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FINITE-DIMENSIONAL DISTRIBUTIONS
OF A SQUARE-ROOT DIFFUSION

MICHAEL B. GORDY,∗ Federal Reserve Board

Abstract

We derive multivariate moment generating functions for the conditional and stationary
distributions of a discrete sample path of n observations of a square-root diffusion
(CIR) process, X(t). For any fixed vector of observation times t1, . . . , tn, we find
the conditional joint distribution of (X(t1), . . . , X(tn)) is a multivariate noncentral
chi-squared distribution and the stationary joint distribution is a Krishnamoorthy–
Parthasarathy multivariate gamma distribution. Multivariate cumulants of the stationary
distribution have a simple and computationally tractable expression. We also obtain
the moment generating function for the increment X(t + δ) − X(t), and show that the
increment is equivalent in distribution to a scaled difference of two independent draws
from a gamma distribution.
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1. Introduction

Let Xt be a one-dimensional Feller (1951) square-root diffusion process with stochastic
differential equation

dXt = (μ− κXt) dt + σ
√
Xt dWt,

whereWt is a Brownian motion. We assume that μ > 0 to ensure thatXt remains nonnegative.
This process is widely used in economics and finance, especially in modeling interest rates and
corporate credit risk, where it is usually known as the CIR process (Cox et al. (1985)). In this
paper we derive moment generating functions for the conditional and stationary multivariate
distributions of a discrete sample path of this process.

Let X ≡ (X(t1), . . . , X(tn)) be a discrete sample path for a given vector of ordered
observation times t1 < t2 < . . . < tn. In Section 2 we derive the conditional joint moment
generating function for X given X(t0) for t0 < t1, and show that the conditional distribution is
a multivariate noncentral chi-squared distribution of the type studied by Jensen (1969).

If we impose κ > 0, then Xt is stationary. In Section 3 we demonstrate that the stationary
distribution of X is a Krishnamoorthy–Parthasarathy (1951) multivariate gamma distribution.
(When 4μ/σ 2 > n− 1, X can also be represented as the diagonal vector of aWishart matrix (see
Kotz et al. (2000, Section 48.3.3)). Series solutions for the density and cumulative distribution
functions are given by Royen (1994) for a restricted class of the Krishnamoorthy–Parthasarathy
distribution. We demonstrate that the distribution of X falls within this class. We also provide
a simple and computationally tractable solution for the multivariate cumulants.
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Finite-dimensional distributions of a square-root diffusion 931

In the n = 2 case, the stationary distribution is a Kibble–Moran bivariate gamma distribution
(see Kotz (2000, Section 48.2.3))). In Section 4 we study the stationary distribution of the
increment X(t + δ)− X(t) for a fixed time-step δ. We show that this increment is equivalent
in distribution to a scaled difference between two independent gamma variates and provide
a simple closed-form solution for the moments of this distribution. Other applications are
discussed in Section 5.

2. Conditional finite-dimensional distribution

We derive the conditional moment generating function (MGF) MX(u | X(t0)) for X given
X(t0), where u denotes the vector of auxiliary variables u1, . . . , un. We assume X(t0) ≥ 0.
It is well known that the transition distribution for X(t + δ) given X(t) is a scaled noncentral
chi-squared distribution (e.g. Alfonsi (2010)). Letting Mc denote the conditional MGF for
X(t + δ) given X(t), we have

Mc(u; δ, x) = E[exp(uX(t + δ)) | X(t)] = (1 − θu)−2μ/σ 2
exp

(
e−κδu
1 − θu

X(t)

)
,

where

θ =

⎧⎪⎪⎨
⎪⎪⎩
σ 2

2
δ if κ = 0,

σ 2

2κ
(1 − exp(−κδ)) otherwise.

