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Abstract. We study the automorphism group of the algebra Oq(Mn) of n × n
generic quantum matrices. We provide evidence for our conjecture that this group is
generated by the transposition and the subgroup of those automorphisms acting on
the canonical generators of Oq(Mn) by multiplication by scalars. Moreover, we prove
this conjecture in the case when n = 3.
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1. Introduction. Let � be a field and q be an element in �∗ := � \ {0}. We
assume that q is not a root of unity. The quantisation of the ring of regular functions
on m × n matrices with entries in � is denoted by Oq(Mm,n); this is the �-algebra
generated by the m × n indeterminates Yi,α, 1 ≤ i ≤ m and 1 ≤ α ≤ n, subject to the
following relations:

Yi,βYi,α = q−1Yi,αYi,β , (α < β);
Yj,αYi,α = q−1Yi,αYj,α, (i < j);
Yj,βYi,α = Yi,αYj,β , (i < j, α > β);
Yj,βYi,α = Yi,αYj,β − (q − q−1)Yi,βYj,α, (i < j, α < β).

It is well known that Oq(Mm,n) is a Noetherian domain that can be presented as an
iterated Ore extension over the base field � with the indeterminates Yi,α adjoined in
lexicographic order. Moreover, as all the defining relations of the algebra are quadratic,
Oq(Mm,n) is a graded algebra with all the indeterminates Yi,α in degree 1.

This paper is concerned with the symmetries of quantum matrices. More precisely,
we are studying the automorphism group of this family of algebras. As usual in the
quantum setting, it is to be expected that the automorphism group of Oq(Mm,n) is quite
small (see for instance [3] and references therein).
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In the case of Oq(Mm,n), there are two classes of automorphisms that are well
known:

1. The setH of automorphisms acting on the indeterminates Yi,α by multiplication
by nonzero scalars; this subgroup of Aut(Oq(Mm,n)) is isomorphic to the torus
(�∗)m+n−1 [3, Corollary 4.11 and its proof];

2. In the square case, where m = n, the transposition τ sending Yi,α to Yα,i is an
automorphism that generates a subgroup of order 2 of Aut(Oq(Mn)).

In the case where m �= n, we proved in [3] that Aut(Oq(Mm,n)) = H. Unfortunately,
the methods used in that paper are not sufficient to resolve the square case. However,
it was proved by Alev and Chamarie [1] that Aut(Oq(M2)) = H � 〈τ 〉. In view of these
results, it is natural to conjecture the following result.

CONJECTURE 1.1. Aut(Oq(Mn)) = H � 〈τ 〉.
The main aim of this paper is to provide evidence for this conjecture, and also to

prove it in the case when n = 3.
Set R := Oq(Mn), G := H � 〈τ 〉, and let σ ∈ Aut(R). In Section 2, we prove that

there exists g ∈ G such that:

g ◦ σ (Yi,α) − Yi,α is a sum of homogeneous terms of degree ≥ 2. (1)

Of course, we conjecture that g ◦ σ = id. The above result (1) already has interesting
consequences. Indeed, it follows from a result of Alev and Chamarie [1, Lemme 1.4.2]
that such a g ◦ σ belongs to the subalgebra of End�(R) generated by the derivations of
R. As the derivations of R were computed in [4], we can for instance prove that every
normal element of R is fixed by g ◦ σ (an element u is normal in R if uR = Ru).

Before going any further, let us mention that the normal elements of R have
been described in [3]. They are closely related to distinguished elements of R called
quantum minors. Recall that if I := {i1 < · · · < it},� = {α1 < · · · < αt} ⊆ {1, . . . , n}
with |I| = |�| = t �= 0, then the quantum minor [I|�] = [i1, . . . , it|α1, . . . , αt] is defined
by

[I|�] = [i1, . . . , it|α1, . . . , αt] :=
∑
w∈St

(−q)l(w)Yi1,αw(1) Yi2,αw(2) · · · Yit,αw(t) ,

where l is the usual length function on permutations.
It is well known that the quantum minors bi with i ∈ {1, . . . , 2n − 1} defined by

bi :=
{

[1, . . . , i|n − i + 1, . . . , n] if 1 ≤ i ≤ n
[i − n + 1, . . . , n|1, . . . , 2n − i] otherwise,

are normal in R, so that the main result of Section 2 shows that

g ◦ σ (bi) = bi, for all i ∈ {1, . . . , 2n − 1}.
Note that � := bn is the so-called quantum determinant of R. As we assume that q is
not a root of unity, the centre of R is precisely the polynomial algebra in the quantum
determinant �, and so the previous result shows in particular that every element in the
centre of R is left invariant by g ◦ σ .

