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Abstract. Let � be the division ring of real quaternions. Let SL(2, �) be
the group of 2 × 2 quaternionic matrices A = ( a b

c d ) with quaternionic determinant

det A = |ad − aca−1b| = 1. This group acts by the orientation-preserving isometries of
the five-dimensional real hyperbolic space. We obtain discreteness criteria for Zariski-
dense subgroups of SL(2, �).
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1. Introduction. Let Hn+1 be the (n + 1)-dimensional (real) hyperbolic space and
let M(n) denotes the (orientation-preserving) Möbius group that acts on Hn+1 by
isometries. Given a subgroup G of M(n), it is an interesting problem to ask when G
is discrete. In particular, one asks when a two-generator subgroup of M(n) is discrete.
It has been seen in the literature, especially for n = 2, that the discreteness of the two-
generator subgroups of G determine the discreteness of G. The linear group SL(2, �)
acts on ∂H3 ≈ �2 by linear fractional transformations, and this action identifies the
group M(2) with PSL(2, �), e.g. see [3]. The Jørgensen inequality in SL(2, �) gave
a sufficient algorithm for discreteness of a two-generator subgroup. There have been
many attempts in the literature to formulate generalizations of Jørgensen inequality in
higher dimensions and to obtain discreteness criteria using two-generator subgroups,
e.g. see [9, 13, 17, 18, 21] for some recent investigations in this direction.

A subgroup G of M(n) is called Zariski-dense if it does not have a global fixed point
and neither it preserves a proper totally geodesic subspace of Hn+1. In [1], Abikoff and
Haas proved that a Zariski-dense subgroup G of M(n) is discrete if and only if every
two-generator subgroup 〈f, g〉 of G is discrete. When n even, Abikoff and Haas proved
a stronger result that says that a Zariski-dense subgroup G of M(2m) is discrete if
and only if every cyclic subgroup of G is discrete. This implies that the discreteness
of a subgroup in M(2m) is controlled by the cyclic subgroups. In [7], Chen obtained
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a discreteness criterion that uses a fixed (test) map to check discreteness of a Möbius
subgroup. Chen proved that a Zariski-dense subgroup G of M(n) is discrete if for any
g in G, and a fixed non-trivial element f from M(n), the group 〈f, g〉 is discrete, where
f is not an irrational rotation (that is of infinite order) or if having finite order, it acts
as a non-identity Möbius transformation on the minimal sphere containing the limit
set of G. Chen’s discreteness criterion involves two-generator subgroups of M(n) with
only one generator from G itself.

Motivated by Chen’s work, it is natural to ask how far the test map f may be
chosen outside G. This was the line of investigation of Yang who asked this problem
for SL(2, �) in [22]. Yang gave a partial answer to this question and formulated a
conjecture for the remaining cases. In [4], Cao completed Yang’s programme by solving
Yang’s conjecture. Yang and Zhao [23] gave another proof to the conjecture. Recently,
Yang and Zhao [25] have obtained a discreteness criterion in SL(2, �) that says that
a non-elementary subgroup G of SL(2, �) is discrete if every two generator subgroup
〈g, fgf −1〉 is discrete, where g is a non-trivial element of G and f is an arbitrary but
fixed element in SL(2, �). The work of Cao and Yang et al. shows that the discreteness
of a subgroup G of SL(2, �) is completely determined by two-generator subgroups
〈f, g〉, where f is a test map and g is an element of G. However, given a test map f , it is
not clear from these works that whether the elements g from G can be restricted to a
smaller class.

The aim of this paper is to investigate the above problems in higher dimensions.
We focus on the group M(4) that provides the closest analogue of PSL(2, �) action
on the Riemann sphere by Möbius transformations. Let � be the division ring of

real quaternions. Let SL(2, �) be the group of 2 × 2 quaternionic matrices A =
(

a b
c d

)
with quaternionic determinant det A = |ad − aca−1b| = 1. The group PSL(2, �) =
SL(2, �)/{±I} can be identified with the group of orientation-preserving isometries
of the five-dimensional hyperbolic space using the quaternionic linear fractional
transformations, see [2, 14, 20]. We investigate the discreteness of two-generator
subgroups using this action.

