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High-Froude-number flows become self-aerated when the destabilizing effect of
turbulence overcomes gravity and surface tension forces. Traditionally, the resulting
air concentration profile has been explained using single-layer approaches that invoke
solutions of the advection–diffusion equation for air in water, i.e. bubbles’ dispersion.
Based on a wide range of experimental evidence, we argue that the complete air
concentration profile shall be explained through the weak interaction of different canonical
turbulent flows, namely a turbulent boundary layer (TBL) and a turbulent wavy layer
(TWL). Motivated by a decomposition of the streamwise velocity into a pure wall flow
and a free-stream flow (Krug et al., J. Fluid Mech., vol. 811, 2017, pp. 421–435), we
present a physically consistent two-state formulation of the structure of a self-aerated
flow. The air concentration is mathematically built upon a modified Rouse profile and a
Gaussian error function, resembling vertical mass transport in the TBL and the TWL. We
apply our air concentration theory to over 500 profiles from different data sets, featuring
excellent agreement. Finally, we show that the turbulent Schmidt number, characterizing
the momentum-mass transfer, ranges between 0.2 and 1, which is consistent with previous
mass-transfer experiments in TBLs. Altogether, the proposed flow conceptualization sets
the scene for more physically based numerical modelling of turbulent mass diffusion in
self-aerated flows.
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1. Introduction

In a supercritical open-channel flow, turbulent stresses next to the free surface can be
large enough to overcome surface tension and gravity effects, thus leading to air bubble
entrainment (Brocchini & Peregrine 2001; Valero & Bung 2018) and their subsequent
breakdown (Deane & Stokes 2002; Chan, Johnson & Moin 2021). This process is called
self-aeration (figure 1a), and the location of the so-called inception point of air entrainment
has been associated with the interaction of a developing boundary layer with the free
surface (Lane 1939; Straub & Anderson 1958; Wood 1984), as well as with an unstable
state of free-surface perturbations (Brocchini & Peregrine 2001; Valero & Bung 2018).
Air–water multiphase flows are of key interest because entrained air affects flow properties,
thereby leading to (i) flow bulking, which may compromise overtopping safety of spillways
(Straub & Anderson 1958; Hager 1991; Boes 2000), (ii) drag reduction, which can lead to
flow velocities of twice or thrice the counter-part single-phase flow (Wood 1984; Chanson
1994; Kramer et al. 2021), (iii) cavitation protection of solid surfaces (Falvey 1990; Frizell,
Renna & Matos 2013), (iv) enhanced gas transfer (Gulliver, Thene & Rindels 1990; Bung
2009) and (v) total dissolved gas super-saturation, that can mortally affect fish (Pleizier
et al. 2020). Therefore, the accurate description of the air concentration distribution has
been a topic of sustained research interest since the second half of the twentieth century,
and two different schools of thought can be distinguished (figure 1b).

The first group of researchers conceptualized the air concentration distribution using
a single-layer approach, thus assuming a ‘homogeneous’ mixing process between the
channel bottom and y90, except Valero & Bung (2016), who described air concentrations
within a turbulent–wavy region. Here, y90 is the flow depth where the time-averaged
air concentration is c̄ = 0.9, with c̄ being defined as volume of air per volume of
air–water mixture. Rao & Gangadharaiah (1971) and Wood (1984) derived expressions
for the air concentration distribution based on mass conservation considerations, while
Chanson (1995), Chanson & Toombes (2001) and Zhang & Chanson (2017) presented
solutions of the advection–diffusion equation for air in water under the assumption of
variable turbulent diffusivity across the water depth (up to y90). We argue that the
assumption of a ‘homogeneous’ bubbly air–water mixture does not contemplate the real
structure of a self-aerated flow, as depicted in figure 1(a), although we acknowledge
that single-layer approaches can show a good data-driven agreement with typical
S-shaped concentration profiles, which is, however, at the expense of empirically fitted
coefficients.

Based on flow visualization, Killen (1968) discerned several distinct flow regions of a
self-aerated flow (figure 1a), comprising:

(i) a single-phase (water) region next to the channel bottom (not always present);
(ii) a bubbly flow region;

(iii) a free-surface region, characterized by free-surface perturbations/waves; and
(iv) a spray/droplet region.