In Section 2, we use (1) as well as graded arguments in order to prove that when
n = 3 we indeed have g ◦ σ = id, so that Conjecture 1.1 is true in this case.

Throughout this paper, we set [[a, b]] := {i ∈ � | a ≤ i ≤ b} and we assume n ≥ 3.
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2. The automorphism group of Oq(Mn): reduction step. In this section, we
investigate the group of automorphisms of R = Oq(Mn). We will be using graded
arguments, as well as the induced actions of Aut(R) on the set of height-one prime
ideals, on the centre and on the set of normal elements of R.

In the following, we will use several times the following well-known result
concerning normal elements of R = Oq(Mn).

LEMMA 2.1. Let u and v be two nonzero normal elements of R such that 〈u〉 = 〈v〉.
Then there exist λ,μ ∈ �∗ such that u = λv and v = μu.

2.1. Torus automorphisms of Oq(Mn). Recall from Section 1 that H denotes
the subgroup of those automorphisms of R acting on the indeterminates Yi,α

by multiplication by nonzero scalars. The proof of [3, Corollary 4.11] shows
that H is isomorphic to the torus (�∗)2n−1. More precisely, for any h :=
(a1, . . . , an, b1, . . . , bn−1) ∈ (�∗)2n−1, define an automorphism σh in H as follows:

σh(Yi,α) =
{

aibαYi,α if α < n
aiYi,α if α = n.

The proof of [3, Corollary 4.11] shows that the map h �→ σh from (�∗)2n−1 to H is an
isomorphism. The elements of H, that is the automorphisms σh with h ∈ (�∗)2n−1, are
called the torus automorphisms to R.

2.2. Height-one prime ideals of Oq(Mn). In [3, Propositions 3.5 and 3.6], we have
described the height-one primes of R. We now recall the results that we have obtained.

PROPOSITION 2.2. For any height-one prime ideal P of Oq(Mn), there exists an
irreducible polynomial V = ∑r1

i1=0 · · · ∑rn
in=0 ai1,...,in Xi1

1 , . . . , Xin
n ∈ �[X1, . . . , Xn] (where

ri = degXi
V for all i ∈ {1, . . . , n}) such that P = 〈u〉, where

u :=
r1∑

i1=0

· · ·
rn∑

in=0

ai1,...,in

n∏
j=1

bij
j brj−ij

n+j .

(By convention, we set b2n := 1.)
Moreover, u is normal in R.

2.3. q-commutation, gradings and automorphisms. Recall that the relations that
define R = Oq(Mn) are all quadratic, so that R = ⊕i∈�Ri is a �-graded algebra, the
canonical generators Yi,α of R having degree 1. Note, for later use, that a t × t quantum
minor of R is a homogeneous element of degree t with respect to this grading of R. In
the following, R will always be endowed with this grading.

In [3, Corollary 4.3], we have shown the following result.

PROPOSITION 2.3. Let σ be an automorphism of R = Oq(Mn) and x be an
homogeneous element of degree d of R. Then, σ (x) = yd + y>d , where yd ∈ Rd \ {0}
and y>d ∈ R>d .

Note that the torus automorphisms of R preserve degrees. We finish this section
by recording the following result for later use.
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LEMMA 2.4. Let σ ∈ Aut(R) such that there exist nonzero scalars λi,α with

σ (Yi,α) − λi,αYi,α ∈ R≥2 for all (i, α).

Then there exists a torus automorphism σh ∈ H such that

σh ◦ σ (Yi,α) − Yi,α ∈ R≥2 for all (i, α).