To state our main results, we recall from [11, 14] that a parabolic element in
SL(2, �) is conjugate to

(
λ 1
0 λ

)
, |λ| = 1, λ ∈ �, (1.1)

and upto conjugacy, an elliptic or hyperbolic element A is given by

A =
(

λ 0
0 μ

)
, (1.2)

where λ,μ ∈ �, and A is hyperbolic if and only if |λ| �= 1 �= |μ|. If |λ| = |μ| = 1 and λ

is not similar to μ in �∗, then A is called 2-rotatory elliptic.

DEFINITION 1. Let A be an elliptic or hyperbolic element in SL(2, �) which is
represented by (1.1) or (1.2) up to conjugacy. We define the argument trace of A by

argtr(A) = arg(λ) + arg(μ),
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and the absolute trace of A by

abstr(A) = |λ| + |μ|.

Note that an element of SL(2, �) is hyperbolic if and only if abstr(A) > 2. Now
we state our main result.

THEOREM 1.1. Let G be a Zariski-dense subgroup of SL(2, �).

(1) Let f be a 2-rotatory elliptic element of SL(2, �) such that 0 < argtr(f ) < π
3 . If the

two generator subgroup 〈f, g〉 is discrete for every hyperbolic element g in G, then G
is discrete.

(2) Let f be a hyperbolic element of SL(2, �) such that

1
2

(abstr2(f ) − 3) < cos(argtr(f )).

If the two generator subgroup 〈f, g〉 is discrete for every hyperbolic element g in G,
then G is discrete.

(3) Let f be a parabolic element of SL(2, �) such that, up to conjugacy,

f =
(

1 μ

0 1

)
, |μ| ≤ 1.

If the two generator subgroup 〈f, g〉 is discrete for every hyperbolic element g in G,
then G is discrete.

After proving the above result, using similar methods, we have obtained the
following.

THEOREM 1.2. Let G be a Zariski-dense subgroup of SL(2, �).

(1) Let f be a 2-rotatory elliptic element of SL(2, �) such that 0 < argtr(f ) < π
3 . If the

two generator subgroup 〈f, gfg−1〉 is discrete and non-elementary for every hyperbolic
element g in G, then G is discrete.

(2) Let f be a hyperbolic element of SL(2, �) such that

1
2

(abstr2(f ) − 3) < cos(argtr(f )).

If the two generator subgroup 〈f, gfg−1〉 is discrete for every hyperbolic element g in
G, then G is discrete.

(3) Let f be a parabolic element of SL(2, �) such that, up to conjugacy,

f =
(

1 μ

0 1

)
, |μ| ≤ 1.

If the two generator subgroup 〈f, gfg−1〉 is discrete for every hyperbolic element g in
G, then G is discrete.

The above two theorems indicate that the discreteness of a Zariski-dense subgroup
G of SL(2, �), equivalently, M(n), n ≤ 5, is determined by the two-generator subgroups
involving a test map and the hyperbolic elements of G. It is interesting to note that our
choice of f in SL(2, �) lies in a very nice region where one can choose uncountably
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many irrational rotations which are of infinite orders. Given the dynamical type of the
test map, it belongs to a one parameter family where each element in the family may
be chosen as a test map.

We note here that the restrictions on argtr(f ) and abstr(f ) in both the theorems
are necessary. These quantities come from the Jørgensen type inequalities in [10] and
cannot be relaxed. In part (1) of both the theorems, the quantity argtr(f ) cannot be zero,
as in that case, f will reduce to a 1-rotatory elliptic. If argtr(f ) = π

3 , then the arguments
we give here become inconclusive. Similarly in part (2), equality of the given inequality
would imply that f is an elliptic of order at least seven, by [10, Corollary 8]. This would
contradict the hypothesis that f is hyperbolic.

