ON RIESZ SUMMABILITY FACTORS

by D. BORWEIN and B. L. R. SHAWYER

(Received 21 July, 1961, and in revised form 28 November, 1961)

1. Suppose throughout that a, k are positive numbers and that p is the integer such that $k-1 \leqq p<k$. Suppose also that $\phi(w), \psi(w)$ are functions with absolutely continuous $(p+1)$ th derivatives in every interval $[a, W]$ and that $\phi(w)$ is positive and unboundedly increasing. Let $\lambda=\left\{\lambda_{n}\right\}$ be an unboundedly increasing sequence with $\lambda_{1}>0$.

Given a series $\sum_{n=1}^{\infty} a_{n}$, and a number $m \geqq 0$, we write

$$
A_{m}(w)=\left\{\begin{array}{cl}
\sum_{\lambda_{n} \leqq w}\left(w-\lambda_{n}\right)^{m} a_{n} & \text { if } w>\lambda_{1} \\
0 & \text { otherwise }
\end{array}\right.
$$

and $A(w)=A_{0}(w)$.
If $w^{-m} A_{m}(w)$ tends to a finite limit as $w \rightarrow \infty, \sum_{n=1}^{\infty} a_{n}$ is said to be summable (R, λ, m).
The object of this note is to obtain conditions sufficient to ensure, when k is not an integer, the truth of the proposition
P. $\sum_{n=1}^{\infty} a_{n} \psi\left(\lambda_{n}\right)$ is summable $(R, \phi(\lambda), k)$ whenever $\sum_{n=1}^{\infty} a_{n}$ is summable (R, λ, k).

For integral values of k, the following theorem is known [1].
T_{1}. If
(i) $\gamma(w)$ is positive and absolutely continuous in every interval $[a, W]$ and $\gamma^{\prime}(w)=O(1)$ for $w \geqq a$,
(ii) $w^{n} \psi^{(n)}(w)=0\left\{\left(\frac{\gamma(w)}{w}\right)^{k-n}\right\} \quad(n=0,1, \ldots, k ; w \geqq a)$,
(iii) $\int_{0}^{\infty} t^{k}\left|\psi^{(k+1)}(t)\right| d t<\infty$,
(iv) $\int_{a}^{w}\{\gamma(t)\}^{n}\left|\phi^{(n+1)}(t)\right| d t=O\{\phi(w)\} \quad(n=1,2, \ldots, k ; w \geqq a)$,
then P .
Other known theorems, which hold for all $k \geqq 0$, are
T_{2}. If $\phi(w)=e^{w}$ and $\psi(w)=w^{-k}$, then P ;
T_{3}. If
(i) $\phi(w)$ is a logarithmico-exponential function,
(ii) $\frac{1}{w}<\frac{\phi^{\prime}(w)}{\phi(w)}<1$,
(iii) $\psi(w)=\left\{\frac{\phi(w)}{w \phi^{\prime}(w)}\right\}^{k}$,
then P ;
and T_{3}^{\prime}, which is more general than T_{3}, in that hypothesis (ii) is replaced by
(ii) $\frac{1}{w} \leqslant \frac{\phi^{\prime}(w)}{\phi(w)}$.
T_{2}, which is included in T_{3}^{\prime}, is a well known theorem of Hardy $[4,30]$ and T_{3} and T_{3}^{\prime} are due to Guha [2], who derived the latter from the former by means of standard results. For integral values of k, the hypotheses of T_{1} are satisfied when $\phi(w), \psi(w)$ are as in T_{3}^{\prime} and $\gamma(w)=\phi(w) / \phi^{\prime}(w)$.

