WEYL'S THEOREM FOR TENSOR PRODUCTS

YEONG-MOO SONG
Department of Mathematics Education, Sunchon National University, Sunchon 540-742, Korea e-mail: ymsong@sunchon.ac.kr and AN-HYUN KIM
Department of Mathematics, Changwon National University, Changwon 641-773, Korea
e-mail: ahkim@changwon.ac.kr

(Received 21 March, 2003; accepted 29 October, 2003)

Abstract

Suppose that A and B are 'isoloid' operators acting on a complex Banach space, that is, every isolated point of their spectra is an eigenvalue. In this note it is shown that if Weyl's theorem holds for both A and B then it holds for $A \otimes B$.

2000 Mathematics Subject Classification. 47A10, 47A53.

Throughout this note let \mathcal{X} denote an infinite dimensional complex Banach space. Let $\mathcal{L}(\mathcal{X})$ denote the algebra of bounded linear operators on \mathcal{X}. If $T \in \mathcal{L}(\mathcal{X})$ write $N(T)$ and $R(T)$ for the null space and range of $T ; \sigma(T)$ for the spectrum of $T ; \pi_{0}(T)$ for the set of eigenvalues of T. Recall ([4], [5]) that $T \in \mathcal{L}(\mathcal{X})$ is called upper semi-Fredholm if it has closed range with finite-dimensional null space and lower semi-Fredholm if it has closed range with its range of finite co-dimension. If T is either upper or lower semiFredholm, we call it semi-Fredholm and if T is both upper and lower semi-Fredholm, we call it Fredholm. The index of a semi-Fredholm operator $T \in \mathcal{L}(\mathcal{X})$ is given by

$$
\operatorname{ind}(T)=\operatorname{dim} N(T)-\operatorname{dim} X / R(T)
$$

An operator $T \in \mathcal{L}(\mathcal{X})$ is called Weyl if it is Fredholm of index zero. The essential spectrum $\sigma_{e}(T)$ and the Weyl spectrum $\omega(T)$ of $T \in \mathcal{L}(\mathcal{X})$ are defined by

$$
\begin{aligned}
\sigma_{e}(T) & =\{\lambda \in \mathbb{C}: T-\lambda I \text { is not Fredholm }\} ; \\
\omega(T) & =\{\lambda \in \mathbb{C}: T-\lambda I \text { is not Weyl }\}:
\end{aligned}
$$

then (cf. [5])

$$
\sigma_{e}(T) \subseteq \omega(T) \subseteq \sigma_{e}(T) \cup \operatorname{acc} \sigma(T) \quad \text { and } \quad \omega(T) \subseteq \eta \sigma_{e}(T)
$$

where we write acc K and ηK for the accumulation points and the polynomially-convex hull, respectively, of $K \subseteq \mathbb{C}$. We also write iso $K=K \backslash \operatorname{acc} K$ and

$$
\pi_{00}(T):=\left\{\lambda \in \text { iso } \sigma(T): 0<\operatorname{dim}(T-\lambda I)^{-1}(0)<\infty\right\}
$$

This paper was supported in part NON DIRECTED RESEARCH FUND from Suncheon National University.
for the isolated eigenvalues of finite multiplicity. We say that Weyl's theorem holds for $T \in \mathcal{L}(\mathcal{X})$ if there is equality

$$
\begin{equation*}
\sigma(T) \backslash \omega(T)=\pi_{00}(T) \tag{0.1}
\end{equation*}
$$

H. Weyl [10] discovered that the equality (0.1) holds for every hermitian operator. Weyl's theorem has been extended from hermitian operators to hyponormal operators and to Toeplitz operators by L. Coburn [3], to several classes of operators including seminormal operators by S. Berberian [1], [2], and to a few classes of Banach space operators [6], [7], [8]. In this note we examine Weyl's theorem for $A \otimes B$ when Weyl's theorem holds for A and B.

Recall that an operator $T \in \mathcal{L}(\mathcal{X})$ is called an isoloid operator if iso $\sigma(T) \subseteq \pi_{0}(T)$, i.e., every isolated point of the spectrum is an eigenvalue (cf. [2], [8]).

Our main theorem now follows.
Theorem 1. Suppose $A, B \in \mathcal{L}(\mathcal{X})$ are isoloid. If Weyl's theorem holds for both A and B then it holds for $A \otimes B$.