Proof. Assume i < j and α < β. Applying σ to the relation Yj,βYi,α = Yi,αYj,β −
(q − q−1)Yi,βYj,α, and then identifying the degree 2 components, yields

λi,αλj,β = λi,βλj,α

for all i < j and α < β. Hence, the matrix (λi,α) has rank one, so that there exist
a1, . . . , an, b1, . . . , bn−1, bn = 1 ∈ �∗ such that

λi,α = aibα

for all (i, α). Set h = (a−1
1 , . . . , a−1

n , b−1
1 , . . . , b−1

n−1) ∈ (�∗)2n−1. Then one easily
checks that the automorphism σh ∈ H has the property that σh ◦ σ (Yi,α) − Yi,α ∈
R≥2 for all (i, α). �

2.4. Automorphism group of Oq(Mn): action on the centre. Recall that the centre
of R = Oq(Mn) is the polynomial ring �[�], where � denotes the quantum determinant
of R. We now apply the results of the previous section to R = Oq(Mn) to prove that
the quantum determinant � of R is an eigenvector of every automorphism of R.

PROPOSITION 2.5. Let σ be an automorphism of R. Then there exists μ ∈ �∗ such
that σ (�) = μ�.

Proof. Since σ is an automorphism of R, it induces an automorphism of the centre
�[�] of R. Hence, there exist μ ∈ �∗ and λ ∈ � such that σ (�) = μ� + λ. Moreover,
� is an homogeneous element of degree n of R = Oq(Mn). Hence, Proposition 2.3
shows that we must have σ (�) ∈ R≥n. Naturally, this forces λ to be zero. �

2.5. Automorphism group of Oq(Mn): action on the normal element b1 = Y1,n.

LEMMA 2.6. Let σ ∈ Aut(R). Then there exist ε ∈ {0, 1}, P, Q, P′, Q′ ∈ �[X ] such
that

τ ε ◦ σ (Y1,n) = P(�)b1 + Q(�)bn+1 and σ−1 ◦ τ ε(Y1,n) = P′(�)b1 + Q′(�)bn+1.

Proof. As 〈b1〉 = 〈Y1,n〉 is a height-one prime ideal of R, the ideal 〈σ (b1)〉 must also
be a height-one prime of R. It follows from Proposition 2.2 that 〈σ (Y1,n)〉 = 〈u〉, where

u :=
r1∑

i1=0

· · ·
rn∑

in=0

ai1,...,in

n∏
j=1

bij
j brj−ij

n+j
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is normal in R. Hence, we deduce from Lemma 2.1 that

σ (Y1,n) = λu =
r1∑

i1=0

· · ·
rn∑

in=0

a′
i1,...,in

n∏
j=1

bij
j brj−ij

n+j ,

where λ ∈ �∗ and a′
i1,...,in := λai1,...,in .

On the other hand, it follows from Proposition 2.3 that σ (Y1,n) = u1 + u≥2, with
u1 ∈ R1 \ {0} and u≥2 ∈ R≥2. Since bi is homogeneous of degree i if i ≤ n , and 2n − i
if i ≥ n, comparing the two expressions of σ (Y1,n) that we have obtained leads to

either σ (Y1,n) = P(�)b1 + Q(�)bn+1 or σ (Y1,n) = P(�)bn−1 + Q(�)b2n−1.

Now, the existence of ε such that τ ε ◦ σ (Y1,n) = P(�)b1 + Q(�)bn+1 easily follows
from the fact that τ (�) = �, and τ (bi) = b2n−i for all i.

Note that the previous reasoning also applies to σ−1 ◦ τ ε , so that σ−1 ◦
τ ε(Y1,n) = P′(�)b1 + Q′(�)bn+1 or σ−1 ◦ τ ε(Y1,n) = P′(�)bn−1 + Q′(�)b2n−1. Recall,
from Proposition 2.5, that there exists μ ∈ �∗ such that σ−1 ◦ τ ε(�) = μ�, so that
applying σ−1 ◦ τ ε to τ ε ◦ σ (Y1,n) = P(�)b1 + Q(�)bn+1 leads to

Y1,n = P(μ�)σ−1 ◦ τ ε(Y1,n) + Q(μ�)σ−1 ◦ τ ε(bn+1).

Comparing the degree 1 part of each side using Proposition 2.3, this easily implies
that the case σ−1 ◦ τ ε(Y1,n) = P′(�)bn−1 + Q′(�)b2n−1 is impossible, so that σ−1 ◦
τ ε(Y1,n) = P′(�)b1 + Q′(�)bn+1, as desired. �

2.6. Automorphism group of Oq(Mn): reduction step. In view of Lemma 2.6, it is
natural to introduce

G′ := {σ ∈ Aut(R) | σ (Y1,n) = P(�)b1 + Q(�)bn+1}.