Suppose, from now on, that k is not an integer. We shall prove the following theorems as companions to T_{1}.
T_{A}. If
(i) $\gamma(w)$ is positive and absolutely continuous in every interval $[a, W]$, and $\gamma^{\prime}(w)=O(1)$ for $w \geqq a$,
(ii) $(a) \psi(w)=O\left(\left\{\frac{\gamma(w)}{w}\right\}^{k}\right)$ for $w \geqq a$,
(b) $w^{n} \psi^{(n)}(w)=O\left(\left\{\frac{\gamma(w)}{w}\right\}^{p+1-n}\right)$ for $n=1,2, \ldots, p+1$ and $w \geqq a$,
(iii) $\int_{a}^{\infty} t^{p+1}\left|\psi^{(p+2)}(t)\right| d t<\infty$,
(iv) $\phi^{\prime}(w)$ is positive monotonic non-decreasing for $w \geqq a$,
(v) $\gamma(w) \phi^{\prime}(w)=O\{\phi(w)\}$ for $w \geqq$ a or $\{\gamma(w)\}^{n-1} \phi^{(n)}(w) / \phi^{\prime}(w)$ is of bounded variation in $[a, \infty)$ for $n=1,2, \ldots, p+1$ according as $0<k<1$ or $k>1$,
(vi) $\phi^{\prime \prime}(w) / \phi^{\prime}(w)$ is monotonic non-increasing for $w \geqq a$,
(vii) $h_{n}(w)=\psi(w)\left\{\phi^{\prime}(w)\right\}^{k-n}\{\gamma(w)\}^{-n}$ is positive monotonic in the range $w \geqq$ a for $n=0,1, \ldots, p$, possibly in different senses for different values of n,
(viii) $\phi(w)>c w^{k /(k-p)}$ for $w \geqq a$, where c is a positive constant, then P .
T_{B}. If T_{A} (i) to T_{A} (vii) inclusive hold, and, in addition,
(vii)' $h_{p}(w)$ is non-decreasing,
then P .

It is evident that T_{2}, for non-integral k, is included in T_{A}, and it can readily be shown that, under the hypotheses of T_{3}, the hypotheses of T_{A} are satisfied with $\gamma(w)=\phi(w) / \phi^{\prime}(w)$ and $\phi(w), \psi(w)$ as in T_{3}.

We are indebted to the referee for valuable suggestions which led to the above formulation of the results. In the original version of our manuscript we proved that P is a consequence of conditions T_{A} (i) to $\mathrm{T}_{A}(\mathrm{vi})$ inclusive together with the condition that $h_{n}(w)$ is a positive monotonic non-decreasing function of w in the range $w \geqq a$ for $n=0,1, \ldots, p$. The argument in $\S 4$ is due to the referee: it shows that the conditions of T_{B} are in fact more stringent than those of T_{A}.
2. The following lemmas are required.

Lemma 1. If $\mathrm{T}_{A}(\mathrm{i})$ and $\mathrm{T}_{A}(\mathrm{v})$, then for $n=1,2, \ldots, p+1$ and $w \geqq a$,

$$
\begin{equation*}
\int_{0}^{w}\{\gamma(t)\}^{n-1}\left|\phi^{(n)}(t)\right| d t=O\{\phi(w)\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\{\gamma(w)\}^{n} \phi^{(n)}(w)=O\{\phi(w)\} \tag{2.2}
\end{equation*}
$$

Proof. When $0<k<1$, (2.2) is the same as the operative hypothesis in $\mathrm{T}_{A}(\mathrm{v})$ and (2.1) is a trivial consequence. Suppose that $k>1$. Then (2.1) follows from the appropriate part of T_{A} (v) by integration; hence

$$
\gamma(w) \phi^{\prime}(w)=\gamma(a) \phi^{\prime}(a)+\int_{a}^{w} \gamma(t) \phi^{\prime \prime}(t) d t+\int_{a}^{w} \gamma^{\prime}(t) \phi^{\prime}(t) d t=O\{\phi(w)\}
$$

since $\gamma^{\prime}(t)=O(1)$, and (2.2) is an immediate consequence. (Cf. [1, Lemma 2].)
Lemma 2. The nth derivative of $\{g(t)\}^{m}$ is a sum of a number of terms like

$$
A\{g(t)\}^{m-\sigma} \prod_{v=1}^{n}\left\{g^{(v)}(t)\right\}^{\alpha_{v}}
$$

where A is a constant, and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are non-negative integers, such that

$$
1 \leqq \sum_{v=1}^{n} \alpha_{v}=\sigma \leqq \sum_{v=1}^{n} v \alpha_{v}=n
$$