Plan of the paper is as follows. In Section 2, we recall some preliminary results
that include Jørgensen type inequalities for two generator subgroups of SL(2, �) as
obtained in [10], also see [12, 19]. We apply these results to prove Theorems 1.1 and
1.2 in Section 3.

2. Preliminaries.

2.1. The quaternions. Let � denote the division ring of quaternions. Recall that
every element of � is of the form a0 + a1i + a2j + a3k,where a0, a1, a2, a3 ∈ �, and
i, j, k satisfy relations: i2 = j2 = k2 = −ijk = −1. Any a ∈ � can be uniquely written
as a = a0 + a1i + a2j + a3k. We define 
(a) = a0 = the real part of a and �(a) = a1i +
a2j + a3k = the imaginary part of a. Also, define the conjugate of a as a = 
(a) − �(a).

The norm of a is |a| =
√

a2
0 + a2

1 + a2
2 + a2

3. Two quaternions a, b are said to be similar

if there exists a non-zero quaternion c such that b = c−1ac and we write it as a � b. It
is easy to verify that a � b if and only if 
(a) = 
(b) and |a| = |b|. Thus, the similarity
class of every quaternion a contains a pair of complex conjugates with absolute value
|a| and real part equal to 
(a). Let a be similar to reiθ , θ ∈ (−π, π ]. We shall adopt the
convention of calling |θ | as the argument of a and will denote it by arg(a).

2.2. Quaternionic matrices. Let M(2, �) denote the group of all 2 ×
2 quaternionic matrices. For M =

(
a b
c d

)
∈ M(2, �), define the ‘quaternionic

determinant’ of M by

det M = |ad − aca−1b|.

THEOREM 2.1 ([12, 14]). Let M =
(

a b
c d

)
∈ M(2, �) be such that det M �= 0. Then,

M is invertible and

M−1 =
(

d∼ −b∼

−c∼ a∼

)
, where

d∼ = l−1
11 d, c∼ = l−1

21 c, b∼ = l−1
12 b, a∼ = l−1

22 a;
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l11 = da − dbd−1c l12 = bdb−1a − bc

l21 = cac−1d − cb l22 = ad − aca−1b.

Let

SL(2, �) =
{(

a b
c d

)
∈ M(2, �) : det

(
a b
c d

)
= |ad − aca−1b| = 1

}
.

The group SL(2, �) acts by the orientation-preserving isometries of the hyperbolic
5-space H5, see [14] for more details. We identify the extended quaternionic line �̂ =
� ∪ {∞} to the conformal boundary �4 of the hyperbolic 5-space. The group SL(2, �)
acts on �̂ by Möbius transformations:

(
a b
c d

)
: Z �→ (aZ + b)(cZ + d)−1.

The action is extended over H5 by Poincaré extensions. Under this action, the group of
orientation-preserving isometries of H5 is PSL(2, �) = SL(2, �)/{+I,−I}. However,
often we will not distinguish between an isometry of H5 and its linear representation
in SL(2, �).

2.3. Classification of isometries. Every isometry of H5 has a fixed point on the

closure of the hyperbolic space H
5

and this gives us the usual classification of elliptic,
parabolic, and hyperbolic (or loxodromic) elements in the isometry group. Further, it
follows from the Lefschetz fixed point theorem that every isometry has a fixed point
on the conformal boundary. Up to conjugacy, we can take that fixed point to be ∞. It
follows that every element in SL(2, �) is conjugate to an upper-triangular matrix. For
more details of the classification and algebraic criteria to detect them, see [5, 11, 15],
also see [8].

2.4. Jørgensen inequality. The following result is a Jørgensen type inequality for
two-generator subgroups of SL(2, �) when one of the generators is either elliptic or
hyperbolic.

THEOREM 2.2. [10] Let S =
(

a b
c d

)
and T =

(
λ 0
0 μ

)
, λ is not similar to μ, generate a

discrete non-elementary subgroup 〈S, T〉 of SL(2, �). Then,

{(
λ − 
μ)2 + (|�λ| + |�μ|)2}(1 + |bc|) ≥ 1.

