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1. Introduction

A chain C in a distributive lattice L is called strongly maximal in L if and
only if for any homomorphism <f> of L onto a distributive lattice K, the chain
(C<t>)° is maximal in K, where (C<f>)° = C$ if 0£K, and (C#)°= C<f> U{0},
otherwise. Gratzer (1971, Theorem 28) states that if B is a generalized Boolean
lattice R -generated by L and C is a chain in L, then C 7? -generates B if and
only if C is strongly maximal in L. In this note (Theorem 4.6), we prove the
following assertion, which is not far removed from Gratzer's statement:

let B be a generalized Boolean lattice R -generated by L and C be a chain
in L. If 0 G L, then C generates B if and only if C is strongly maximal in
L. If 0 £ L, then C generates B if and only if C is strongly maximal in
L and [C)L = L.

In Section 5 (Example 5.1) a counterexample to Gratzer's statement is provided.
In Section 3 (Theorem 3.6) we prove that there is a one-to-one mapping of

the prime ideals of L into the prime ideals of B, where B is a generalized
Boolean lattice generated by L, and (Corollary 3.7) that this mapping is onto if
and only if 0 £ L In Section 4 (Proposition 4.3 and Corollary 4.7) we give
sufficient conditions on a chain C of L so that C U {0} is maximal in B.

The authors would like to thank the referee for his useful suggestions.

2. Preliminaries

For the standard results and definitions concerning lattices, the reader is
referred to Gratzer (1971), particularly to Sections 9 and 10 of Chapter 2.
Throughout this note, B will denote a generalized Boolean lattice with smallest
element 0 and L will denote a sublattice of B that generates B, that is,
the smallest subring of B that contains L is B. If E =
{ai + • • • + a2n | au • • •, a2n £ L}, then E is an ideal of B, called the ideal of B
evenly generated by L, and E = {a, + • • • + a2n | au • • •, a2n G L and a1 S • • • S
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a2n) Byrd, Mena and Troy (1975, Lemma 2.4). Moreover, it is shown by these
authors in Theorem 2.4 that 0 £ L if and only if L D E is the empty set, and in
this case, E is a maximal ideal of B and the only maximal ideal of B whose
intersection with L is void, see Byrd, Mena and Troy (1975, Corollary 2.5).

We say that L R-generates B if L generates B and if L has a smallest
element, then it is the zero of B. Thus, if L does not have a smallest element, the
definitions of generates and R-generates coincide. A chain in L is a sublattice of
L which is linearly ordered. The set of natural numbers will be denoted by N, the
collection of prime ideals of L will be denoted by &(L), the empty set will be
denoted by D, the set of elements in the set X but not in the set Y will be
denoted by X \ Y, and the power set of X will be denoted by p(X). Finally, C2

will denote the two element lattice {0,1}.

3. Prime ideals

It is well known that the collection of prime ideals of B is identical with the
collection of maximal ideals of B, and hence, trivially ordered. For P E
§>(B) \ {E}, the mapping P —* P D L is easily seen to be a one-to-one mapping
of @(B)\{E} into 9{L). (As noted above, if 0 £ L, then Lf\E=U and if
0 E L, E = B.) A way of proving that this mapping is onto, is to form the
collection {Q | Q is an ideal of B and Q n L = J}, where J£0>(L), use Zorn's
lemma to pick a maximal element in this collection, and then prove that this
element is prime in B. In this section we explicitly give the inverse of this
mapping without the use of Zorn's lemma.

In Propositions 3.1 through 3.5, J will denote a prime ideal of L,
EL\j = {x | x E B and x = at+ • • • + a2n for some au • • •,a2n E L\J}, and

P - (J]B + EL^j = {« + v | u E (J]B and v E J5LX/}, where (/]B denotes the ideal
of B generated by /. According to Byrd, Mena and Troy (1975, Lemma 2.1),
EL-^j = {ai+ • • • + a2n | au • • •, a2n E L\J and a, g • • • g a2n} and, since L\J
is a sublattice of L, E L \ J is a subring of B.

PROPOSITION 3.1. P is an ideal of B.

PROOF. Obviously, P is a subgroup of B. Thus, to show that P is an ideal of
B, it suffices to show that if a E L and u E ELNJ, then av E P. If a E /, then
at; E (/]B CP. If a G L \ / , then av E £L V, C P. Hence, P is an ideal of B.

PROPOSITION 3.2. P (1 (L\J) = • and hence, P D L = J.