Wilhelms & Gulliver (2005) identified that measured air concentrations typically
comprise entrained air in the form of bubbles and entrapped air between surface
roughness/waves, corresponding to regions (ii) and (iii), while very fine droplets, forming
region (iv), have only been observed at prototype scale and in near-full-scale facilities
(see Table 1 of Hohermuth, Felder & Boes 2021a; Bai, Tang & Wang 2022). Further,
it is known that the single-phase region (i) vanishes for depth-averaged (mean) air
concentrations 〈c̄〉 � 0.25, which is because the bubbly flow layer protrudes to the channel
bottom (Straub & Anderson 1958; Hager 1991; Wei et al. 2022). Here, the mean air
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Figure 1. Characteristic regions and modelling approaches of self-aerated open-channel flows: (a) snapshot of
the self-aerated flow down a stepped chute (The University of Queensland) with clear distinction of the bubbly
flow region and the wavy free-surface region; specific water discharge q = 0.143 m2 s−1, chute angle θ = 45◦;
step edges 5 to 7; (b) schools of thought in the modelling of air concentration distributions in self-aerated flows.

concentration is defined as

〈c̄〉 = 1
y90

∫ y90

y=0
c̄ dy, (1.1)

where y is the bed-normal coordinate with y = 0 at the channel invert.
The second group of researchers differentiated between the aforementioned regions

using multi-layer approaches, mostly in the form of double-layer models (figure 1b), such
as those from Straub & Anderson (1958) and Killen (1968), consisting of a lower layer
where air bubbles are transported by turbulence throughout the flow, and an upper layer
with a heterogeneous mixture of water droplets ejected from the flowing stream. The
transition point between the two regions, defined by the depth y� with corresponding
air concentration c̄�, was determined based on the maximum gradient (dc̄/dy)max by
Straub & Anderson (1958). In contrast, Wei & Deng (2022) argued that the flow depth
y50, i.e. the depth where c̄ = 0.5, can be used as interior transition depth, and Wei
et al. (2022) proposed some additive concepts to model the air concentration distribution.
Generally, a double-layer (or multi-layer) approach better reflects the physical nature of an
air–water flow, but an in-depth understanding of the flow transition is currently missing.
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Figure 2. Two-state model for air concentration distribution: (a) representation of the TBL air concentration
(teal line, (2.1)), TWL air concentration (blue line, (2.2)), interface position yi and two-state model ĉ;
(b) probability distribution of interface position, centred around y�; (c) comparison of the convoluted profile
(convolution operation indicated by the ∗ symbol) with data from Straub & Anderson (1958, specific discharge
q = 0.322 m2 s−1; streamwise position x = 13.88 m).

Furthermore, none of the double-layer models have established a link between the air
concentration and the velocity distribution, i.e. a coupling of mass and momentum transfer.

Here, we propose a novel double-layer conceptualization of the air transport, which
builds on two canonical flow layers of momentum, namely a turbulent boundary layer
(TBL) and a turbulent wavy layer (TWL). We note that the TBL and the TWL conceptually
feature a log-law and a constant free-stream velocity distribution, respectively. The
air concentration of these layers is modelled using a modified Rouse profile (TBL,
corresponds to regions i and ii) and a Gaussian error function (TWL, corresponds to
region iii); both layers are convoluted using a two-state principle, which is detailed in § 2.
Through analysis of concentration profiles from the literature, we show that the transition
between TBL and TWL is closely linked to the boundary layer thickness (δ), and that other
model parameters, such as the Rouse number (Rouse 1961; Dey 2014), are unequivocally
determined by the mean air concentration (§ 3). For 〈c̄〉 � 0.25, the Gaussian error
function alone is able to predict the measured air concentration distributions, which
suggests that entrapped air (within wave troughs) is prevalent in those flows. In § 4, we
quantify the turbulent Schmidt number for aerated flows, followed by a discussion on
model limitations.

2. Methodology: two-state air concentration distribution

The general principle of decomposing the streamwise velocity profile (and other flow
statistics) into a pure wall flow state and a free-stream state was first introduced by
Krug, Philip & Marusic (2017). Here, we hypothesize that the two-state concept can be
extended to describe turbulent mass transport, such as the air concentration distribution in
supercritical open-channel flows (figure 2). In the following, we seek expressions for the
air concentration distribution within the TBL and the TWL.
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Turbulent waves and bubble diffusion in self-aerated flows