As the square-root diffusion is a Markov process, we have

E[exp(ukX(tk)) | X(tk−1),X(tk−2), . . . , X(t1),X(t0)] = E[exp(ukX(tk)) | X(tk−1)]
= Mc(uk; tk − tk−1, X(tk−1))

for k = 1, . . . , n. For notational convenience, we define ρi,j = exp(−κ|ti − tj |) and

θi,j =

⎧⎪⎪⎨
⎪⎪⎩
σ 2

2
|ti − tj | if κ = 0,

σ 2

2κ
(1 − ρi,j ) otherwise

for (i, j) ∈ {0, 1, . . . , n}2. We write MX in nested form

MX(u | X(t0))
= E[exp(〈u,X〉) | X(t0)]

= E

[
exp

(n−1∑
k=1

ukX(tk)

)
Mc(un; tn − tn−1, X(tn−1)) | X(t0)

]

= (1 − θn−1,nun)
−2μ/σ 2

E

[
exp

(n−2∑
k=1

ukX(tk)

)

× E

[
exp(un−1X(tn−1)) exp

(
ρn−1,nun

1 − θn−1,nun
X(tn−1)

) ∣∣∣∣ X(tn−2)

] ∣∣∣∣ X(t0)
]

= (1 − θn−1,nun)
−2μ/σ 2

E

[
exp

(n−2∑
k=1

ukX(tk)

)
Mc(ũn−1; tn−1 − tn−2, X(tn−2)) | X(t0)

]
,
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where
ũn−1 = un−1 + ρn−1,nun

1 − θn−1,nun
.

Repeating this process n times in total, we obtain

MX(u | X(t0)) =
[ n∏
k=1

(1 − θk−1,kũk)

]−2μ/σ 2

exp(ũ0X(t0)), (2.1)

where the modified auxiliary variables have the forward recursive relationship

ũk = uk + ρk,k+1ũk+1

1 − θk,k+1ũk+1
(2.2)

for k = 0, . . . , n and where we fix u0 = 0 and ũn+1 = 0.
We will express (2.1) in a compact matrix form. We first establish the notation and prelimi-

nary results. A vector a of length m is positive-decreasing if a1 > a2 > · · · > am > 0.

Definition 2.1. (Correlation matrix generated by a.) Given a positive-decreasing vector a of
length m, let C(a) be the m×m matrix with elements

C(a)[i, j ] = amax{i,j}
amin{i,j}

.

The matrix C(a) is a one-pair matrix in the sense of Gantmacher and Kreı̆n (see Vandebril
et al. (2010, Definition 3.11)), which leads to the following properties.

Lemma 2.1. If vector a of length m is positive-decreasing then

(i) the determinant of C(a) is

det(C(a)) =
m−1∏
k=1

(1 − C(a)[k, k + 1]2) =
m−1∏
k=1

(
1 − a2

k+1

a2
k

)
> 0;

(ii) the inverse of C(a) is a symmetric tridiagonal matrix with nonzero elements

C(a)−1[k, k] = a2
k (a

2
k−1 − a2

k+1)

(a2
k−1 − a2

k )(a
2
k − a2

k+1)

C(a)−1[k, k + 1] = C(a)−1[k + 1, k] = −akak+1

a2
k − a2

k+1

;

where, for notational convenience, we define a0 = ∞ and am+1 = 0, and

(iii) the product aC(a)−1 is a vector with first element a1 and zero remaining elements.

Proof. The expression for the determinant (i) follows directly from Proposition 3.16 of
Vandebril et al. (2010). The inverse (ii) follows directly from Roy et al. (1960, Section 3), see
also Vandebril et al. (2010, Theorem 3.17), and (iii) is straightforward to verify from (ii).

We call C(a) a correlation matrix because it is symmetric positive definite for all on- and
off-diagonal elements bounded in (0, 1).

Let βi,j = √
ρi,j /θi,j , and for m = 1, ..., n let bm be the length-m row vector

bm = [βn−m,n−m+1, βn−m,n−m+2, . . . , βn−m,n].
For eachm, the elements of bm are positive-decreasing, soRm ≡ C(bm) is a correlation matrix.
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Let Im be the identity matrix, and ϒm the diagonal matrix

ϒm ≡ diag([θn−m,n−m+1un−m+1, θn−m,n−m+2un−m+2, . . . , θn−m,nun]).
The main result of this section is given in Theorem 2.1.