Note that the proof of the previous lemma shows that G′ is invariant under taking
inverses.

LEMMA 2.7. Set Jr := Y1,1R + Y1,2R + · · · + Y1,n−1R and Jc := Y2,nR +
Y3,nR + · · · + Yn,nR. If σ ∈ G′, then σ (Jr) = Jr and σ (Jc) = Jc.

Proof. The proof is given for the case J := Jr; the proof for Jc is similar.
Let β ∈ [[1, n − 1]] and write σ (Y1,β) in the PBW basis of R:

σ (Y1,β) =
∑
γ∈�

cγ Y γ1,1

1,1 Y γ1,2

1,2 . . . Y γn,n
n,n ,
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where � is a finite subset of �n2
and each cγ �= 0. Recall that Y1,nY1,β = q−1Y1,βY1,n.

Hence, applying σ to this equality leads to

(P(�)Y1,n + Q(�)[2, . . . , n | 1, . . . , n − 1])

⎛
⎝∑

γ∈�

cγ Y γ1,1

1,1 Y γ1,2

1,2 . . . Y γn,n
n,n

⎞
⎠

= q−1

⎛
⎝∑

γ∈�

cγ Y γ1,1

1,1 Y γ1,2

1,2 . . . Y γn,n
n,n

⎞
⎠ (P(�)Y1,n + Q(�)[2, . . . , n | 1, . . . , n − 1]).

Now, since � is central in R, and [2, . . . , n | 1, . . . , n − 1]Y−1
1,n = bn+1b−1

1 is central in
the field of fractions of R, see [3, Theorem 3.4], we obtain

Y1,n

⎛
⎝∑

γ∈�

cγ Y γ1,1

1,1 Y γ1,2

1,2 . . . Y γn,n
n,n

⎞
⎠ = q−1

⎛
⎝∑

γ∈�

cγ Y γ1,1

1,1 Y γ1,2

1,2 . . . Y γn,n
n,n

⎞
⎠ Y1,n;

that is, ⎛
⎝∑

γ∈�

q−γ1,1−···−γ1,n−1+γ2,n+···+γn,n cγ Y γ1,1

1,1 Y γ1,2

1,2 . . . Y γn,n
n,n

⎞
⎠ Y1,n

= q−1

⎛
⎝∑

γ∈�

cγ Y γ1,1

1,1 Y γ1,2

1,2 . . . Y γn,n
n,n

⎞
⎠ Y1,n.

As R is a domain, this implies that∑
γ∈�

q−γ1,1−···−γ1,n−1+γ2,n+···+γn,n cγ Y γ1,1

1,1 Y γ1,2

1,2 . . . Y γn,n
n,n = q−1

∑
γ∈�

cγ Y γ1,1

1,1 Y γ1,2

1,2 . . . Y γn,n
n,n .

Identifying these two expressions in the PBW basis, and then using the fact that q is
not a root of unity leads to

−γ1,1 − · · · − γ1,n−1 + γ2,n + · · · + γn,n = −1

for all γ ∈ �. In particular, for all γ ∈ �, there exists β0 ∈ {1, . . . , n − 1} such that
γ1,β0 ≥ 1. Hence, σ (Y1,β) belongs to J, and so σ (J) ⊆ J.

One can also apply this argument to σ−1, so that we also have σ−1(J) ⊆ J. From
these two inclusions, we conclude that σ (J) = J. �

COROLLARY 2.8. Set Kr := 〈Y1,1, Y1,2, ..., Y1,n〉 = Y1,1R + Y1,2R + · · · + Y1,nR
and Kc := 〈Y1,n, Y2,n, ..., Yn,n〉 = Y1,nR + Y2,nR + · · · + Yn,nR. If σ ∈ G′, then σ (Kr) =
Kr and σ (Kc) = Kc.

Proof. Again, we only consider the case of K = Kr.
As J = Jr ⊂ K , Lemma 2.7 shows that J ⊂ σ (K).
On the other hand, K is a height n prime ideal of R, so that σ (K) is also a height

n prime ideal. Moreover, since J ⊂ σ (K), Y1,1, Y1,2, ..., Y1,n−1 belong to σ (K). Now,
(q − q−1)Y1,nYi,1 = Y1,1Yi,n − Yi,nY1,1 ∈ σ (K) for all i ∈ [[2, n]]. As σ (K) is (completely)
prime, this leads to: either Y1,n ∈ σ (K) or Yi,1 ∈ σ (K), for all i ∈ [[2, n]].
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We claim that the second possibility cannot happen. If it did, then σ (K) would
strictly contain the ideal generated by Yi,1, for i ∈ [[1, n]]. However, this ideal is prime
and has height n, the same height as σ (K). This is impossible.