2.1. Air concentration within the TBL
We note that the TBL features a log-law velocity distribution and turbulent air bubble
diffusion. Assuming a parabolic distribution of turbulent diffusivity (Dt,y) up to half the
boundary layer thickness, as well as a constant turbulent diffusivity for y > δ/2 (also
known as parabolic-constant diffusivity distribution), we obtain a modified Rouse equation
by solving the advection–diffusion equation for air in water. The expression for the air
concentration c̄TBL within the TBL reads (Appendix A, figure 2a)

c̄TBL =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c̄δ/2

(
y

δ − y

)β

, y ≤ δ/2,

c̄δ/2 exp
(

4β

δ

(
y − δ

2

))
, y > δ/2,

(2.1)

where c̄δ/2 is the air concentration at half the boundary layer thickness, v̄r is the
bed-normal bubble rise velocity, κ is the von Kármán constant, u∗ is the friction velocity
and β = v̄rSc/κu∗ is a modified Rouse number, which encapsulates the turbulent Schmidt
number Sc, the latter defined as the ratio of eddy viscosity and turbulent mass diffusivity.
Here, we adopt the classical definition of the boundary layer thickness as the bed-normal
distance at which 99 % of the free-stream velocity is attained, as well as a constant value of
κ = 0.41, while we acknowledge that slightly different values of the von Kármán constant
have been discussed (Marusic et al. 2008; Nagib & Chauhan 2008; Morrill-Winter, Philip
& Klewicki 2017).

2.2. Air concentration within the TWL
We emphasize that the air concentration of the TWL comprises surface waves/
perturbations (entrapped air) as well as some entrained air bubbles. An analytical solution
for the air concentration c̄TWL involves the Gaussian error function (Valero & Bung 2016);
(figure 2a)

c̄TWL = 1
2

(
1 + erf

(
y − y50TWL√

2H

))
, (2.2)

where y50TWL is the mixture flow depth where the free-surface air concentration is c̄TWL =
0.5, H is a characteristic length scale that describes the thickness/height of the aerated
wavy layer and erf is the Gaussian error function. In single-phase flows, H is defined as
the root mean square wave height (Valero & Bung 2016). The air concentration of the
TWL results from a superposition of entrapped air, transported between wave crests and
troughs, and entrained air in the form of air bubbles travelling within the waves (Killen
1968; Wilhelms & Gulliver 2005). Because the volume of entrapped air within the TWL
is typically much larger than the volume of entrained air, H still provides a clear indication
of the root mean square wave height. However, for the sake of accuracy, we hereafter refer
to H as the length scale of the TWL.

2.3. Two-state convolution
Consistent with the two-state formulation of Krug et al. (2017), we introduce the concept
of an interface position yi separating the TBL and TWL. The air concentration profile ĉ is
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defined for every position of yi

ĉ =
{

c̄TBL (2.1), y ≤ yi,

c̄TWL (2.2), y > yi.
(2.3)

Using the Heaviside step function

H( y − yi) =
{

0, y − yi ≤ 0,

1, y − yi > 0,
(2.4)

we can write (2.3) as
ĉ = c̄TBL(1 − H) + c̄TWLH. (2.5)

Equations (2.3) and (2.5) correspond to the discontinuous profile shown in figure 2(a),
i.e. the two-state model. It is implied that the flow below the interface level yi is
fully explained by turbulent air bubble diffusion, whereas turbulent waves describe the
air concentration above yi. The interface position is now assumed to follow a random
independent process, which is governed by a Gaussian probability distribution shown in
figure 2(b)

p( yi; y�, σ�) = 1

σ�

√
2π

exp
(−( yi − y�)

2

2σ 2
�

)
, (2.6)

where the transition depth y� can be interpreted as the time-averaged y-location of
the interface, and σ� describes the standard deviation of yi. To obtain a complete,
time-averaged expression for the double-layer air concentration (figure 2c), we convolute
ĉ (2.5) with the interface probability p (2.6), which leads to (Krug et al. 2017)

c̄( y) =
∫ ∞

−∞
ĉp dyi = c̄TBL

∫ ∞

−∞
(1 − H)p dyi + c̄TWL

∫ ∞

−∞
Hp dyi, (2.7)

where c̄TBL and c̄TWL are independent of yi, thus allowing us to simplify

c̄( y) = c̄TBL(1 − Γ ) + c̄TWLΓ, (2.8)

with

Γ ( y; y�, σ�) = 1
2

(
1 + erf

(
y − y�√

2σ�

))
. (2.9)

We note that the lower limit of the integral in (2.7) was extended to −∞, which,
however, did not affect the results as p( yi < 0) 	 1. From a physical point of view,
the convolution can be interpreted as a weighted-averaging operation, which lumps
concentration discontinuities between the TBL and TWL, such as the jump shown in
figure 2(a), into a smooth, continuous profile. Finally, the interface distribution of the
two-state model is not expected to be the same as the turbulent/non-turbulent interface in
TBLs; see discussion in Krug et al. (2017).