Theorem 2.1. The conditional MGF of (X(t1), . . . , X(tn)) given X(t0) is

MX(u | X(t0)) = det(In − Rnϒn)
−2μ/σ 2

exp(bnϒn(In − Rnϒn)
−1b′

nX(t0)).

Proof. We demonstrate that the expression on the right-hand side is equivalent to (2.1).
We first show by induction that

ũn−m − un−m = bmϒm(Im − Rmϒm)
−1b′

m ≡ qm (2.3)

for m = 1, . . . , n. For m = 1,

q1 = b1ϒ1(I1 − R1ϒ1)
−1b′

1 = β2
n−1,nθn−1,nun

1 − θn−1,nun
= ρn−1,nun

1 − θn−1,nun
= ũn−1 − un−1,

where the last equality follows from un = ũn and (2.2).
Now assume that (2.3) holds for all 1 ≤ k < m. Define Am ≡ R−1

m − ϒm so that (Im −
Rmϒm)

−1 = A−1
m R−1

m . By Lemma 2.1(ii), R−1
m is symmetric tridiagonal, so Am is also

symmetric tridiagonal. Let φm be the vector

φm ≡ √
ρn−m,n−m+1

[
1

βn−m,n−m+1
,
βn−m+1,n−m+2

βn−m,n−m+2
,
βn−m+1,n−m+3

βn−m,n−m+3
, . . . ,

βn−m+1,n

βn−m,n

]

and 	m ≡ diag(φm). Define

b̂m ≡ bm	m, ϒ̂m ≡ 	−1
m ϒm	

−1
m , R̂m ≡ 	mRm	m,

Âm ≡ 	−1
m Am	

−1
m = R̂−1

m − ϒ̂m.

We can rewrite the quadratic form qm as

qm = bmϒmA
−1
m R−1

m b′
m

= b̂m	
−1
m 	mϒ̂m	m(	mÂm	m)

−1	mR̂
−1
m 	m	

−1
m b̂′

m

= b̂mϒ̂mÂ
−1
m R̂−1

m b̂′
m. (2.4)

It is straightforward to verify that the transformed variables embed lagged values of the original
variables

b̂m = √
ρn−m,n−m+1 [1, bm−1],

R̂−1
m =

⎡
⎢⎢⎢⎢⎣

R−1
m [1, 1]
φm[1]2

[
R−1
m [1, 2]

φm[1]φm[2] , 0m−2

]
[
R−1
m [1, 2]

φm[1]φm[2] , 0m−2

]′
R−1
m−1

⎤
⎥⎥⎥⎥⎦ ,

ϒ̂m =
[
un−m+1 0m−1

0′
m−1 ϒm−1

]
.

From the relationship
θi,j+1 − ρj,j+1θi,j = θj,j+1 (2.5)
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we obtain

β2
i,j β

2
i,j+1

β2
i,j − β2

i,j+1

=
(

1

β2
i,j+1

− 1

β2
i,j

)−1

=
(

ρi,j ρi,j+1

ρi,j θi,j+1 − ρi,j+1θi,j

)
= ρi,j β

2
j,j+1. (2.6)

This leads to
R−1
m [1, 2]

φm[1]φm[2] = −βn−m+1,n−m+2

which, by Lemma 2.1(iii), implies[
R−1
m [1, 2]

φm[1]φm[2] , 0m−2

]
= −bm−1R

−1
m−1.

Equation (2.6) similarly leads to

R−1
m [1, 1]
φm[1]2 = θn−m,n−m+2

θn−m,n−m+1θn−m+1,n−m+2
.