Hence, Y1,n ∈ σ (K). As we already know that Y1,1, Y1,2, ..., Y1,n−1 belong to σ (K),
we obtain that K ⊆ σ (K). Now these two ideals are prime and each has height n, so
that they are equal; that is, σ (K) = K. �

PROPOSITION 2.9. Let G be the subgroup of Aut(R) generated by τ and the torus
automorphisms. Let σ ∈ Aut(R). Then there exists g ∈ G such that, for all (i, α) ∈ [[1, n]]2,
we have

g ◦ σ (Yi,α) − Yi,α ∈ R≥2.

Proof. In view of Lemma 2.4, it is enough to prove that there exist g ∈ G and
nonzero scalars λi,α with

g ◦ σ (Yi,α) − λi,αYi,α ∈ R≥2 for all (i, α).

First, it follows from Lemma 2.6 that there exist g′ ∈ G, and P, Q ∈ �[X ] such that

g′ ◦ σ (Y1,n) = P(�)b1 + Q(�)bn+1 = P(�)Y1,n + Q(�)[2, . . . , n | 1, . . . , n − 1].

Hence, it is enough to prove Proposition 2.9 when σ is an automorphism of R such
that

σ (Y1,n) = P(�)Y1,n + Q(�)[2, . . . , n | 1, . . . , n − 1];

that is, when σ ∈ G′.
So, let σ ∈ G′. It follows from Corollary 2.8 that σ (Kr) = Kr. Hence, σ induces an

automorphism of R/Kr an algebra that is isomorphic toOq(Mn−1,n) via an isomorphism
that sends Yi,α + Kr to yi−1,α, where yi,α denote the canonical generators ofOq(Mn−1,n).
Hence, it follows from [3] that there exist λi,α ∈ �∗ such that

σ (Yi,α) − λi,αYi,α ∈ Kr,

for all (i, α) ∈ [[2, n]] × [[1, n]].
Let (i, α) ∈ [[2, n]] × [[1, n]]. Then there exist μ1, . . . , μn ∈ � and u≥2 ∈ R≥2 such

that

σ (Yi,α) = λi,αYi,α + μ1Y1,1 + · · · + μnY1,n + u≥2. (2)

Similarly, using the fact that σ (Kc) = Kc, we obtain that for all (i, α) ∈ [[1, n]] ×
[[1, n − 1]], there exist λ′

i,α ∈ �∗, μ′
1, . . . , μ

′
n ∈ � and u′

≥2 ∈ R≥2 such that

σ (Yi,α) = λ′
i,αYi,α + μ′

1Y1,n + · · · + μ′
nYn,n + u′

≥2. (3)

Comparing equations (2) and (3), we obtain that for all (i, α) ∈ [[2, n]] × [[1, n − 1]],
there exist λi,α ∈ �∗, μi,α ∈ � and v≥2 ∈ R≥2 such that

σ (Yi,α) = λi,αYi,α + μi,αY1,n + v≥2. (4)
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Now, assume that (i, α) ∈ [[2, n]] × [[1, n − 2]]. Applying σ to Yi,αYi,α+1 = qYi,α+1Yi,α,
and identifying the degree 2 terms, leads to

(λi,αYi,α + μi,αY1,n)(λi,α+1Yi,α+1 + μi,α+1Y1,n)

= q(λi,α+1Yi,α+1 + μi,α+1Y1,n)(λi,αYi,α + μi,αY1,n)

thanks to (4). Using the commutation relations in R, we get

(1 − q)λi,αμi,α+1Yi,αY1,n + (1 − q)λi,α+1μi,αYi,α+1Y1,n + (1 − q)μi,αμi,α+1Y 2
1,n = 0.