2.4. Determination of model parameters
The convoluted two-state air concentration model (2.8) has four free physical parameters,
including the Rouse number (β), the length scale of the TWL (H) and two
transition/interface parameters (y�, σ�). We note that the parameters δ, c̄δ/2 and y50TWL
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are regarded as fixed, as they are directly available from measurements. The free model
parameters were derived through a two-step fitting procedure to an extensive experimental
data set of air concentration profiles. It is noted that both layers (TBL and TWL) allowed
for an independent (simultaneous) fit away from the mean interface position y�, thus
preserving the physical significance of their parameters.

In a first step, the Rouse number β was obtained by minimizing the sum of squared
differences between measurements up to δ/2 and (2.1). Here, the boundary layer thickness
was computed from measured velocities; if such velocity measurements were not available,
we assumed δ = 1.25 y� (see § 3.2). At the same time, the length scale H was obtained by
minimizing the sum of squared differences between the measurements and modelled air
concentrations within the upper flow region. We note that y50TWL corresponds to y50, which
is a physical quantity that can be directly measured. However, this was not the case for 46
out of 571 re-analysed profiles with 〈c̄〉 � 0.5, where y50TWL was also obtained through
fitting; in this case, the number of free parameters increased by one. In a second step, the
mean interface position y� was determined at the location where (2.2) departed from the
measured air concentrations, which yielded better results when compared with using the
maximum gradient (dc̄/dy)max. Subsequently, the standard deviation σ� of the interface
position was determined using a best-fit approach.

3. Results

We apply our air concentration model to 571 concentration profiles from different data
sets, as presented in the supplementary material (available at https://doi.org/10.1017/jfm.
2023.440), comprising smooth chute data from Straub & Anderson (1958, 74 profiles),
Killen (1968, 17 profiles), Bung (2009, 28 profiles) and Severi (2018, 261 profiles), and
stepped chute data from Bung (2009, 151 profiles), Zhang (2017, 6 profiles) and Kramer
& Chanson (2018, 34 profiles). The terms ‘smooth’ and ‘stepped’ chute are commonly
used in accordance with different roughness heights (ks) of chute inverts, see figure 1
for an example of a stepped macro-roughness. The category ‘smooth’ also comprises
micro-rough inverts, and laboratory spillways are often considered as micro-rough for
ks � 0.1 mm (Felder, Severi & Kramer 2022). We note that this description slightly differs
from the classic smooth/rough classification of wall flows (Pope 2000, chap. 7).

3.1. Representative application
We demonstrate the application of our theory using a seminal series of measurements
by Straub & Anderson (1958), who sampled air concentrations in the uniform region of
a smooth chute (ks = 6.1 mm) for chute angles from θ = 7.5◦ to 75◦, covering a wide
range of flow rates from q = 0.13 to 0.92 m2 s−1. These measurements remain among the
most comprehensive and complete data sets to date, allowing us to illustrate the relative
importance of each of the two states considered.

Figure 3 shows measured air concentrations from Straub & Anderson (1958) for
q = 0.322 m2 s−1, together with the theoretical air concentration profiles of the TBL,
TWL and their convolution through the two-state model. For mean air concentrations
〈c̄〉 � 0.25 (figure 3a), entrained air bubbles did not reach the channel bottom and
aeration was mostly confined to the TWL. Such flows are dominated by entrapped air
(free-surface perturbations and turbulent waves), and the air concentration was well
described by (2.2); see discussion in Felder et al. (2022). For larger 〈c̄〉 (figure 3b–h), the
air concentration of the TWL (indicated by the blue line) deviated from the measurements
at the transition point. Here, the two-state model (2.8) excellently detailed the air
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Figure 3. Measured air concentration distributions in flows down a laboratory smooth chute; data from
Straub & Anderson (1958, q = 0.322 m2 s−1; x = 13.88 m); (a–h) comparison of (2.1), (2.2) and (2.8) with
measurements.

Sub-figure q x θ 〈c̄〉 β c̄δ/2 δ/y� y50TWL/y90 H/y90 y�/y90 σ�/δ

(–) (m2 s−1) (m) (◦) (–) (–) (–) (–) (–) (–) (–) (–)

(a) 0.32 13.88 7.5 0.16 — — — 0.85 0.11 — —
(b) 0.32 13.88 15.0 0.25 0.50 0.06 1.25 0.79 0.17 0.63 0.11
(c) 0.32 13.88 22.5 0.30 0.43 0.11 1.25 0.74 0.21 0.58 0.12
(d) 0.32 13.88 30.0 0.40 0.27 0.24 1.25 0.65 0.28 0.59 0.13
(e) 0.32 13.88 37.5 0.55 0.14 0.47 1.25 0.48 0.42 0.61 0.13
( f ) 0.32 13.88 45.0 0.60 0.09 0.56 1.25 0.39 0.48 0.61 0.15
(g) 0.32 13.88 60.0 0.65 0.09 0.64 1.25 0.27 0.56 0.64 0.17
(h) 0.32 13.88 75.0 0.69 0.07 0.70 1.25 0.06 0.72 0.67 0.2

Table 1. Normalized parameters of the two-state convolution model for profiles shown in figure 3; as no
detailed velocity measurements were available from Straub & Anderson (1958), we determined y� first, and
subsequently assumed δ = 1.25y� (see § 3.2); measurements taken at x = 13.88 m from the flume inlet.

concentration measurements, and the corresponding model parameters are presented in
table 1.

