite 
(Mf) o g. 

THEOREM 1. Let f:C —» P be meromorphic and g:Cn —-» C be entire 
and non-constant. Let the composite f o g:C —» P satisfy the algebraic 
differential equation 

(1) Sh = 0. 

i) If we can write 

K 

(2) 9(fo g) = 2 Mkf\g • Skg9 
k = \ 

with Mkf distinct autonomous differential monomials in f and 8kg non-zero 
differential polynomials in g, k = 1, . . . , K, then f satisfies a non-trivial 
algebraic differential equation of the form 

K 

(3) Se J = 2 ak-Mkf= 0, 
A = l 

with the ak polynomials in the variable off. 
ii) If we can write 

K 

(4) 3{fo g) = 2 *kf\g ' mkg, 
k = \ 

with mkg distinct differential monomials in g and &kf non-zero autonomous 
differential polynomials in f k = 1, . . . , K, then g satisfies a non-trivial 
algebraic differential equation of the form 

K 

(5) ^ g = - 2 bk(g)'mkg = 0, 
* = i 

with the bk polynomials. 

The condition of i) is automatically fulfilled by non-trivial differential 
polynomials Q) when n = 1, as is pointed out in the proof of Satz 2 of [4]. 
To see that for n > 1 some restriction is necessary to obtain non-trivial 
information on / , it suffices to consider the differential equation 

_^L _ ^L - o 

8zj dz2 

which is satisfied by the function h{zx, z2) = f(zx -f z2) for any 
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meromorphic / . Thus when we view h as a composite of / with 
g(zx, z2) = Z] -h z2, we see that in the representation (2), 

K=l, Mj=f, and fi,g = | * - | i = 0. 
dZ] dz 2 

So the non-vanishing of the coefficients 8kg of distinct monomials Mkfm 
(2) is a natural condition from which to conclude anything in particular 
about / . 

The condition of ii) is often satisfied, but it is not automatic even when 
n = 1. (See the Zusatzbedingung for Satz 5 of [4].) The degree of the 
polynomials ak and bk can be bounded above in terms of the degrees of 
the differential monomials in (2) and (4) (see the Supplement to Theorem 
3 below and the proof of Theorem 1). Finding applications is clearly a 
matter of determining natural conditions under which the hypothesis i) or 
ii) is satisfied, a question we shall not pursue here. The preceding result is 
obviously implied by the following more general result, where we let w 
denote the variable for / , i.e., / = / (w) , and z = (zb . . . , zn) denote the 
variables for g, i.e., g = g(z). 

THEOREM 2. Let f g be as in Theorem 1. For i = 1, . . . , K, let Dtf and 
A.g denote pairs of non-trivial differential polynomials infandg, respectively, 
satisfying 

(6) Dj\gAlg + ... + DKf\^Kg = 0. 

Then there exist polynomials Ai:(x, y) e C[x, y], 1 = /, j = K, and a 
non-zero polynomial A(x) such that 

K 

a) 2 Ayigiz), w)(Dlf(w))(àJ(g(z)) = 0, 

b) Ayix, x) = SyA(x)9 

where 8-- denotes the Kronecker delta function, 1 = /*, j = K. 

Condition b) shows that when we set w = g(z), then equation a) 
becomes equation (6) multiplied by a non-zero polynomial in g(z). Thus, 
since g(z) is not a constant, equation (6) is simply a specialization of 
a more general partial differential equation satisfied jointly by f(w) 
and g(z). 

To state our general result, we use the Nevalinna characteristic function 
T(h, r) defined for meromorphic functions h on Cn. For a careful 
exposition of most of the basic properties, we refer the reader to [3]. Here 
S(h, r) denotes a positive function of r ^ 0 such that S(h, r) = o(T(h, r) ) 
outside an exceptional set of r's of finite measure. 
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THEOREM 3. Let Fu . . . , FK:C -> P and hl9 . . . , hK:Cn -> P be 
meromorphic functions, none of which is identically zero. Let g\Cn —> C be a 
non-constant entire function. For some C > 0 suppose that the characteristic 
functions satisfy 

K 

2 T(hk, r) ^ CT(g, r) + S(g, r). 
* = i 

/ / 

(7) (F,og)A, + . . . + (FKog)hK = 0, 

then there exist polynomials 0 ^ A(x) e C[x] and Ai-(x9 y) e C[x, _y], 
1 ^ i, j ^ AT, swc/z that 

(8) 2 4y(g(z), w)^(w)/z/z) = 0 

and 

Aij(*> x) = 8ijA(xX 

1 ^ /', j ^ AT, where 8 - denotes the Kronecker delta function. 