With these identities we can partition the matrix Âm as

Âm =
⎡
⎣ θn−m,n−m+2

θn−m,n−m+1θn−m+1,n−m+2
− un−m+1 −bm−1R

−1
m−1

−R−1
m−1b

′
m−1 Am−1

⎤
⎦ .

From Lemma 2.1(iii) we have

b̂mR̂
−1
m = bmR

−1
m diag(φm)

−1 =
[
βn−m,n−m+1

φm[1] , 0, 0, . . . , 0

]
,

which implies that only the first column of Â−1
m appears in the product Â−1

m R̂−1
m b̂′

m. By the
standard formula for the inverse of a partitioned matrix, we have

Â−1
m [·, 1] = 1

Âm/Am−1

[
1, bm−1R

−1
m−1A

−1
m−1

]′
,

where Âm/Am−1 is the Schur complement of Am−1 in Âm. Substituting into (2.4), we obtain

qm = βn−m,n−m+1

φm[1]
√
ρn−m,n−m+1

Âm/Am−1
(un−m+1 + bm−1ϒm−1A

−1
m−1R

−1
m−1b

′
m−1)

= ρn−m,n−m+1(un−m+1 + qm−1)

θn−m,n−m+1(Âm/Am−1)
. (2.7)

The denominator is expanded as

θn−m,n−m+1(Âm/Am−1) = θn−m,n−m+1(Âm[1, 1] − bm−1R
−1
m−1A

−1
m−1R

−1
m−1b

′
m−1).

The quadratic form can be written as

bm−1R
−1
m−1A

−1
m−1R

−1
m−1b

′
m−1 = bm−1ϒm−1A

−1
m−1R

−1
m−1b

′
m−1

+ bm−1(R
−1
m−1 − ϒm−1)A

−1
m−1R

−1
m−1b

′
m−1

= qm−1 + β2
n−m+1,n−m+2,
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so

θn−m,n−m+1(Âm/Am−1) = θn−m,n−m+2

θn−m+1,n−m+2
− θn−m,n−m+1(un−m+1 + qm−1)

− θn−m,n−m+1β
2
n−m+1,n−m+2

= θn−m,n−m+2 − ρn−m+1,n−m+2θn−m,n−m+1

θn−m+1,n−m+2

− θn−m,n−m+1(un−m+1 + qm−1)

= 1 − θn−m,n−m+1(un−m+1 + qm−1), (2.8)

where the final equality follows from (2.5). Substituting into (2.7), we arrive at

qm = ρn−m,n−m+1(un−m+1 + qm−1)

1 − θn−m,n−m+1(un−m+1 + qm−1)
= ρn−m,n−m+1ũn−m+1

1 − θn−m,n−m+1ũn−m+1
.

This establishes (2.3), which immediately implies that ũ0 in (2.1) is simply qn.
By (2.8), we have

n∏
k=1

(1 − θk−1,kũk) =
n∏

m=1

θn−m,n−m+1(Âm/Am−1). (2.9)

Because Âm/Am−1 is scalar, the Schur complement decomposition of the determinant gives

Âm/Am−1 = det(Âm)

det(Am−1)
= 1

det(	m)2
det(Am)

det(Am−1)
. (2.10)

We also have

det(	m)
2 = det(R̂m)

det(Rm)
= det(R−1

m )

det(R̂−1
m )

= det(R−1
m )

det(R−1
m−1)

1

R̂−1
m /R−1

m−1

.