3.2. Profile transition
Next, we focus our attention on the flow transition between TBL and TWL. Figure 4(a,b)
shows a measured air concentration profile within the flow centreline of a stepped chute,
together with the corresponding streamwise interfacial velocities (ū) and fluctuations from
Kramer & Chanson (2018). Here, u′

rms is the root mean square of velocity fluctuations and
ūmax is the free-stream velocity. The chute angle was θ = 45◦ and measurements were
taken at step edge 11, at a specific flow rate of q = 0.067 m2 s−1. The transition depth y�
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Figure 4. Determination of the transition point parameters y� and c�: (a) exemplary air concentration
profile, measured within the flow down a stepped spillway; θ = 45◦; q = 0.067 m2 s−1; step edge 11;
(b) corresponding normalized velocity profile and velocity fluctuations in the bed-normal direction;
(c) ratio of y� and boundary layer thickness δ; and (d) air concentration at transition point vs mean air
concentration.

(or mean interface position) was determined through the procedure described in § 2.4 and
is shown in figure 4(a).

A comparison of figure 4(a,b) confirms that the layer below y� (i.e. mainly TBL) was
characterized by high flow shearing, whereas the layer above y� (TWL) corresponds to a
uniform free-stream velocity and, in this instance, the ratio between the transition depth
and the boundary layer thickness is y�/δ = 0.83. This finding supports our hypothesis that
the air concentration distribution is intrinsically connected to the flow momentum layers,
both separated by a fluctuating TBL–TWL interface. We find that y�/δ ranges between
0.6 and 0.9 (figure 4c), which is consistent with interface positions reported in Krug et al.
(2017). The dimensionless standard deviation of the interface position remains constant
at σ�/δ = 0.1 to 0.2, which yields a good description of all concentration profiles. Our
expression for σ� assumes that the interface position yi is linked to the underlying TBL
edge, while we consider that the waves/perturbations of the TWL – described via H –
are a reflection of that turbulent process. Figure 4(d) shows that the air concentration
at the transition point is linearly dependent on the mean air concentration, and can be
estimated through the empirical relationship c̄� = 1.37〈c̄〉 − 0.14, valid for smooth and
stepped chutes.

Finally, we acknowledge the scatter in figure 4(c), which likely stems from measurement
uncertainties of dual-tip phase-detection probes related to air concentration and interfacial
velocity (Kramer et al. 2020; Hohermuth et al. 2021b). We also note that the smooth chute
data of Straub & Anderson (1958), Killen (1968) and Severi (2018) were not added to
figure 4(c), which is because no velocity information was available or because flows were
dominated by entrapped air, implying that no profile transition occurred.

966 A37-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

44
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.440


M. Kramer and D. Valero

0 0.2 0.4 0.6 0.8

10−1

100

101

yy = 3.6 exp(−5.3.6 exp( = 3.6 exp(−5.p 77xx))))

β
 =

 v–
r 

S c/
(κ

u ∗
)

Smooth chutes

- Straub & Anderson (1958)

- Killen (1968)

- Bung (2009)

- Severi (2018)

Stepped chutes

- Bung (2009)

- Zhang (2017)

- Kramer & Chanson (2018)

0 0.2 0.4 0.6 0.8
−0.5

0

0.5

1.0

y =1 − 0.9x
y 5

0
TW

L/
y 9

0

0.2 0.4 0.6 0.80

0.5

1.0

1.5

y = 0.7x

H/
y 9

0

〈c–〉 〈c–〉 〈c–〉

(a) (b) (c)

Figure 5. Model parameters are a function of the mean air concentration: (a) Rouse number β; (b) relation of
TWL mixture flow depth y50TWL to y90; (c) relation of TWL length scale H to y90.