This is a particular case of a theorem due to Faa di Bruno [5, I, pp. 89-90].
Lemma 3. If a_{n} is real, $a \leqq \xi \leqq w$, then

$$
\frac{\Gamma(k+1)}{\Gamma(p+1) \Gamma(k-p)}\left|\int_{a}^{\xi} A_{p}(t)(w-t)^{k-p-1} d t\right| \leqq \max _{a \leq t \leq \xi}\left|A_{k}(t)\right| .
$$

A proof of this lemma has been given by Hardy and Riesz [4, 28].

Lemma 4. If

$$
\varlimsup_{w \rightarrow \infty} \int_{a}^{w}|f(w, t)| d t<\infty \quad \text { and } \lim _{w \rightarrow \infty} \int_{a}^{y}|f(w, t)| d t=0
$$

for every finite $y>a$, and if $s(t)$ is a bounded measurable function in (a, ∞) which tends to zero as t tends to infinity, then

$$
\lim _{w \rightarrow \infty} \int_{a}^{\infty} f(w, t) s(t) d t=0 .
$$

For a proof of this simple result see [3,50] or [1, Lemma 3].
Lemma 5. If $\mathrm{T}_{A}(\mathrm{iv})$ and $\mathrm{T}_{A}(\mathrm{vi})$, then

$$
\chi(t)=\frac{1}{\phi^{\prime}(t)} \cdot \frac{\phi(w)-\phi(t)}{w-t}
$$

is a monotonic non-increasing function of t for $a \leqq t<w$.
Proof. We have, for $a \leqq t<w$,

$$
\begin{aligned}
\frac{\chi^{\prime}(t)}{\chi(t)} & =\frac{\{\phi(w)-\phi(t)\}-(w-t) \phi^{\prime}(t)}{\{\phi(w)-\phi(t)\}(w-t)}-\frac{\phi^{\prime \prime}(t)}{\phi^{\prime}(t)} \\
& =\frac{\phi^{\prime}(\eta)-\phi^{\prime}(t)}{\phi(w)-\phi(t)}-\frac{\phi^{\prime \prime}(t)}{\phi^{\prime}(t)} \quad(w>\eta>t) \\
& \leqq \frac{\phi^{\prime}(w)-\phi^{\prime}(t)}{\phi(w)-\phi(t)}-\frac{\phi^{\prime \prime}(t)}{\phi^{\prime}(t)} \\
& =\frac{\phi^{\prime \prime}(\xi)}{\phi^{\prime}(\xi)}-\frac{\phi^{\prime \prime}(t)}{\phi^{\prime}(t)} \quad(w>\xi>t) \\
& \leqq 0
\end{aligned}
$$

Since $\chi(t) \geqq 0$, the result follows.
3. Proof of T_{A}. We assume, without loss of generality, that

$$
A(w)=0 \text { for } 0 \leqq w \leqq a
$$

and

$$
\begin{equation*}
A_{k}(w)=o\left(w^{k}\right) \tag{3.1}
\end{equation*}
$$

and note that, for $w \geqq a$, it is sufficient to prove that

$$
\sum_{\phi\left(\lambda_{n}\right)<\phi(w)}\left\{1-\frac{\phi\left(\lambda_{n}\right)}{\phi(w)}\right\}^{k} \psi\left(\lambda_{n}\right) a_{n},
$$

which is equal to

$$
\begin{equation*}
\int_{a}^{w}\left\{1-\frac{\phi(t)}{\phi(w)}\right\}^{k} \psi(t) d A(t) \tag{3.2}
\end{equation*}
$$