We have then immediately the following corollary: 

COROLLARY 1. Under the above hypotheses, 
i) there exist non-zero polynomials P\(x), . . . , PK(x) such that 

(9) Px(g)hx + . . . + Ptffe)** = 0, 

ii) there exist non-zero polynomials Q\(x), . . . , QK(x) such that 

(10) QXFX + . . . + Q ^ = 0. 

The case n = 1 of part i) is the central Satz 1 of [4], and the case n = 1 
of part ii) is Korollar 1 of [4]. To prove (9), we need only select a in the 
range of g(z) such that A(a) ¥= 0 and each Ft(a) ¥= 0. Then we set 

K 

Pj(x) = 2 Atj(x9 a)Fl(a)9 
/ = i 

for y = 1, . . . , K. Now ^ ( x ) ^ 0,7 = 1, . . . , K9 for when g(z') = a, 

i>(g(z ' )) = ^ ( f l ) ^ ( f l ) * 0 , 

by our choice of a. Similarly when we choose b e Cn such that 
A(g(h) ) ^ 0 and each /zz(b) ^ 0 and set 

Qt(x) = 2 ^ ( g ( b ) , x)/2y(b), 
7 = 1 
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l ^ i ^ K, then 

e,.(g(b)) =A(g(b))hl(b) * 0 . 

2. Proof of Theorem 3. 

A. The Auxiliary Functions HK. Let /1? t2, . . . be a sequence of new 
parameters. We construct for /c = 1, 2 , . . . , an auxiliary function 

TJ/ ^ 2 AIJK(g(z), w)Fi(w)hJ(z) 

(g(z) - / , ) . . . (g(z) - tK_x)(g(z)- w) 

where the sum runs over all 1 ^ /', j = K. We carry out this construction 
inductively in such a fashion that the At- have coefficients which are 
meromorphic functions of tl9. . . , tK_] and moreover 

(11) dcgxAlJK(x,y)^K - 1 -
1 

K 

I with strict inequality for j < K — 1 — I, 

(12) degy AIJK ^ K - \ , 

and 

(13) AijK(x, x) = 80.AjLx), 

1 ^ i, j ^ ^ , for a non-zero polynomial AK(x), whose coefficients are 
meromorphic functions of fl5 . . . , tK_x. Let 

(14) PK(z, w) = 2 ^yK(g(z), w ^ w ^ / z ) 
'J 

designate the numerator of HK(z, w). Then HK(z, w) will satisfy the 
additional vanishing condition: Whenever the denominator 

(g(z) - tx)...(g(z) - tK^\g(z) - w) 

vanishes, then so does the numerator PK(z, w). 
i) Case K = 1. We simply set A^x, y) = 8^, so that 

Fx(w)hx(z) + . . . + F , (w)Mz) 
#i(z, w) -

g(z) 

Conditions (11)-(14) hold trivially. The vanishing condition on Pj(z, w) is 
implied directly by equation (7). 

ii) Inductive construction of 7/K+1(z, w). Assume that HK(z, w) has been 
constructed as in (11)-(14) satisfying the additional vanishing condition as 
well. We may assume that th . . . , /K_ b w are fixed in general position. If 
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//K(z, w) = 0, then set the Aij-X+X := Aijx. If HK(z, w) ^ 0, then some 
expression of the form 

(15) 2 ^ K t e ( z ) , w ) ) F ; ( w ) 
i 

j = I, ... ,K, is not identically zero. Let cK(w) denote the non-zero co
efficient of the highest power of g(z) occurring in any expression (15), 
when it is considered simply as a polynomial in g(z). If the highest power 
of g(z) occurs in more than one term of the form (15), then choose the 
expression withy minimal, say j = jK. Then cK(w) can be expressed as 

cK(w) = LKX(W)FX(W) + . . . + LKK(W)FK(W), 

where by (12) the LKi are polynomials in w, not all zero, of degree at most 
K — 1 whose coefficients are meromorphic functions of tx, . . . , tK_x. Then 
define for 1 ^ i,j ^ K, the numerator of 7/K+1(z, w) by setting 