As q − 1 �= 0 and λi,αλi,α+1 �= 0, this forces μi,α = 0 and μi,α+1 = 0. Hence, we have
just proved that for all (i, α) ∈ [[2, n]] × [[1, n − 1]], there exist λi,α ∈ �∗, and v≥2 ∈ R≥2

such that

σ (Yi,α) = λi,αYi,α + v≥2,

as required.
Now let i ∈ [[2, n]]. As Yi,nY1,n = q−1Y1,nYi,n, we must have

σ (Yi,n)σ (Y1,n) = q−1σ (Y1,n)σ (Yi,n);

that is,

(λi,nYi,n + μ1Y1,1 + · · · + μnY1,n + u≥2) (P(�)b1 + Q(�)bn+1) =
q−1 (P(�)b1 + Q(�)bn+1) (λi,nYi,n + μ1Y1,1 + · · · + μnY1,n + u≥2) .

As � and bn+1b−1
1 are central in the field of fractions of R, we obtain

(λi,nYi,n + μ1Y1,1 + · · · + μnY1,n + u≥2)b1

= q−1b1(λi,nYi,n + μ1Y1,1 + · · · + μnY1,n + u≥2).

One can easily check that this forces μ1 = · · · = μn = 0.
Hence, for all i ∈ [[2, n]], there exist λi,n ∈ �∗ such that

σ (Yi,n) − λi,nYi,n ∈ R≥2.

Similarly, for all α ∈ [[1, n − 1]], there exist λ1,α ∈ �∗ such that

σ (Y1,α) − λ1,αY1,α ∈ R≥2.

To conclude, it just remains to prove that there exists λ1,n ∈ �∗ such that σ (Y1,n) −
λ1,nY1,n ∈ R≥2. This follows easily from Lemma 2.3 and the fact that σ ∈ G′. �

2.7. Summary. Recall that we conjecture that Aut(R) is the semidirect product
of H and the subgroup of the order of two generated by the transposition τ . We set
G = H � 〈τ 〉. The previous result shows that for all σ ∈ Aut(R), there exists g ∈ G such
that

g ◦ σ (Yi,α) − Yi,α ∈ R≥2

for all (i, α) ∈ [[1, n]]2.
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So to prove Conjecture 1.1 it is enough to prove that the only automorphism σ of
R such that

σ (Yi,α) − Yi,α ∈ R≥2, (5)

for all (i, α) ∈ [[1, n]]2, is the identity automorphism.
Automorphisms satisfying the above property (5) are closely related to derivations

of R. Indeed, let D(R) denote the subalgebra of End�(R) generated by the �-linear
derivations of R. Alev and Chamarie proved [1, Lemme 1.4.1] that there exists a family
(dl)l>0 of elements of D(R) such that for any element x ∈ Ri we have

σ (x) = x +
∑
l>0

dl(x) (6)

with dl(x) homogeneous of degree l + i. In [4], we computed the derivations of the
algebra R. Interestingly, it easily follows from [4, Theorem 2.9] that d(bi) ∈ 〈bi〉, for
each derivation d of R. Hence, the same is true for any element of D(R), and so we
deduce the following result from the above discussion.

PROPOSITION 2.10. Let σ ∈ Aut(R) such that σ (Yi,α) − Yi,α ∈ R≥2, for all (i, α) ∈
[[1, n]]2. Then σ (bi) = bi for all i ∈ {1, ..., 2n − 1}.

Proof. The above discussion shows that dl(bi) ∈ 〈bi〉 for all l > 0. Hence, we deduce
from (6) that σ (bi) ∈ 〈bi〉. Consequently, σ (bi) = λibi with λi ∈ �∗, by Lemma 2.1. On
the other hand,

σ (bi) = bi +
∑
l>0

dl(bi),

with dl(bi) homogeneous of degree l + deg(bi). Comparing the components with degree
equal to the degree of bi, we obtain λi = 1, so that σ (bi) = bi, as desired. �

3. Automorphisms of 3 × 3 quantum matrices. In this section, R denotes the
algebra of 3 × 3 quantum matrices. We prove our conjecture in the case when n = 3.
As explained in the previous section, all we need to do is to prove that the only
automorphism σ ∈ Aut(R) such that

σ (Yi,α) − Yi,α ∈ R≥2,

for all (i, α) ∈ [[1, 3]]2, is the identity automorphism. Observe that for such an
automorphism, σ (Yi,α) = Yi,α if and only if deg(σ (Yi,α)) = 1.