3.3. Model parameters related to c̄TBL and c̄TWL

Here, we present estimations of the model parameters related to the air concentration
within the TBL and the TWL. An inspection of (2.1) shows that c̄TBL = f (β, δ, c̄δ/2),
of which δ and c̄δ/2 were directly determined from velocity and air concentration
measurements, respectively. The Rouse number β reflects the ratio of bubble rise
velocity and the strength of turbulence (shear velocity) acting on the entrained air
bubbles, and consequently defines the mode of entrained air transport. For example,
a small Rouse number implies dominant turbulent forces, which thereof results in a
large quantity of small air bubbles being transported close to the channel bed, whereas
a large Rouse number implies that large air bubbles are being transported next to the
free surface. We find that the described transport modes are dependent on the mean air
concentration and that the β-parameters for stepped chutes were slightly larger than those
for smooth chutes (figure 5a), which could be associated with the entrainment of larger air
bubbles.

The air concentration of the TWL is described by two parameters c̄TWL = f ( y50TWL,H),
compare (2.2), of which the mixture flow depth y50TWL was extracted directly from
measurements for most of the data sets. Here, we normalize y50TWL and the length scale H
with y90, showing their functional dependence on the mean air concentration (figure 5b,c).
We note that the normalization with y90 provided the most clear relationship, which may
simply be because 〈c̄〉 is defined in terms of y90 (1.1). Further, the unique dependence
between model parameters and mean air concentration is not completely unexpected, as
previous researchers have fitted empirical parameters that only depend on 〈c̄〉, see for
example Chanson (1995) and Chanson & Toombes (2001). However, it is remarkable that
model parameters of the TWL are similarly well behaved for smooth and stepped chutes,
and data scatter is only observed beyond 〈c̄〉 � 0.5 to 0.6. For stepped chutes, the deviation
from the linear trend is likely to result from a change in flow regime, i.e. the flow changes
from skimming flow to transition flow (Kramer & Chanson 2018).
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Figure 6. Measured turbulent diffusivities vs theoretical parabolic distribution for different turbulent Schmidt
numbers.

4. Discussion

4.1. Turbulent Schmidt number
In § 3.3, we have discussed the dependence of the depth-averaged parameter β on the
mean air concentration. From a Reynolds-averaged modelling perspective, quantifying
the turbulent Schmidt number is of interest since it enables a direct relationship between
turbulent momentum diffusivity and turbulent mass diffusivity (Pope 2000; Gualtieri et al.
2017). Hence, we adopt a Reynolds-averaged form of the advection–diffusion equation for
air in water (see also Appendix A, (A3))

v̄rc̄ = Dt,y
∂ c̄
∂y

, (4.1)

which can be conveniently re-arranged

Dt,y = v̄rc̄
∂ c̄/∂y

. (4.2)

Equation (4.2) allows for a direct evaluation of Dt,y from measurements, given that
the local air concentrations, their gradients and the bubble rise velocities are known. For
selected profiles from Severi (2018), Kramer & Chanson (2018) and Felder, Hohermuth &
Boes (2019), we evaluate ∂ c̄/∂y using a central differences approach, and we characterize
bubble sizes from intrusive phase-detection probe measurements by adopting the Sauter
diameter d = 6c̄/a = 1.5ūc̄/F (Ishii & Hibiki 2011; Hohermuth et al. 2021b), where
a = 4F/ū is the interfacial area per volume of air water mixture (Cummings 1996,
equation 4.6.13), and F is the particle count rate. We estimate still water rise velocities (v̄0)
for bubbles with 1 mm < d < 10 mm using the approach of Clift, Grace & Weber (1978,
equation 7-3), which we correct for gravity slope and concentration effects after Chanson
(1995, 1996) as v̄r = v̄0 cos(θ)

√
1 − c̄. In a next step, we compute turbulent diffusivities

through (4.2), which are compared against the boundary layer thickness in figure 6.
We consider the classical parabolic turbulent diffusivity distribution (A5) for different

Sc-values, which allows us to conclude that the turbulent Schmidt number for air water
flows ranges between 0.2 and 1.0 (compare figure 6), which is well in accordance
with the published literature values for turbulent mass transfer in other environmental
flows (Gualtieri et al. 2017). Lastly, the re-analysed smooth chute data suggest that the
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turbulent diffusivity becomes constant for y > δ/2 (red dotted line), similar to other
open-channel flows (Coleman 1970; Dey 2014). Based on this finding and reasons outlined
in Appendix A, we had already adopted a parabolic-constant diffusivity distribution,
splitting the expression for the air concentration within the TBL into two parts, separated
by δ/2 (see (2.1)).