Aij,K+\<&(*)> w) ' = 

cK(tK)(g(z) - tK)AlJK(g(z)> H0 - LKZ(w)(g(z) - w) 

X 2 AljK(g(z\ QFi(tK\ 
i 

by dropping terms in Aijx(g(z)9 w) that cancel in (15), we may assume that 
no higher power of g(z) occurs in any Aijx(g(z), w) so that 

(16) PK+1(z, w) = cK(tK)(g(z) - QPK(z9 w) - cK(w)(g(z) - w)PK(z, tK) 

and 

7/K+1(z, w) = cK(tK)HK(z, w) - cK(w)HK(z, tK). 

Then collecting coefficients of powers of g(z) shows that 

deSxAij,K+\(*>y) = l + d e g ^ ^ j c , ^ ) , 

with strict inequality fory' = jK. Thus (11) holds by induction. Inequality 
(12) follows even more easily. Equation (14) is straightforward from (16). 
In fact it is easily seen from the definition of A-K+x by induction that 

K 

AK+X(x) = UcjitjXx - tj). 

Therefore AK+X(g(z)) is, up to the factor ( I I Cj(tj))/(g(z) — w), the 
denominator of //K+1(z, w). 

Thus when the denominator of 7/K+1(z, w) vanishes because g(z) = /K, 
then by induction PK(z, tx) = 0 and by (16), 

PK+I(z, w) = 0. 

Using this fact inductively for lower indices as well, we see from (16) 
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that when g(z) = tjj = 1 , . . . , /c, then PK+\(z, w) = 0. On the other hand, 
when g(z) = w, then by the definition of the ^ K + 1 , (14) and (7), we see 
that 

Ji+ i fe w) = 2 ^ l > > + i (gW, g(z))/)(g(z))/27(z) 

= ^ l c + 1 (g(z) )2^ te(z) )A / (z ) 

- 0. 

Consequently the vanishing condition holds as well for /̂ - K+1(z, w). 

B. Vanishing ofHK, K = K0. We will show that from some index K0 on, all 
HK(z, w) = 0. Fix K. If HK(z, w) = 0, then there is nothing to show. 
Otherwise we may fix t}, . . . , tK_]9 tK := w in general position. Thus in 
particular the AijK(g(z), tK) are polynomials in g(z), not all zero, and 
(7j, . . . , tK_x) lies off the divisor of poles of the coefficients of the 
AjjK(x, y). For the moment let the integer q ^ (K — \)/K be arbitrary and 
define 

F(Z) = n (g(z> - 0, 
.7 = 1 

G(z) = HK(z, tk)F(z). 

Then by the First Main Theorem of Nevanlinna theory (Theorem 2.7 of 
[3] ), we know that for any t e P, 

T(h, r) = Nh(t9 r) + »iA(f, r) + O(l) 

= r(l / /z, r) + 0(1). 

Thus 

(17) qT(g9 r) = T(F, r) + 0(1) 

= T(G///K, r) + 0(1) 

= T(G, r) + T(HK, r) + 0(1). 

We remark that the vanishing condition on Pk(z9 tk) shows that the 
numerators of G and HK vanish whenever g(z) = /y, j = 1, . . . , /c. Thus 
the multiplicities of points actually on the divisor of poles of G or HK 

which come from the zeros of I I (g(z) — O are reduced by at least one 
from their multiplicities on the latter. Hence for the counting functions of 
the divisors of poles, we have the inequality 

K 

(18) NG(oo, r) + NH(po, r) ^ 2N(Rg, r) + 2 2 JVA(oo, r). 
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To estimate the proximity functions, we note that since 

Tic - 1 
d eg* AUK(X> O = K - l 

K = K ~ q* 

the quotients 

AijK\X, tK) At:K{X, tK) 
— and — 

n (x - tj) U(x - tj) 
7=<7+l 7 = 1 

are uniformly bounded for \x — t\ ^ l,j = 1, . . . , K. Thus 

(19) mG(oo, r) + mH(oo, r) 

K K 

^ 2 2 mJt:9 r) + 2 2 mh{oo9 r) + O(l). 