The Schur complement in the last term is

R̂−1
m /R−1

m−1 = θn−m,n−m+2

θn−m,n−m+1θn−m+1,n−m+2
− bm−1R

−1
m−1Rm−1R

−1
m−1b

′
m−1

= θn−m,n−m+2

θn−m,n−m+1θn−m+1,n−m+2
− β2

n−m+1,n−m+2

= θn−m,n−m+2 − ρn−m+1,n−m+2θn−m,n−m+1

θn−m,n−m+1θn−m+1,n−m+2

= 1

θn−m,n−m+1
,

where the last equality follows from (2.5). Substitute into (2.10) to obtain

Âm/Am−1 = 1

θn−m,n−m+1

det(R−1
m−1)

det(R−1
m )

det(Am)

det(Am−1)

= 1

θn−m,n−m+1

det(RmAm)

det(Rm−1Am−1)

= 1

θn−m,n−m+1

det(Im − Rmϒm)

det(Im−1 − Rm−1ϒm−1)
.
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Substituting into (2.9), we obtain a telescoping product that simplifies to

n∏
k=1

(1 − θk−1,kũk) =
n∏

m=1

det(Im − Rmϒm)

det(Im−1 − Rm−1ϒm−1)
= det(In − Rnϒn).

Thus, the expression in Theorem 2.1 matches (2.1).

3. Stationary finite-dimensional distribution

When κ > 0, the square-root diffusion is stationary. We assume stationarity here and for
the remainder of the paper. To derive the stationary MGF from the conditional MGF, we fix
t1, . . . , tn and let t0 → −∞. For i, j ∈ {1, . . . , n}, we have

lim
t0→−∞ ρ0,j = 0, lim

t0→−∞ θ0,j = σ 2

2κ
≡ θ̄ , lim

t0→−∞ϒn = θ̄ diag(u)

lim
t0→−∞Rn[i, j ] = √

ρi,j ≡ R̄[i, j ], lim
t0→−∞ bn = 0n.

Since
lim

t0→−∞ In − Rnϒn = In − θ̄ R̄diag(u)

remains nonsingular in the limit, while bn converges to 0, we have

lim
t0→−∞ bnϒn(In − Rnϒn)

−1b′
n = 0.

Thus, we have established the stationary MGF.

Theorem 3.1. The stationary MGF of (X(t1), . . . , X(tn)) is

MX(u) = det(In − θ̄ R̄diag(u))−2μ/σ 2
.

In the preprint version of this paper (Gordy (2012)), Theorem 3.1 is proved by an alternative
direct method and not as the limiting form of the conditional MGF.

The distribution of X is a special case of the broader class of Krishnamoorthy–Parthasarathy
(1951) multivariate gamma distributions. The MGF in the general case is det(I − Cdiag(u))−α
for α > 0 and nonsingular C. It is usually (but not necessarily) assumed that each marginal
distribution has unit scale, in which case the matrix C has 1s on the diagonal and C[i, j ]2 is the
correlation between components i and j . From this relationship, the matrix C is known as the
accompanying correlation matrix. In the specific case of the stationary square-root process, we
could equivalently obtain the accompanying correlation matrix R̄ from the known property of
exponential decay in the autocorrelation function (Cont and Tankov (2004, Section 15.1.2)).

Series solutions for the density and cumulative distribution functions of the Krishnamoorthy–
Parthasarathy distribution were derived by Royen (1994) for a class of correlation matrices
(see also Kotz et al. (2000, Section 48.3.6)). This class includes any correlation matrix with
tridiagonal inverse. Our matrix R̄ is the correlation matrix generated by the vector

b̄ ≡
[

exp

(
−

(
κ

2

)
t1

)
, exp

(
−

(
κ

2

)
t2

)
, . . . , exp

(
−

(
κ

2

)
tn

)]

and, therefore, R̄−1 is tridiagonal by Lemma 2.1. This property also allows for efficient
computation of the determinant in the MGF. We can write

det(In − θ̄ R̄diag(u)) = det(R̄(R̄−1 − θ̄diag(u))) = det(R̄) · det(R̄−1 − θ̄diag(u)).
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Lemma 2.1 provides det(R̄). The matrix R̄−1 − θ̄diag(u) is tridiagonal, which implies that the
determinant satisfies a two-term recurrence rule (Horn and Johnson (1985, Section 0.9.10)).
Consequently, the cost of computing the determinant is linear in n, whereas this cost is cubic
in n for a general matrix.