LEMMA 3.1. Let [I|�] be a t × t quantum minor and suppose that σ is an
automorphism such that σ (Yi,α) − Yi,α ∈ R≥2, for all (i, α) ∈ [[1, 3]]2. Then σ ([I|�]) −
[I|�] ∈ R≥t+1. As a consequence, σ ([I|�]) = [I|�] if and only if deg(σ ([I|�])) = t.

Proof. Easy, by induction, with t = 1 being given by the observation immediately
preceding the statement of this lemma. �

Let σ ∈ Aut(R) be such that

σ (Yi,α) − Yi,α ∈ R≥2,

for all (i, α) ∈ [[1, 3]]2.
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Set di,α := deg(σ (Yi,α)), for all (i, α) ∈ [[1, 3]]2. Our aim is to prove that di,α = 1 for
all (i, α); so that σ is then the identity automorphism. We note first that d1,3 = d3,1 = 1
by Proposition 2.10.

In the following lemma, we will use several times the anti-endomorphism � :
Oq(Mn) → Oq(Mn) defined on generators by �(Yi,α) = (−q)i−α [̃α|̃ i], see [5, Corollary
5.2.2]. Here, if I ⊆ {1, . . . , n}, then Ĩ := {1, . . . , n} \ I , and ĩ := {̃i} for any i ∈ {1, . . . , n}.
The effect of � on 2 × 2 quantum minors is given by �([I|�]) = (−q)I−�[�̃|̃I ]�, see
[2, Lemma 4.1], where the superscript I − � denotes the difference between the sum
of the entries of I and the sum of the entries of �.

LEMMA 3.2. Let σ ∈ Aut(R) be such that

σ (Yi,α) − Yi,α ∈ R≥2,

for all (i, α) ∈ [[1, 3]]2. Then d1,1 = d3,3 = 1.

Proof. Assume to the contrary that d1,1 + d3,3 > 2.
Recall from Proposition 2.10 that b2 = σ (b2) = σ (Y1,2)σ (Y2,3) − qσ (Y1,3)σ (Y2,2),

so that

b2 = σ (Y1,2)σ (Y2,3) − qY1,3σ (Y2,2).

Hence, comparing the degrees on both sides, we obtain

d1,2 + d2,3 = 1 + d2,2.

Similarly, by using b4, we obtain

d2,1 + d3,2 = 1 + d2,2.

Suppose that d1,1 + d2,2 ≤ d1,2 + d2,1 and that d2,2 + d3,3 ≤ d2,3 + d3,2. Then d1,1 +
2d2,2 + d3,3 ≤ d1,2 + d2,1 + d2,3 + d3,2 = 2 + 2d2,2, by using the above two equations. It
follows that d1,1 = d3,3 = 1, a contradiction to the initial assumption.

So either d1,1 + d2,2 > d1,2 + d2,1 or d2,2 + d3,3 > d2,3 + d3,2. By symmetry, we can
assume that d1,1 + d2,2 > d1,2 + d2,1. In this case, we easily get that deg(σ ([1, 2|1, 2])) =
d1,1 + d2,2.

Applying � to [1, 3|1, 3] = Y1,1Y3,3 − qY1,3Y3,1 gives the relation Y2,2[1, 2, 3|1, 2, 3]
= [1, 2|1, 2][2, 3|2, 3] − q[2, 3|1, 2][1, 2|2, 3]. Thus

σ (Y2,2)� = σ ([1, 2|1, 2])σ ([2, 3|2, 3]) − q[2, 3|1, 2][1, 2|2, 3].

Comparing degrees, we obtain

d2,2 + 3 = d1,1 + d2,2 + e,

where e := deg(σ ([2, 3|2, 3])) ≥ 2. This forces d1,1 = 1 and e = 2, so that σ (Y1,1) = Y1,1

and σ ([2, 3|2, 3]) = [2, 3|2, 3].
Applying σ to the quantum Laplace expansion � = Y1,1[2, 3|2, 3] −

qY1,2[2, 3|1, 3] + q2Y1,3[2, 3|1, 2], we obtain

� = Y1,1[2, 3|2, 3] − qσ (Y1,2)σ ([2, 3|1, 3]) + q2Y1,3[2, 3|1, 2].

https://doi.org/10.1017/S0017089513000529 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000529


AUTOMORPHISMS OF QUANTUM MATRICES 99

Hence, σ (Y1,2)σ ([2, 3|1, 3]) = Y1,2[2, 3|1, 3]. Thus, σ (Y1,2) = Y1,2 and σ ([2, 3|1, 3]) =
[2, 3|1, 3]. Similarly, we obtain σ (Y2,1) = Y2,1 and σ ([1, 3|2, 3]) = [1, 3|2, 3].