Proof. We first show that

$$
\begin{equation*}
\sigma(A \otimes B) \backslash \omega(A \otimes B) \subseteq \pi_{00}(A \otimes B) \tag{1}
\end{equation*}
$$

To show this it suffices to show that $\sigma(A \otimes B) \backslash \omega(A \otimes B) \subseteq$ iso $\sigma(A \otimes B)$. Assume to the contrary that $\lambda \in \sigma(A \otimes B) \backslash \omega(A \otimes B)$ and $\lambda \in \operatorname{acc} \sigma(A \otimes B)$. Since $\lambda \in$ acc $(\sigma(A) \cdot \sigma(B))$, it follows that $\lambda \in[\operatorname{acc} \sigma(A) \cdot \sigma(B)] \cup[\sigma(A) \cdot \operatorname{acc} \sigma(B)]$: indeed, more generally, if H and K are compact subsets of \mathbb{C} then $\operatorname{acc}(H \cdot K) \subseteq[(\operatorname{acc} H) \cdot K] \cup[H$. (acc $K)$]. But since Weyl's theorem holds for A and B, we have that acc $\sigma(A) \subseteq \omega(A)$ and $\operatorname{acc} \sigma(B) \subseteq \omega(B)$. Therefore

$$
\lambda \in \omega(A) \cdot \sigma(B) \cup \sigma(A) \cdot \omega(B)=\omega(A \otimes B),
$$

giving a contradiction. This proves (1). For the reverse inclusion we first observe

$$
\begin{gather*}
{[N(A) \otimes \mathcal{H}] \cup[\mathcal{H} \otimes N(B)] \subseteq N(A \otimes B)} \tag{2}\\
N(A-\mu I) \otimes N(B-v I) \subseteq N(A \otimes B-\mu \nu(I \otimes I)) \quad \text { for each } \mu, \nu \in \mathbb{C}: \tag{3}
\end{gather*}
$$

indeed the inclusion (2) is evident and the inclusion (3) comes from the observation

$$
\begin{aligned}
{[A \otimes B-\mu \nu(I \otimes I)](x \otimes y) } & =[(A-\mu I) \otimes B+\mu I \otimes(B-\nu I)](x \otimes y) \\
& =(A-\mu I) x \otimes B y+\mu x \otimes(B-\nu I) y .
\end{aligned}
$$

Suppose $\lambda \in \pi_{00}(A \otimes B)$. We then proceed as follows.
Claim 1. $\lambda \neq 0$.
Claim 2. If $\lambda=\mu \nu$ with $\mu \in \sigma(A)$ and $v \in \sigma(B)$, then $\mu \in$ iso $\sigma(A)$ and $v \in$ iso $\sigma(B)$.
Claim 3. If $\lambda=\mu \nu$ with $\mu \in \sigma(A)$ and $\nu \in \sigma(B)$ then $A-\mu I$ and $B-\nu I$ are both Weyl.

For Claim 1, we assume to the contrary that $\lambda=0$. Thus $0 \in$ iso $\sigma(A \otimes B)$, and hence $0 \in$ iso $\sigma(A)$ or $0 \in$ iso $\sigma(B)$. But since A and B are isoloid it follows that $0 \in \pi_{0}(A)$ or $0 \in \pi_{0}(B)$. Therefore by (2) $N(A \otimes B)$ is infinite dimensional, which contradicts our assumption $0 \in \pi_{00}(A \otimes B)$.

To prove Claim 2 we write $\lambda=\mu \nu$ with $\mu \in \sigma(A), \nu \in \sigma(B)$ and $\lambda \neq 0$. Assume to the contrary that $\mu \in \operatorname{acc} \sigma(A)$. Then we can find a sequence $\left\{\mu_{n}\right\}$ of distinct numbers in $\sigma(A)$ such that $\lim \mu_{n}=\mu$, so that $\lim \mu_{n} \nu=\lambda$, which shows that $\lambda \in \operatorname{acc} \sigma(A \otimes B)$, a contradiction; therefore $\mu \in$ iso $\sigma(A)$ and similarly $\nu \in$ iso $\sigma(B)$.

Towards Claim 3, note that $\mu \in \pi_{0}(A)$ and $v \in \pi_{0}(B)$ by Claim 2 because A and B are isoloid. We assume to the contrary that $A-\mu I$ is not Weyl. Thus $\mu \notin \pi_{00}(A)$ because A obeys Weyl's theorem. So we have that $N(A-\mu I)$ is infinite dimensional. Also since $N(B-\nu I) \neq\{0\}$, it follows from (3) that $N(A \otimes B-\mu \nu(I \otimes I))$ is infinite dimensional, which contradicts our assumption $\lambda \in \pi_{00}(A \otimes B)$. This compltes the proof of Claim 3.

From Claims 1,2, and 3 we can conclude that if $\lambda \in \pi_{00}(A \otimes B)$ then $\lambda \notin \omega(A)$. $\sigma(B) \cup \sigma(A) \cdot \omega(B)$, and hence $\lambda \in \sigma(A \otimes B) \backslash \omega(A \otimes B)$. Therefore

$$
\begin{equation*}
\pi_{00}(A \otimes B) \subseteq \sigma(A \otimes B) \backslash \omega(A \otimes B) \tag{4}
\end{equation*}
$$

By (1) and (4) we can conclude that Weyl's theorem holds for $A \otimes B$.
Example 2. (a) The "isoloid" condition is essential in Theorem 1. To see this let T be an injective quasinilpotent operator on ℓ_{2} and define