This gives the following.

COROLLARY 2.3 ([10, 12]). Let S =
(

a b
c d

)
and T =

(
λ 0
0 μ

)
∈ SL(2, �), λ is not similar

to μ, generate a discrete non-elementary subgroup 〈S, T〉 of SL(2, �). Then,

2(cosh τ − cos(α + β))(1 + |bc|) ≥ 1,

where α = arg(λ), β = arg(μ), τ = 2 log |λ|.
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Observe that with the above expression of τ , we have that 2 cosh τ = |λ|2 + |λ|−2.
When one of the generators is a translation, we have the following result.

COROLLARY 2.4 ([19, 12]). If S =
(

a b
c d

)
, T =

(
1 λ

0 1

)
generate a non-elementary

discrete subgroup in SL(2, �), then |c|.|λ| ≥ 1.

2.5. Limit sets. Let L(G) be the limit set of a subgroup G of M(n), see [16] for
basic properties of limit sets. The limit set L(G) is a closed G-invariant subset of �n.
The group G is elementary if L(G) is finite. If G is elementary, L(G) consists of at most
two points. If G is non-elementary, then L(G) is an infinite set and every non-empty,
closed G-invariant subset of �n contains L(G). We note the following lemma, for a
proof see [16, Chapter 12].

LEMMA 2.5. Let G be a subgroup of M(n). Let a ∈ ∂Hn+1 be a fixed point of a
non-elliptic element of G. Then a is a limit point of G.

Let F be the set of fixed points of all non-elliptic elements of G. The above lemma
implies that F is G-invariant. Further if G is non-elementary, then F contains at least
three points. We will use these facts while proving the theorems. Another crucial result
to be used in the next section is the following.

THEOREM 2.6. [6, Corollary 4.5.1] Let G be a subgroup of SL(2, �) that does not
leave invariant a point in H

5
or a proper totally geodesic submanifold in H5 which is

invariant under G. Then G is either discrete or dense in SL(2, �).

3. Discreteness using a test map.

3.1. Proof of Theorem 1.1. By hypothesis, G is a Zariski-dense subgroup of
SL(2, �). Therefore, G is non- elementary. In the sequel, we suppose that G is not
discrete and derive contradictions when considering the cases (1)–(3) in the statement
of the theorem.

Suppose G is not discrete. Then G is a dense subgroup of SL(2, �). It is a well-
known fact, e.g. see [24], that the set of all hyperbolic elements is open in SL(2, �).

Hence, we may choose a hyperbolic element g =
(

a b
c d

)
in G such that it fixes a point

other than 0,∞.

Let z0 �= 0,∞ be a fixed point of g. Consider the element h =
(

z−1
0 −1

0 z0

)
. It is easy to

see that h−1 =
(

z0 1
0 z−1

0

)
. Note that h(z0) = 0. Since G is dense in SL(2, �), so there exists

a sequence {hn} ⊆ G such that hn → h. We can choose hn such that hn(z0) �= 0 �= hm(z0)
for large n, m.

(1) Suppose f is 2-rotatory elliptic. We can assume, up to conjugacy that,

f =
(

λ 0
0 μ

)
, λ, μ ∈ �,

|λ| = |μ| = 1, λ is not similar to μ. Further assume 0 < argtr(f ) = arg λ +
arg μ < π

3 . Let arg λ = α, arg μ = β.
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Let hngh−1
n =

(
an bn
cn dn

)
. By hypothesis, each two generator subgroup

〈f, hngh−1
n 〉 is discrete. For large n, it follows from Lemma 2.5 that

〈f, hngh−1
n 〉 has at least three limit points, and hence, it is non-elementary. By

Theorem 2.2, for sufficiently large n,

2(1 − cos(α + β))(1 + |bncn|) ≥ 1.

Now note that

hgh−1 =
(

z−1
0 −1
0 z0

) (
a b
c d

) (
z0 1
0 z−1

0

)

=
(

z−1
0 az0 z−1

0 a + z−1
0 bz−1

0 − c − dz−1
0

z0cz0 z0c + z0dz−1
0

)
.