tends to a finite limit as $w \rightarrow \infty$. After $p+1$ integrations by parts, (3.2) reduces to a constant multiple of

$$
\int_{a}^{w} A_{p}(t)\left(\frac{\partial}{\partial t}\right)^{p+1}\left(\left\{1-\frac{\phi(t)}{\phi(w)}\right\}^{k} \psi(t)\right) d t
$$

which, by Lemma 2 and Leibnitz's theorem on the differentiation of a product, can be expressed as a sum of constant multiples of integrals of the types

$$
\begin{aligned}
& I_{1}=\{\phi(w)\}^{-k} \int_{a}^{w} A_{p}(t) \psi^{(p+1)}(t)\{\phi(w)-\phi(t)\}^{k} d t \\
& I_{2}=\{\phi(w)\}^{-k} \int_{a}^{w} A_{p}(t) \psi^{(p+1-r)}(t)\{\phi(w)-\phi(t)\}^{k-\sigma} \prod_{v=1}^{r}\left\{\phi^{(v)}(t)\right\}^{\alpha_{v}} d t
\end{aligned}
$$

and

$$
I_{3}=\{\phi(w)\}^{-k} \int_{a}^{w} A_{p}(t) \psi(t)\{\phi(w)-\phi(t)\}^{k-\rho} \prod_{v=1}^{p+1}\left\{\phi^{(v)}(t)\right\}^{\beta_{v}} d t
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}, \beta_{1}, \beta_{2}, \ldots, \beta_{p+1}$ are non-negative integers such that

$$
\begin{aligned}
& 1 \leqq \sum_{v=1}^{r} \alpha_{v}=\sigma \leqq \sum_{v=1}^{r} v \alpha_{v}=r \leqq p \\
& 1 \leqq \sum_{v=1}^{p+1} \beta_{v}=\rho \leqq \sum_{v=1}^{p+1} v \beta_{v}=p+1
\end{aligned}
$$

Consider first I_{1}. Integrate it by parts to obtain

$$
I_{1}=-I_{11}+k I_{12}
$$

where

$$
I_{11}=\{\phi(w)\}^{-k} \int_{a}^{w} A_{p+1}(t) \psi^{(p+2)}(t)\{\phi(w)-\phi(t)\}^{k} d t
$$

and

$$
I_{12}=\{\phi(w)\}^{-k} \int_{a}^{w} A_{p+1}(t) \psi^{(p+1)}(t) \phi^{\prime}(t)\{\phi(w)-\phi(t)\}^{k-1} d t
$$

Now, by a standard result $[4,29]$ and (3.1),

$$
\begin{equation*}
A_{p+1}(w)=o\left(w^{p+1}\right) \tag{3.3}
\end{equation*}
$$

Hence, using (3.3) and $\mathrm{T}_{\boldsymbol{A}}$ (iii), we obtain

$$
\int_{a}^{\infty}\left|\psi^{(p+2)}(t) A_{p+1}(t)\right| d t<\infty
$$

and so, by Lebesgue's theorem on dominated convergence, I_{11} tends to

$$
l=\int_{a}^{\infty} \psi^{(p+2)}(t) A_{p+1}(t) d t \quad \text { as } \quad w \rightarrow \infty
$$

l being finite.
For I_{12}, consider the function

$$
f_{1}(w, t)=\{\phi(w)\}^{-k} t^{p+1} \psi^{(p+1)}(t) \phi^{\prime}(t)\{\phi(w)-\phi(t)\}^{k-1} .
$$

Using T_{A} (ii), we note that, for $w>t \geqq a$,

$$
\left|f_{1}(w, t)\right|<M_{1}\{\phi(w)\}^{-k} \phi^{\prime}(t)\{\phi(w)-\phi(t)\}^{k-1}
$$

where M_{1} is a constant. Hence $f_{1}(w, t)$ satisfies the hypotheses of Lemma 4, and so

$$
\int_{a}^{w} f_{1}(w, t) t^{-p-1} A_{p+1}(t) d t \rightarrow 0 \quad \text { as } \quad w \rightarrow \infty .
$$