From (17), (18), (19), it follows that 

qT(g, r) 

K K 

^ 2 2 mJt:, r) + 2/V(K , r) + 2 2 m^ (oo, r) + (9(1). 
7 = 1 7 = 1 J 

Then by the hypotheses of Theorem 3, 

K 

(20) ^ ( g , r) ^ 2 2 /ng(f,, r) + 2/V(^, r) + 2C7Xg, r) + S(g, r). 
7 = 1 

The Second Fundamental Theorem (e.g., Theorem 3.1 of [3] for the 
version without an extraneous 0(log r) ) says that for any distinct 
tx, . . . , ts, even if g were only meromorphic, 

s 

2 Ng(tj9 r)^(s - 2)T(g, r) + N(Rg9 r) + S(g, r), 
7 = 1 

where /£ is the ramification divisor of g, which counts each point of C" 
with one less multiplicity that the multiplicity of the value of g there. Thus 
in the standard way one has the Defect Relation 

s 

2T(g, r) ÏÏ 2 mg{tj, r) + N(Rg, r) + S(g, r). 

When we apply this inequality to (20) with s = K, we find that 

qT(g, r) ê 4T(g, r) + 2CT(g, r) + S(g, r). 
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Thus 

(21) q ^ 2C + 4. 

The only assumptions used in the derivation of this inequality were that 
HK(z, tK) =£ 0 and that q ^k (K — \)/K. Thus as soon as 

(22) K ^ [2C]K + 5K + \, 

we can choose 

q = [^~-] = t2Cl + 5' 
to contradict (21). Consequently for K this large, we must have 

HK(z, w) = 0 

as a function of z. Since this holds for a generic choice of w, //K(z, w) 
vanishes identically as a function of z and w, as was to be shown to 
establish Theorem 3. 

In fact the proof provides quantitative information. 

SUPPLEMENT. In Theorem 3, we may take 

dcgx Aijfay) ^ [ 2 C + 5](K- 1), 

degv Atj{x9 y) ^ [2C + 5]K. 

Proof. Choose K = [2C]AT + 5 + 1 in (22). Then the first inequality 
follows from (11) and the second from (12). 

3. Proof of theorem 2. In order to deduce Theorem 2 from Theorem 3, 
we apply A. Vitter's generalization [5] of the Lemma of the Logarithmic 
Derivative to functions of n variables in a version without an extra term 
involving log r (e.g., Theorem 3.11 of [3] ). This result shows that for any 
non-constant meromorphic function h:Cn —> P and for any first order 
partial derivative Sh, the proximity function satisfies 

m8h/h(°°> r) = S(h> >*)• 

It follows that 

m8h(oo, r) ^ mh(oo, r) + S(h, r). 

Moreover it is clear that the counting function for the divisor of poles 
satisfies 

% ( o o , r) tk 2Nh(oo, r). 

Consequently 

T(8h, r) ^ 27\/z, r). 
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This together with the usual virtual subadditivity of m and TV for sums and 
products shows that in the situation of Theorem 2, 

T(A/g, r) fk CjT{g, r) + S(g, r), 

where c- is the maximal weight of any monomial in A g occurring. Thus the 
hypotheses of Theorem 3 are satisfied with h = A g for an 
easily calculated C > 0, and Theorem 2 follows. 

It would be very interesting to have quantitative versions of, say, 
Theorem 1. In particular, the first part of that theorem says that if (3) is 
impossible, then so is (2). A quantitative version would say that if the 
characteristic function for the left side of (3) is large for every non-trivial 
choice of ak's, then the characteristic function of any related left-hand side 
of (2) must also be large. For example, is it true that for every 
transcendental g, whenever 3) and 3)x are related as in (2) and (3), then we 
must have 

7 X % / » = o ( W o g ) , r ) ) , / / 

where / / allows a possible exceptional set of r's of finite total length? 
Similarly is it true that if / i s transcendental, then 

T r ( % r ) = o ( r ( S ( / o g ) , r ) ) / / 

whenever 3 and 32 are related as in (4) and (5)? At least is the ratio of the 
right- to left-hand sides unbounded for transcendental / , g? 

I would like to thank B. Shiffman for his helpful comments. After the 
above questions were posed in the original version of this paper, 
C. A. Berenstein kindly advised me of very recent quantitative results 
by C.-T. Chuang and C. C. Yang [1] in the case of linear differential 
operators. 
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