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & T+2
\end{array}\right): \mathbb{C} \oplus \mathbb{C} \oplus \ell_{2} \longrightarrow \mathbb{C} \oplus \mathbb{C} \oplus \ell_{2}
$$

Then

$$
\sigma(A)=\{1,2,4\}, \omega(A)=\{2\}, \text { and } \pi_{00}(A)=\{1,4\} ;
$$

so Weyl's theorem holds for A, while

$$
\begin{aligned}
\sigma(A \otimes A) & =\sigma(A) \cdot \sigma(A)=\{1,2,4,8,16\} \\
\omega(A \otimes A) & =\sigma(A) \cdot \omega(A)=\{2,4,8\} \\
\pi_{00}(A \otimes A) & =\{1,4,16\}
\end{aligned}
$$

so Weyl's theorem fails for $A \otimes A$. Note that A is not isoloid.
(b) On the other hand, the condition "Weyl's theorem holds for both A and B " is essential in Theorem 1. If Weyl's theorem does not hold for either A or B, then Theorem 1 may fail. To see this, consider the operators on $\ell_{2} \oplus \ell_{2}$ defined by

$$
A=U \oplus U^{*} \quad \text { and } \quad B=\left(I-U U^{*}\right) \oplus 0_{\infty}
$$

where U is the unilateral shift on ℓ_{2}. Let \mathbb{D} and \mathbb{T} denote the closed unit disk and the unit circle, respectively. Then we have that (i) A and B are both isoloid; (ii) $\sigma(A)=\mathbb{D}$ and $\omega(A)=\mathbb{T}$, and hence Weyl's theorem fails for A; (iii) $\sigma(B)=\{0,1\}, \omega(B)=\{0\}$ and $\pi_{00}(B)=\{1\}$, and hence Weyl's theorem holds for B; (iv) $\sigma(A \otimes B)=\mathbb{D}$ and $\omega(A \otimes$ $B)=\mathbb{T} \cup\{0\}$, and hence Weyl's theorem fails for $A \otimes B$.
(c) The converse of Theorem 1 may not be true in general. Indeed if $A=U \oplus U^{*}$ as in (b) then $\sigma(A \otimes 1)=\mathbb{D}, \omega(A \otimes 1)=\mathbb{D}$ and $\pi_{00}(A \otimes 1)=\emptyset$, which implies that Weyl's theorem holds for $A \otimes 1$ although A does not satisfy Weyl's theorem.

If \mathcal{H} is a complex Hilbert space and $T \in \mathcal{L}(\mathcal{H})$, write $W(T)$ for the numerical range of T. It is also familiar that $W(T)$ is convex and $\operatorname{conv} \sigma(T) \subseteq \mathrm{cl} W(T)$. An operator T is called convexoid if $\operatorname{conv} \sigma(T)=\mathrm{cl} W(T)$. Also T is called restriction-convexoid if the restriction of T to every invariant subspace is convexoid and is called reductionconvexoid if every direct summand of T is convexoid. It is known [2] that hyponormal \Rightarrow restriction-convexoid \Rightarrow isoloid.

Corollary 3. If \mathcal{H} is a complex Hilbert space and $A, B \in \mathcal{L}(\mathcal{H})$ are restrictionconvexoid then Weyl's theorem holds for $A \otimes B$.

Proof. By an argument of Prasanna [9, Theorem 2.1], Weyl's theorem holds for restriction-convexoid operators. Thus the result immediately follows from Theorem 1.

Weyl's theorem may fail for reduction-convexoid operators. For example if $A=$ $U \oplus U^{*}$, where U is the unilateral shift on ℓ_{2}, then A is reduction-convexoid because U and U^{*} are both convexoid and have no nontrivial reducing subspaces, while Weyl's theorem fails for A. Note that A is not restriction-convexoid.

Acknowledgement. The authors are grateful to the referee for helpful comments concerning this paper.

REFERENCES

1. S. K. Berberian, An extension of Weyl's theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273-279.
2. S. K. Berberian, The Weyl spectrum of an operator, Indiana Univ. Math. J. 20 (1970), 529-544.
3. L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.
4. R. E. Harte, Fredholm, Weyl and Browder theory, Proc. Royal Irish Acad. Sect. A 85 (1985), 151-176.
5. R. E. Harte, Invertibility and singularity for bounded linear operators (Dekker, New York, 1988).
6. V. I. Istrǎtescu, On Weyl's spectrum of an operator. I, Rev. Roum. Math. Pures Appl. 17 (1972), 1049-1059.
7. W. Y. Lee and H. Y. Lee, On Weyl's theorem, Math. Japan 39 (1994), 545-548.
8. K. K. Oberai, On the Weyl spectrum, Illinois J. Math. 18 (1974), 208-212.
9. S. Prasanna, Weyl's theorem and thin spectra, Indian Acad. Sci. (Math. Sci.) 91 (1982), 59-63.
10. H. Weyl, Über beschränkte quadratische Formen, deren Differenz, vollsteig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392.