That is $\lim _{w \rightarrow \infty} I_{12}=0$ and so

$$
\begin{equation*}
\lim _{w \rightarrow \infty} I_{1}=l . \tag{3.4}
\end{equation*}
$$

Considering now I_{2}, we see, on integrating by parts, that it is equal to the sum of constant multiples of integrals of the types

$$
\begin{aligned}
& I_{21}=\{\phi(w)\}^{-k} \int_{a}^{w} A_{p+1}(t) \psi^{(p+2-r)}(t)\{\phi(w)-\phi(t)\}^{k-\sigma} \prod_{v=1}^{r}\left\{\phi^{(v)}(t)\right\}^{\alpha_{v}} d t \\
& I_{22}=\{\phi(w)\}^{-k} \int_{a}^{w} A_{p+1}(t) \psi^{(p+1-r)}(t)\{\phi(w)-\phi(t)\}^{k-\sigma-1} \phi^{\prime}(t) \prod_{=1}^{r}\left\{\phi^{(v)}(t)\right\}^{\alpha_{v}} d t
\end{aligned}
$$

and

$$
I_{23}=\{\phi(w)\}^{-k} \int_{a}^{w} A_{p+1}(t) \psi^{(p+1-r)}(t)\{\phi(w)-\phi(t)\}^{k-a} \prod_{v=1}^{r+1}\left\{\phi^{(v)}(t)\right\}^{\delta_{v}} d t
$$

where $\alpha_{1}, \alpha_{1}, \ldots, \alpha_{r}, \delta_{1}, \delta_{1}, \ldots, \delta_{r+1}$ are non-negative integers, such that

$$
\begin{aligned}
& 1 \leqq \sum_{v=1}^{r} \alpha_{v}=\sigma \leqq \\
& \sum_{v=1}^{r} v \alpha_{v}=r \leqq p
\end{aligned}
$$

For I_{21}, consider

$$
f_{2}(w, t)=\{\phi(w)\}^{-k} t^{p+1} \psi^{(p+2-r)}(t)\{\phi(w)-\phi(t)\}^{k-\sigma} \prod_{v=1}^{r}\left\{\phi^{(v)}(t)\right\}^{\alpha_{v}} .
$$

Suppose that the non-vanishing α_{v} of highest suffix is α_{s}. Then

$$
\begin{aligned}
& \qquad f_{2}(w, t)=\{\phi(w)\}^{-k} t^{p+1} \psi^{(p+2-r)}(t) \phi^{(s)}(t)\{\phi(w)-\phi(t)\}^{k-\sigma} \prod_{v=1}^{s-1}\left\{\phi^{(v)}(t)\right\} \vee\left\{\phi^{(s)}(t)\right\}^{\alpha_{s}-1} \\
& \text { and }
\end{aligned}
$$

$$
1 \leqq \sum_{v=1}^{s} \alpha_{v}=\sigma \leqq \sum_{v=1}^{s} v \alpha_{v}=r
$$

Using (2.2) and T_{A} (ii), we find that, for $w>t \geqq a$,

$$
\begin{aligned}
\left|f_{2}(w, t)\right| & <M_{2}\{\phi(w)\}^{-k} t^{p+1}\{\gamma(t)\}^{r-1} t^{-p-1}\left|\phi^{(s)}(t)\right|\{\phi(w)-\phi(t)\}^{k-\sigma}\{\phi(t)\}^{\sigma-1}\{\gamma(t)\}^{s-r} \\
& <M_{2}\{\phi(w)\}^{-1}\{\gamma(t)\}^{s-1}\left|\phi^{(s)}(t)\right|
\end{aligned}
$$

where M_{2} is a constant. Because of (2.1), $f_{2}(w, t)$ satisfies the hypotheses of Lemma 4, and so

$$
\int_{a}^{w} f_{2}(w, t) t^{-p-1} A_{p+1}(t) d t \rightarrow 0 \quad \text { as } \quad w \rightarrow \infty .
$$