4.2. Comparison with other models and limitations
The determination of the four (five) free physical parameters of the convoluted two-state
air concentration profile was outlined in § 2.4. Naturally, the number of free parameters
is larger than for commonly used single-layer models, e.g. Chanson & Toombes (2001,
equation 4.1, two free parameters), and comparable to other double-layer models, e.g.
Straub & Anderson (1958, four free parameters). However, the introduced parameters
respond to physical properties of the flow, and they allow us to assess the relative
contribution of individual physical momentum processes on the air concentration profile.

Our theoretical profile ((2.2) for 〈c̄〉 � 0.25 and (2.8) for 〈c̄〉 � 0.25) was able to
characterize the air concentration distribution of all tested data sets (see supplementary
material), including different flow rates (q = 0.03 to 0.92 m2 s−1) and flow regimes over
smooth and stepped chutes (transition vs skimming flow), with angles ranging from
θ = 7.5◦ to 75◦. Model parameters of the TBL and TWL were between β = 0.05 to 1.2
(figure 5a) and H/y90 = 0 to 1 (figure 5c), both showing a unique dependence on the mean
air concentration. The transition/interface parameters were determined as y�/δ = 0.6 to
0.9 (figure 4c) and σ�/δ = 0.1 to 0.2. Given a measured air concentration distribution,
y� can also be obtained from c̄�, where the latter followed an empirical relationship
c̄� = 1.37〈c̄〉 − 0.14 (figure 4d).

When compared with previous models, one of the main advantages of the two-state
model is its universal applicability, together with physically interpretable model
parameters. Previous models rely more heavily on empirical fitting parameters, with
application domains being limited to certain chute geometries (smooth vs stepped) or to
certain flow regimes (transition vs skimming flow), see for example Chanson & Toombes
(2001, Table III-3). Figure 7 compares the convoluted two-state model with common
single-layer models for stepped chute data from Bung (2009). All models describe the
air concentration reasonably well for y/y90 � 0.4, while the models of Wood (1984) and
Chanson & Toombes (2001) are upper bounded by y/y90 = 1. Below y/y90 � 0.4, only
the two-state model is able to capture the region which has traditionally been referred to
as concentration boundary layer (Chanson 1996), which is due to the novel representation
of underlying physical processes.

The present two-state air concentration model has some limitations, which are
herein discussed. The parameters c̄δ/2 and δ were directly extracted from original
measurements, i.e. no predictive formulas exist, which, however, does not hinder
the physical interpretation of mass transport parameters in self-aerated flows. In our
derivations related to the modified Rouse profile for air bubbles in water (Appendix A),
we have assumed a constant bubble rise velocity as well as uniform flow conditions.
To estimate the effect of a concentration-dependent rise velocity, we derive alternative
solutions of the advection–diffusion equation using v̄r = v̄0 cos (θ)

√
1 − c̄ (Chanson

1995, 1996, Appendix C), where v̄0 is the rise velocity for clear/still water conditions,
i.e. c̄ ≈ 0 (similar to § 4.1). Although only marginal differences in resulting concentration
profiles were observed (not shown), we cannot rule out that a more detailed assessment of
bubble size distributions would help to improve our understanding of the air concentration
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Figure 7. Comparison of the proposed two-state formulation with common air concentration models for
stepped chutes; data from Bung (2009) with q = 0.07 m2 s−1; step height h = 0.06 m; measurements taken
at step edge 16.

distribution within the TBL. Related to the uniform equilibrium assumption, our data
indicate that (2.1) is also applicable within the gradually varied flow region, which is in
agreement with previous findings (Chanson 1995).

5. Conclusion

In this research, we formulate a two-state model to describe air concentration distributions
in self-aerated free-surface flows. The rationale behind the model is that the flow
can be decomposed into a TBL and a TWL, featuring a log law and a constant
free-stream velocity, respectively. The corresponding air concentration distributions are
mathematically described by a modified Rouse profile and a Gaussian error function,
which conceptually implies that the bubbly flow (within the TBL) is driven by high shear
and turbulent diffusion, whereas free-surface waves/perturbations of the TWL lead to large
concentrations due to voids within wave troughs.

The transition point between the two layers was previously discussed in the aerated flow
literature (Straub & Anderson 1958), but no physical reasoning was given. Here, we argue
that the flow transition corresponds to a time-averaged TBL–TWL interface position that
is closely related to the boundary layer thickness. From an instantaneous point of view,
the flow takes either a TBL or a TWL state, and the interface position is described by a
Gaussian probability density function. Subsequently, a convolution of the two states with
the interface probability provides the time-averaged air concentration profile. As such,
our model is the first to establish a connection between air concentration and velocity
distribution based on physically explainable model parameters.