So σ acts as identity on the following elements of R: Y3,1, Y2,1, Y1,1, Y1,2, Y1,3,
[1, 2|2, 3], [1, 3|2, 3], [2, 3|2, 3], [2, 3|1, 3] and [2, 3|1, 2].

Applying � to [1, 3|1, 2] = Y1,1Y3,2 − qY1,2Y3,1 produces

Y3,2� = [1, 3|1, 2][2, 3|2, 3] − q[2, 3|1, 2][1, 3|2, 3]

= {Y1,1Y3,2 − qY1,2Y3,1}[2, 3|2, 3] − q[2, 3|1, 2][1, 3|2, 3]

which can be re-arranged to give{
� − Y1,1[2, 3|2, 3]

}
Y3,2 = −q

{
Y1,2Y3,1[2, 3|2, 3] + [2, 3|1, 2][1, 3|2, 3]

}
.

In this equation, all terms except Y3,2 are already known to be fixed by σ ; so
σ (Y3,2) = Y3,2 also.

Finally, all terms in [2, 3|1, 2] = Y2,1Y3,2 − qY2,2Y3,1 except Y2,2 are now known to
be fixed by σ ; so σ (Y2,2) = Y2,2 and d2,2 = 1. As we have already shown that d1,1 = 1,
we obtain d1,1 + d2,2 = 2 = d1,2 + d2,1, a contradiction! �

PROPOSITION 3.3. Let σ ∈ Aut(R) be such that σ (Yi,α) − Yi,α ∈ R≥2, for all (i, α) ∈
[[1, 3]]2. Then σ (Yi,α) = Yi,α for all i, α ∈ {1, 2, 3}.

Proof. It is enough to prove that di,α = 1 for all i, α ∈ {1, 2, 3}.
We already know from Proposition 2.10 and Lemma 3.2 that σ leaves invariant

the following quantum minors:

Y3,1, Y1,1, Y1,3, Y3,3, [1, 2|2, 3], [1, 3|1, 3], [2, 3|1, 2], [1, 2, 3|1, 2, 3].

One can easily check that

[1, 2|1, 3][1, 3|2, 3] = Y1,3[1, 2, 3|1, 2, 3] + q[1, 3|1, 3][1, 2|2, 3],

by applying � to the formula for [1, 2|2, 3] and re-arranging. As all the minors on the
right-hand side are left invariant by σ , this implies

σ ([1, 2|1, 3][1, 3|2, 3]) = [1, 2|1, 3][1, 3|2, 3].

As usual, it follows that σ ([1, 2|1, 3]) = [1, 2|1, 3] and σ ([1, 3|2, 3]) = [1, 3|2, 3].
Similarly, one obtains σ ([1, 3|1, 2]) = [1, 3|1, 2] and σ ([2, 3|1, 3]) = [2, 3|1, 3].
By a quantum Laplace expansion, we have:

[1, 3|1, 3]Y2,1 = q[2, 3|1, 3]Y1,1 + q−1[1, 2|1, 3]Y3,1.

As all of the minors on the right-hand side are left invariant by σ , this implies

σ (Y2,1[1, 3|1, 3]) = Y2,1[1, 3|1, 3].

As usual, this implies that σ (Y2,1) = Y2,1 (and σ ([1, 3|1, 3]) = [1, 3|1, 3]).
Similarly, one can prove that σ (Y1,2) = Y1,2, σ (Y3,2) = Y3,2 and σ (Y2,3) = Y2,3.
It just remains to prove that σ (Y2,2) = Y2,2. This easily follows from the facts that

[1, 2|2, 3] = Y1,2Y2,3 − qY2,2Y1,3 and that σ leaves invariant all these quantum minors
except maybe Y2,2. �
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From this proposition and Proposition 2.9, we deduce our main theorem:

THEOREM 3.4. The automorphism group of the algebra of 3 × 3 quantum matrices is
the semidirect product of the torus automorphisms and the cyclic group of order 2 given
by the transpose automorphism.

After this paper was completed, Conjecture 1.1 was proved in [6].
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