We next show that the multivariate cumulants of the distribution are easily calculated. Let
ν = (ν1, . . . , νn) be a vector of nonnegative integers with at least one positive element, and let
|ν| = ∑n

i=1 νi . Let �(k) be the set of permutations of 1, . . . , k with the restriction π(1) = 1.
Our main result applies to any Krishnamoorthy–Parthasarathy distribution.

Theorem 3.2. Let Y ∼ KPn(α,C). The cumulants of Y of order ν are given by

ψν = α
∑

π∈�(|ν|)
C[s(π(1)), s(π(|ν|))] · C[s(π(|ν|)), s(π(|ν| − 1))] · · ·C[s(π(2)), s(π(1))],

where s is a vector of ν1 copies of 1, followed by ν2 copies of 2, and so on.

Proof. The cumulant generating function is

KY (u) = log(MY (u)) = −α log(det(I − Cdiag(u))) = −α log(det(W(u))),

where we define W(u) = I − C diag(u) for convenience.
Using s, we can write the cumulant of order ν as ψν = Ds

uKY (0), where

Ds
uKY (u) = ∂ |ν|

∂us(1) · · · ∂us(|ν|)
KY (u).

We take partial derivatives in sequence, beginning with

∂

∂us(1)
KY (u) = −α tr

(
W(u)−1 ∂W

∂us(1)

)
= α tr(W(u)−1Cs(1)),

where we define Ck as the n× n matrix matching C on the kth column and 0 elsewhere, i.e.

Ck[i, j ] =
{
C[i, k] if j = k,

0 otherwise.

Subsequent derivatives are

∂2

∂us(1)∂us(2)
KY (u) = α tr(W(u)−1Cs(2)W(u)

−1Cs(1)),

∂3

∂us(1)∂us(2)∂us(3)
KY (u) = α[tr(W(u)−1Cs(3)W(u)

−1Cs(2)W(u)
−1Cs(1))

+ tr(W(u)−1Cs(2)W(u)
−1Cs(3)W(u)

−1Cs(1))].
Continuing this way, we arrive at

Ds
uKY (u) = α

∑
π∈�(|ν|)

tr(W(u)−1Cs(π(|ν|))W(u)−1Cs(π(|ν|−1))

· · ·W(u)−1Cs(π(2))W(u)
−1Cs(π(1))).
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Observing that W(0) = I , the cumulant can be written as

ψν = α
∑

π∈�(|ν|)
tr(Cs(π(|ν|))Cs(π(|ν|)−1) · · ·Cs(π(2))Cs(π(1))). (3.1)

Because eachCk matrix is nonzero only in column k, the productCkC� of two such matrices
has nonzero elements only in column �, and element [i, �] is C[i, k] ·C[k, �]. This implies that
the product Cs(π(|ν|))Cs(π(|ν|−1)) · · ·Cs(π(2))Cs(π(1)) has nonzero elements only in the s(π(1))
column. The trace of the product is the [s(π(1)), s(π(1))] element of the product and is given
by

tr(Cs(π(|ν|))Cs(π(|ν|−1)) · · ·Cs(π(2))Cs(π(1)))
= C[s(π(1)), s(π(|ν|))] · C[s(π(|ν|)), s(π(|ν| − 1))] · · ·C[s(π(2)), s(π(1))].

We substitute into (3.1) to complete the proof.

The set�(k) contains (k− 1)! elements, so the cumulants are not too costly to compute for
moderate values of |ν|. For vectors ν containing large elements, computational efficiency can
be improved by eliminating duplicated permutations of s(π) in the summation. Say m is the
index of the smallest positive element of ν, i.e. νm satisfies

νm = min(max(ν1, 1), . . . ,max(νn, 1)).

Let Sν,m be the set of unique permutations of the vector s with the restriction that s̃(1) = m for
all s̃ ∈ Sν,m. Then

ψν = α
ν1! ν2! · · · νn!