We test our theoretical air concentration profile against more than 500 experimental
concentration profiles from smooth and stepped chute literature data sets. We show that,
regardless of the data set, the model is able to capture the profiles and to discern the
different air concentration regions contained within. It is noted that laboratory flows with
〈c̄〉 � 0.25 are dominated by free-surface aeration/entrapped air, and the air concentration
distribution is confined to the TWL. For larger 〈c̄〉, air bubbles are diffused deeper into
the water column, implying that the time-averaged air concentration is described by
the convolution of the Rouse profile and the Gaussian error function with the interface
probability. We characterize different transport modes of entrained air bubbles (within
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the TBL) based on the ratio of bubble rise velocity and shear velocity, expressed through
the Rouse number β, and we show that the transport mode is a function of the mean air
concentration. Model parameters related to the TWL were also explained via the mean air
concentration and behaved similarly for smooth and stepped chutes. Finally, we present
values of the turbulent Schmidt number in highly aerated flows, which we anticipate to
be of high relevance for future numerical model applications based on Reynolds-averaged
Navier–Stokes equations.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.440. All
data, models or code that support the findings of this study are available from the corresponding author upon
reasonable request.
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Appendix A. Modified Rouse profile for air bubbles in water

A governing equation for the bed-normal air concentration distribution can be written
by simplifying the advection–diffusion equation for air in water. We assume a
two-dimensional steady flow, where the air concentration only varies in the bed-normal,
but not in the streamwise (x) or transverse (z) direction. Therefore, the following gradients
can be neglected ∂(·)/∂t = 0, ∂(·)/∂x = 0, ∂(·)/∂z = 0, and the advection–diffusion
equation reduces to

∂(v̄rc̄)
∂y

= ∂

∂y

(
Dt,y

∂ c̄
∂y

)
, (A1)

where v̄r is the rise velocity of air bubbles, which is defined positive in bed-normal
direction, c̄ is the volumetric air concentration (volume of air/total volume) and
Dt,y is the turbulent diffusivity. We note that the full derivation of the generalized
advection–diffusion equation, including Reynolds averaging and gradient diffusion theory,
is presented, amongst others, in Dey (2014). A first integration of (A1) leads to∫

∂

∂y
(v̄rc̄) dy =

∫
∂

∂y

(
Dt,y

∂ c̄
∂y

)
dy, (A2)

v̄rc̄ = Dt,y
∂ c̄
∂y

+ K1. (A3)

To simplify (A3), the partial differential is replaced by the total differential, only the first
set of solutions (K1 = 0) is considered and a constant rise velocity is assumed. Separating
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variables and performing a second integration from an arbitrary elevation y to δ/2 yields∫ c̄δ/2

c̄

1
c̄

dc̄ = v̄r

∫ δ/2

y

1
Dt,y

dy. (A4)

Now, we invoke a parabolic distribution of turbulent diffusivity (likewise Rouse 1961)

Dt,y = κu∗y
Sc

(
1 − y

δ

)
, (A5)

where κ is the von Kármán constant, u∗ is the friction velocity and Sc (= νt/Dt,y) is
the turbulent Schmidt number, defined as the ratio of eddy viscosity νt (i.e. momentum
diffusivity) and turbulent mass diffusivity. Substitution and integration of (A4) gives

c̄
c̄δ/2

= exp

(
v̄rSc

κu∗
ln

[
1

δ
y − 1

])
, (A6)

which simplifies to

c̄( y) = c̄δ/2

(
y

δ − y

)β

, y ≤ δ/2, (A7)

where β = v̄rSc/(κu∗) is the Rouse number. It is noted that Sc is assumed constant and
(A7) is similar to the well-known Rouse equation for sediment transport but incorporating
subtle differences, which are (i) a positively defined bubble rise velocity, (ii) a change of
integration limits and (iii) a use of the boundary layer thickness δ instead of the water
depth. The parameter Sc was encapsulated within β, for convenience.

We note that a purely parabolic diffusivity profile (A5) becomes negative for yi/δ >

1, which could occasionally happen if σ∗ is large. The next appropriate choice is a
parabolic-constant diffusivity distribution, which has been used for suspended sediment
transport (Coleman 1970; Dey 2014), and which we also observe in figure 6, where the
turbulent diffusivity Dt,y becomes independent of y. Adopting a constant Dt,y(δ/2) =
κu∗δ/(4Sc) for y > δ/2, we integrate (A3) between δ/2 and an arbitrary elevation∫ c̄

c̄δ/2

1
c̄

dc̄ = v̄r

∫ y

δ/2

4Sc

κu∗δ
dy, (A8)

yielding the following exponential distribution:

c̄( y) = c̄δ/2 exp
(

4β

δ

(
y − δ

2

))
, y > δ/2. (A9)
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