Since z0 is a fixed point of g, we have

(az0 + b)(cz0 + d)−1 = z0

that is, (z−1
0 a + z−1

0 bz−1
0 − c − dz−1

0 )z0cz0 = 0.

Since 0 < α + β < π
3 , this implies

2(1 − cos(α + β))(1 + |(z−1
0 a + z−1

0 bz−1
0 − c − dz−1

0 )z0cz0|)
= 2(1 − cos(α + β)) < 1.

By Theorem 2.2, this contradiction completes the proof of (1).
(2) Let f be hyperbolic. Using the hypothesis, we can assume up to conjugacy

that

f =
(

λ 0
0 μ

)
, |λ| �= |μ|, |λμ| = 1,

arg λ = α, arg μ = β, 2 cos(α + β) > |λ|2 + |μ|2 − 1.

Let hngh−1
n =

(
an bn
cn dn

)
. By hypothesis and using Corollary 2.3, we have for

sufficiently large n,

2(cosh τ − cos(α + β))(1 + |bncn|) ≥ 1, (3.1)

where τ = 2 log |λ|. But, we have

hgh−1 =
(

z−1
0 −1
0 z0

) (
a b
c d

) (
z0 1
0 z−1

0

)

=
(

z−1
0 az0 z−1

0 a + z−1
0 bz−1

0 − c − dz−1
0

z0cz0 z0c + z0dz−1
0

)
.

Note that (z−1
0 a + z−1

0 bz−1
0 − c − dz−1

0 )z0cz0 = 0. It follows that

2(cosh τ − cos(α + β))(1 + |(z−1
0 a + z−1

0 bz−1
0 − c − dz−1

0 )z0cz0|)
= 2(cosh τ − cos(α + β)).
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Since 2 cos(α + β) > |λ|2 + |μ|2 − 1, this implies

2(cosh τ − cos(α + β)) < 1.

This is a contradiction to (3.1). Hence, part (2) of the theorem follows.

(3) Consider the parabolic element u =
(

1 0
−z0

−1 1

)
. Note that u(0) = 0. It is easy

to see that u−1 =
(

1 0
z0

−1 1

)
. Since G is dense in SL(2, �), there exists a distinct

sequence {gn} ⊆ G such that gn → u. We may choose gn such that for large
n, gn(z0) �= ∞, and hence, having 〈f, gngg−1

n 〉 non-elementary. By hypothesis,
these groups are all discrete. Hence, by Corollary 2.4,

|cn|.|μ| ≥ 1,

where gngg−1
n =

(
an bn
cn dn

)
. By computations, we see that

ugu−1 =
(

1 0
−z0

−1 1

) (
a b
c d

) (
1 0

z0
−1 1

)

=
(

a + bz0
−1 b

−z0
−1(a + bz0

−1) + (c + dz0
−1) −z0

−1b + d

)
.

Since z0 is a fixed point of g, so we have

c∞ = −z0
−1(a + bz0

−1) + (c + dz0
−1) = 0.

Since |μ| ≤ 1, this implies

|cn| ≥ 1
|μ| ≥ 1.

But we see that cn → c∞ = 0 as n → ∞, which gives a contradiction. This
proves (3). This completes the proof.

3.2. Proof of Theorem 1.2. By similar arguments as used at the beginning of the
proof of Theorem 1.1, we can choose hn such that hn(z0) �= 0 �= hm(z0) for large n, m.

Let hngh−1
n =

(
an bn
cn dn

)
.

(1) For all n, consider

Ln = hngh−1
n f hng−1h−1

n

=
(

an bn

cn dn

) (
λ 0
0 μ

) (
d∼

n −b∼
n

−c∼
n a∼

n

)

=
(

anλd∼
n − bnμc∼

n −anλb∼
n + bnμa∼

n
cnλd∼

n − dnμc∼
n −cnλb∼

n + dnμa∼
n

)

=
(

An Bn

Cn Dn

)
.
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As n → ∞, let Ln → L∞, where

L∞ = hgh−1f hg−1h−1 =
(

A∞ B∞
C∞ D∞

)
.