νm

∑
s̃∈Sν,m

C[s̃(1), s̃(|ν|)] · C[s̃(|ν|), s̃(|ν| − 1)] · · ·C[s̃(2), s̃(1)].

For the cumulants of X, we substitute α = 2μ/σ 2 and θ̄ R̄ forC. We exploit the exponential
form of each element R̄[i, j ] to obtain

ψν = 2μ

σ 2 θ̄
|ν| ν1! ν2! · · · νn!

νm

∑
s̃∈Sν,m

exp

(
−

(
κ

2

) |ν|∑
i=1

|ts̃(i+1) − ts̃(i)|
)
,

where we define s̃(|ν| + 1) = s̃(1) = m.

4. Moments of the increments

In the bivariate case, the stationary distribution simplifies to the Kibble–Moran bivariate
gamma distribution with MGF as given in Corollary 4.1.

Corollary 4.1. The MGF of (X(t),X(t + δ)) under stationarity is

MX(u1, u2) = E[exp(u1X(t)+ u2X(t + δ))] = ((1 − θ̄u1)(1 − θ̄u2)− θ̄2ρu1u2)
−2μ/σ 2

,

where ρ = exp(−κδ).
For fixed δ, we call Xt+δ −Xt an increment of the process Xt . Under stationarity, Xt+δ −

Xt
d= Xδ −X0 for all t , so without loss of generality we examine the stationary distribution of

�δ = Xδ −X0.
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From Corollary 4.1,

M�(u; δ) = MX(−u, u)
= (1 − θ̄2(1 − ρ)u2)−2μ/σ 2

= ((1 − θ̄
√

1 − ρu)(1 + θ̄
√

1 − ρu))−2μ/σ 2

= M�(u
√

1 − ρ) ·M�(−u
√

1 − ρ), (4.1)

where ρ = exp(−κδ) and

M�(u) = (1 − θ̄u)−2μ/σ 2

is the univariate stationary MGF for X(t). An immediate implication of (4.1) is that �δ is
equivalent in distribution to (1 − ρ)1/2 times�∞. Furthermore,�∞ is equivalent in distribution
to the difference between two independent draws from the stationary distribution ofX(t). This
gives a very simple method for sampling from the stationary distribution of �δ .

Consider the general problem of the moments of the difference between two independent and

identically distributed (i.i.d.) gamma variates. Let Z1, Z2
i.i.d.∼ Ga(α, β) for shape parameter

α > 0 and scale parameter β > 0, and define Y = Z1 − Z2. The nth cumulant of Y is

ψn = (1 + (−1)n)(n− 1)!αβn.
Central moments are obtained from the cumulants via the complete Bell polynomials, i.e.

E[Yn] = Bn(ψ1, ψ2, . . . , ψn).

For any sequence c1, c2, . . ., the Bell polynomials satisfy

Bn(βc1, β
2c2, . . . , β

ncn) = βnBn(c1, c2, . . . , cn)

so
E[Yn] = βnBn(0, 2α1! , 0, 2α3! , 0, 2α5! , . . .).

Furthermore, since the distribution is symmetric around zero, we know that the odd moments
E[Y 2n+1] are 0.

In Appendix A we prove a general identity on the complete Bell polynomials.

Lemma 4.1. Let k be a positive integer and let ξk,1, ξk,2, . . . be the sequence of integers

ξk,j =
{
k if j = 0 (mod k),

0 otherwise.

Then for any scalar α ∈ R
+,

Bkn(ξk,1α0! , ξk,2α1! , . . . , ξk,knα(kn− 1)!) = (kn)!
n!

�(α + n)

�(α)
,

where �(·) is the gamma function. For any positive integer m not divisible by k,

Bm(ξk,1α0! , ξk,2α1! , . . . , ξk,mα(m− 1)! ) = 0.
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It follows immediately that the even central moments of Y are

E[Y 2n] = β2nB2n(0, 2α1! , 0, 2α3! , 0, 2α5! , . . .) = β2n (2n)!
n!