That is, $\lim _{w \rightarrow \infty} I_{21}=0$. Similarly $\lim _{w \rightarrow \infty} I_{23}=0$, and $\lim _{w \rightarrow \infty} I_{22}=0$ in the case $k-\sigma-1>0$. The remaining case of I_{22} is that in which $r=\sigma=p$, and we write the integral as

$$
\{\phi(w)\}^{-k} \int_{a}^{w} A_{p+1}(t) \psi^{\prime}(t)\left\{\phi^{\prime}(t)\right\}^{p+1}\{\phi(w)-\phi(t)\}^{k-p-1} d t
$$

Consider

$$
f_{3}(w, t)=\{\phi(w)\}^{-k} t^{p+1} \psi^{\prime}(t) \phi^{\prime}(t)\{\phi(w)-\phi(t)\}^{k-p-1}\left\{\phi^{\prime}(t)\right\}^{p}
$$

Using (2.2) and T_{A} (ii), we find that, for $w>t \geqq a$,

$$
\begin{aligned}
\left|f_{3}(w, t)\right| & <M_{3}\{\phi(w)\}^{-k} t^{p+1}\{\gamma(t)\}^{p t^{-p-1}} \phi^{\prime}(t)\{\phi(w)-\phi(t)\}^{k-p-1}\{\phi(t)\}^{p}\{\gamma(t)\}^{-p} \\
& <M_{3}\{\phi(w)\}^{p-k} \phi^{\prime}(t)\{\phi(w)-\phi(t)\}^{k-p-1},
\end{aligned}
$$

where M_{3} is a constant. Hence $f_{3}(w, t)$ satisfies the hypotheses of Lemma 4, and so

$$
\int_{a}^{w} f_{3}(w, t) t^{-p-1} A_{p+1}(t) d t \rightarrow 0 \quad \text { as } \quad w \rightarrow \infty .
$$

That is, $\lim _{w \rightarrow \infty} I_{22}=0$ in the case $r=\sigma=p$. Hence

$$
\begin{equation*}
\lim _{w \rightarrow \infty} I_{2}=0 \tag{3.5}
\end{equation*}
$$

Finally, consider I_{3}, which can be written in the form

$$
I_{3}=\{\phi(w)\}^{-k} \int_{a}^{w} A_{p}(t)(w-t)^{k-p-1}\{\phi(w)-\phi(t)\}^{p+1-\rho} g(t) H(t) h_{p+1-\rho}(t) d t
$$

where

$$
g(t)=\left(\frac{1}{\phi^{\prime}(t)} \cdot \frac{\phi(w)-\phi(t)}{w-t}\right)^{k-p-1} \text { for } a \leqq t<w, \quad g(w)=1
$$

and

$$
H(t)=\prod_{v=1}^{p+1}\left(\frac{\{\gamma(t)\}^{\nu-1} \phi^{(\nu)}(t)}{\phi^{\prime}(t)}\right)^{\beta_{v}},
$$

where $\beta_{1}, \beta_{2}, \ldots, \beta_{p+1}$ are non-negative integers such that

$$
1 \leqq \sum_{v=1}^{p+1} \beta_{v}=\rho \leqq \sum_{v=1}^{p+1} \nu \beta_{v}=p+1 .
$$