Now we see that

|BnCn| ≤ |anbncndn||λ − a−1
n bnμa∼

n b∼
n

−1||λ − c−1
n dnμc∼

n d∼
n

−1|
= {(
λ − 
μ)2 + (|�λ| + |�μ|)2}(1 + |bncn|)|bncn|.

Let
(

a0 b0

c0 d0

)
= hgh−1 =

(
z−1

0 az0 z−1
0 a + z−1

0 bz−1
0 − c − dz−1

0
z0cz0 z0c + z0dz−1

0

)
.

Since z0 is a fixed point of g, we have seen that

(z−1
0 a + z−1

0 bz−1
0 − c − dz−1

0 )z0cz0 = 0,

which shows that b0c0 = 0.

By a similar calculations above in the case Ln, we see that

|B∞C∞| ≤ {(
λ − 
μ)2 + (|�λ| + |�μ|)2}(1 + |b0c0|)|b0c0| = 0,

and therefore we have B∞C∞ = 0. This shows that BnCn → 0. Now we see that by
hypothesis, each two generator subgroup 〈f, Ln〉 is discrete and non-elementary. So
by Theorem 2.2,

2(1 − cos(α + β))(1 + |BnCn|) ≥ 1. (3.2)

Since 0 < α + β < π
3 , this implies for sufficiently large n,

2(1 − cos(α + β))(1 + |BnCn|) = 2(1 − cos(α + β)) < 1.

This is a contradiction to (3.2) which completes the proof of (1).
(2) For this part, the proof follows from similar calculations as in the proof of (1) and

the fact that

2(cosh τ − cos(α + β))(1 + |B∞C∞|)
= 2(cosh τ − cos(α + β)).

Since 2 cos(α + β) > |λ|2 + |μ|2 − 1, this implies

2(cosh τ − cos(α + β)) < 1.

This leads to a contradiction. Hence, part (2) of the theorem follows.

(3) Consider the parabolic element h =
(

1 0
−z0

−1 1

)
. Note that h(0) = 0. It is easy to see

that h−1 =
(

1 0
z0

−1 1

)
. Since G is dense in SL(2, �), there exists a sequence {hn} ⊆ G

such that hn → h. We may choose distinct hn such that for large n, hn(z0) �= ∞.
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Let

Ln = hngh−1
n f hng−1h−1

n

=
(

an bn

cn dn

)(
1 μ

0 1

) (
d∼

n −b∼
n

−c∼
n a∼

n

)

=
(

and∼
n − anμc∼

n − bnc∼
n −anμa∼

n
−cnμc∼

n −cnb∼
n + cnμa∼

n + dna∼
n

)

=
(

An Bn

Cn Dn

)
, say.

Now as n → ∞, Ln → L∞, where

L∞ = hgh−1f hg−1h−1

=
(

A∞ B∞
C∞ D∞

)
, say.

It is clear that for large values of n, 〈f, Ln〉 are non-elementary and by hypothesis,
these groups are also discrete. Hence, by Corollary 2.4, |Cn|.|μ| ≥ 1. Let

hgh−1 =
(

a + bz0
−1 b

−z0
−1(a + bz0

−1) + (c + dz0
−1) −z0

−1b + d

)
=

(
a0 b0

c0 d0

)
.

We have seen that since z0 is a fixed point of g, so

c0 = −z0
−1(a + bz0

−1) + (c + dz0
−1) = 0.

Thus, it follows that C∞ = 0. So Cn → 0, as n → ∞. Since |μ| ≤ 1, this implies

|Cn| ≥ 1
|μ| ≥ 1,

which leads to a contradiction. This completes the proof.
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of Jyväskylä, Finland, 2008).
15. J. R. Parker and I. Short, Conjugacy classification of quaternionic Möbius
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