�(α + n)

�(α)

and the odd central moments are 0. As kurtosis is often of particular interest, we note

E[Y 4]
E[Y 2]2 = 3

(
1 + 1

α

)
.

Application to the moments of �δ is direct. Substitute α = 2μ/σ 2 and β = θ̄ . Even
moments are

E[�2n
δ ] = (1 − exp(−κδ))nθ̄2n (2n)!

n!
�((2μ/σ 2)+ n)

�(2μ/σ 2)
.

The kurtosis of �δ is 3(1 + σ 2/2μ), which is invariant with respect to the time increment δ.

5. Conclusion

Our main contributions are simple closed-form expressions for the moment generating
functions of the conditional and stationary multivariate distributions of a discrete sample path
of a square-root diffusion process. We establish that the stationary distribution is within the
Krishnamoorthy–Parthasarathy family, and thereby draw a connection between a stochastic
process and a multivariate distribution that each first appeared in the literature in 1951.

Our result has application to estimation of parameters of the continuous-time square-root
process from a discrete sample. It gives a simple and computationally efficient way to generate
moment conditions for the generalized method of moments estimator of Chan et al. (1992).
The empirical characteristic function approach of Jiang and Knight (2002) can also be easily
implemented. Indeed, Jiang and Knight (2002) considered the example of a square-root
diffusion, but their solution to the characteristic function corresponds to our intermediate
equation (2.1), rather than to the simple form in our Theorem 3.1.

Three of our auxiliary results may have application elsewhere. First, Theorem 3.2 provides
a general solution for the multivariate cumulants of any Krishnamoorthy–Parthasarathy distri-
bution. Second, our Bell polynomial identity in Lemma 4.1 generalizes a known relationship
between Bell polynomials and the gamma function (i.e. for the k = 1 case of the lemma).
Finally, we provide a simple formula for the moments of the difference of two i.i.d. gamma
variates. It complements existing results that allow the variates to differ in scale parameter
(see, for instance, Johnson et al. (1994, Section 12.4.4)), but which lead to more complicated
expressions for the moments.

Appendix A. Proof of the Bell polynomial identity

For any sequence of scalars c1, c2, . . . , the generating function of the complete Bell poly-
nomials is

exp

( ∞∑
n=1

cn
xn

n!
)

=
∞∑
n=0

Bn(c1, c2, . . . , cn)
xn

n! , (A.1)
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where we fix B0 = 1. When cj = ξk,jα(j − 1)! , we have

exp

( ∞∑
n=1

cn
xn

n!
)

= exp

( ∞∑
n=1

kα
xkn

kn

)

= exp

( ∞∑
n=1

α
yn

n

)

=
∞∑
n=0

Bn(α0! , α1! , . . . , α(n− 1)! )y
n

n! ,

where we introduce the change of variable y = xk .
Using identities from Comtet (1974, pp. 135, 136) and the Digital Library of Mathematical

Functions (2010, Section 26.8.7 (http://dlmf.nist.gov/)), we have

Bn(α0! , α1! , . . . α(n− 1)! ) =
n∑
k=1

|s(n, k)|αk = �(α + n)

�(α)
,

where s(n, k) denotes the Stirling number of the first kind. Restoring the original variable x,
we have

exp

( ∞∑
n=1

cn
xn

n!
)

=
∞∑
n=0

�(α + n)

�(α)

yn

n! =
∞∑
n=0

�(α + n)

�(α)

(kn)!
n!

xkn

(kn)! . (A.2)

Matching terms to the right-hand side of (A.1) with the same power of x, we obtain

Bkn(ξk,1α0! , ξk,2α1! , . . . , ξk,knα(kn− 1)!) = (kn)!
n!

�(α + n)

�(α)
.

Wheneverm is not a multiple of k, the coefficient on xm on the right-hand side of (A.2) is 0, so

Bm(ξk,1α0! , ξk,2α1! , . . . , ξk,mα(m− 1)!) = 0.
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