Then $H(t)$ is of bounded variation in $[a, \infty)$, because of $\mathrm{T}_{A}(\mathrm{v})$, and so can be expressed as the difference between two bounded monotonic non-increasing functions. Consequently, we can assume, without loss of generality, that $H(t)$ is bounded and monotonic non-increasing. Also, $\{\phi(w)-\phi(t)\}^{p+1-\rho}, g(t)$ and $h_{p+1-\rho}(t)$ are monotonic functions of t in the range $a \leqq t \leqq w$, the first being non-increasing since $p+1-\rho \geqq 0$ and the second non-decreasing by Lemma 5 . Using the second mean-value theorem for integrals twice, we now see that

$$
I_{3}=\{\phi(w)\}^{-k}\{\phi(w)\}^{p+1-\rho} H(a) g(w) h_{p+1-p}(x) \int_{\xi_{1}}^{\xi_{2}} A_{p}(t)(w-t)^{k-p-1} d t,
$$

where $w \geqq \xi_{1}>\xi_{2} \geqq a$, and $x=w$ or a according as $h_{p+1-\rho}(t)$ is non-decreasing or nonincreasing. Hence, by Lemma 3 and (3.1),

$$
I_{3}=o\left(\{\phi(w)\}^{p+1-\rho-k} w^{k} h_{p+1-\rho}(x)\right)=o(G(w, x)), \quad \text { say }
$$

Now, by (2.2), and T_{A} (ii),

$$
G(w, w)=O\left(\{\phi(w)\}^{p+1-\rho-k} \psi(w)\{\gamma(w)\}^{p-p-1}\left\{\phi^{\prime}(w)\right\}^{k+\rho-p-1} w^{k}\right)=O(1)
$$

and, by T_{A} (viii),

$$
\begin{aligned}
G(w, a) & =O\left(\{\phi(w)\}^{p+1-\rho-k} w^{k}\right) \\
& =O\left(\{\phi(w)\}^{1-\rho}\right)=O(1),
\end{aligned}
$$

since $\rho \geqq 1$. Hence

$$
\begin{equation*}
\lim _{w \rightarrow \infty} I_{3}=0 \tag{3.6}
\end{equation*}
$$

Because of (3.4), (3.5) and (3.6) we can deduce that (3.2) tends to a finite limit as w tends to infinity. This completes the proof of T_{1}.
4. Proof of T_{B}. Suppose that $\mathrm{T}_{A}(\mathrm{i}), \mathrm{T}_{A}(\mathrm{ii})(a)$ and T_{B} (vii)' hold. It is clearly sufficient to show that T_{A} (viii) is a consequence.

It follows from T_{B} (vii)' that, for $w \geqq a$,

$$
\frac{\psi(w)\left\{\phi^{\prime}(w)\right\}^{k-p}}{\{\gamma(w)\}^{p}}>c
$$

where c is a positive constant; and hence, by T_{A} (ii) (a),

$$
\{\gamma(w)\}^{p}=O\left(\psi(w)\left\{\phi^{\prime}(w)\right\}^{k-p}\right)=O\left(\left\{\frac{\gamma(w)}{w}\right\}^{k}\left\{\phi^{\prime}(w)\right\}^{k-p}\right) .
$$

Consequently, by $\mathrm{T}_{A}(\mathrm{i})$,

$$
w^{k}=O\left(\left\{\gamma(w) \phi^{\prime}(w)\right\}^{k-p}\right)=O\left(\left\{w \phi^{\prime}(w)\right\}^{k-p}\right)
$$

and so $w^{p}=O\left(\left\{\phi^{\prime}(w)\right\}^{k-p}\right)$.

Hence, for $w \geqq a, \phi^{\prime}(w)>b w^{p /(k-p)}$, where b is a positive constant, and T_{A} (viii) follows by integration.

REFERENCES

1. D. Borwein, A theorem on Riesz summability, J. London Math. Soc. (2) 31 (1956), 319-324.
2. U. C. Guha, Convergence factors for Riesz summability, J. London Math. Soc., (2) 31 (1956), 311-319.
3. G. H. Hardy, Divergent series (Oxford, 1949).
4. G. H. Hardy and M. Riesz, The general theory of Dirichlet series (Cambridge Tract No. 18, 1915).
5. C.-J. de la Vallée Poussin, Cours d'analyse infinitésimale (Louvain: Paris, 1921-22, 4th edn).

St Salvator's College
 St Andrews