PROOF. Suppose (by way of contradiction) that a(EP(~\(L\J). Then
a = u + ax + • • • + a2n, where u E (J]B and au • • •, a2n E L\J, with at S • • • S
a2n. Thus, a • a, = (u + ai + • • • + a2n)ai = u • ai + 2n«i = u • at € u. But this is a
contradiction, since a • ai£J.

https://doi.org/10.1017/S1446788700017821 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017821


236 Richard Byrd and Roberto A. Mena [3]

PROPOSITION 3.3. P = {u v v \ u E (/]B and v E EL^}}.

PROOF Let Q = {u v» | u E ( / ] B and v G EL\J}- Then clearly (J)B U
£ L \ J £ O £ *̂ and O is a join semilattice of B. Let x E B with x S z for some
z E.Q. Then x E.P and x = at + • • • + am, where ai, • • •, am E L and a , S • • • g
am. If at&J, then a2, • • •, am & J and we assert that m is even; for otherwise, m is
odd and since x G P, m > 1. But then, a2+ • • • + am £ £L\ j and hence, at =
x + a2 + • • • + am G P, a contradiction. Thus, m is even and so x G ELNj C Q. If
am E /, then x G (/]B C Q. Hence, we may suppose that for some 1 g k < m,
fli,"-,asG/ and ak+i, • • •, am G L\J. Consequently, xt =
ai+ • • • + ak G (/]„ C.QCP and hence, x2 = flt+i + • • • + am = x + x, G P. It
follows that m — k is even and so x2G EL^j QQ. Therefore, XiX2 =
Xi(ak+i+• • • + Om) = (m — k)xi = 0. Hence, x = Xi + x2 = Xi + x2 + x,x2 =
X: vx2 G Q. Thus, O is an ideal of B that contains (J]B U £Lx/ and so Q = P.

PROPOSITION 3.4. / /L is linearly ordered, then P is the direct sum of (/]„ and
EL\J.

PROOF. If X G ( / ] B D EL^j, then x g ; for some / G / and x = ai + • • • + a2n

for some au • • • a2n €E L\J. Since L is linearly ordered, ; S a, for each i and so
x = xj = (a, + • • • + a2n)/ = 2nj = 0.

In Section 5 (Example 5.1) we show that, in general, P is not the direct sum
of (J]B and EL\}.

PROPOSITION 3.5. P

PROOF. If x G B\P, then x = bt+ •• • +bm, where 6,, • • -,bm E L and
fciS • • • S fcm. Since x€ P, bm£J. If &! £ /, then m is odd and P + x = P + bm.
Suppose that for some 1 S k < m, bu • • •., bk G / and bk+u • • • ,bm & L\J. Then
m — k must be odd as x £ P and again P + x = P + bm. Now if a, 6 G L \J, then
a + b E P and it follows that the index of P in B is two. Hence, P is a maximal
ideal of B and consequently, P is prime.

Combining the above we now prove

THEOREM 3.6. The mapping v of&(L) into 9>(B) given by Jv = (J]B + EL^}

is a one-to-one mapping of&(L) into &(B). / / P £ f ( B ) \ {E}, then P belongs
to the range of v and Pv~x = P n L.

PROOF. By Proposition 3.5, v is a mapping of 0>(L) into 0>(B). By
Proposition 3.2, v is one-to-one.

If PE&(B)\{E}, then PDLG0>(L). Now (Pf lL] B CP. If
au a2 G L\P with a! S a2, then ai(ai + a2) = 0. Since P is prime, at + a2E P.
Therefore, E^^(PnL)C P. Thus, (P n L]B + EL^iPnL)C P and by Proposition 3.5,
we must have equality. Hence, P belongs to the range of v and Pv'1 = P D L.

COROLLARY 3.7. v is onto if and only if 0 E L.
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We close this section with the following proposition (see the Lemma in
Makinson (1969) or the proof in Gratzer (1971, Theorem 28)).

PROPOSITION 3.8. Let A be a proper subring of B and x €E B\A. If x < z for
some z G A, then there exists P,Q £@(B) such that x £ Q\P, zgPUQ, and
P n A = Q D A. If, in addition, x> a for some a G L n A, then P (1 Q D L ^ D.

4. Chains

If CQL, then let

( CU{a) if a is the smallest element of L,

C if L has no smallest element.
A chain C of L is said to be strongly maximal in L if and only if for any
homomorphism <t> of L onto a distributive lattice K, the chain (C<f>)° is maximal
in K, see Gratzer (1971, page 114).

PROPOSITION 4.1. IfL does not R -generate B, then L contains an atom ofB.

PROOF. Since L generates B but does not R -generate B, L must contain a
smallest element b>0. Let x E. B with O^x^b. Then x = ai+ •• • + am,
where d , • • •, a« G L and 0 < a, g • • • ^ am. Then x = xb = (ai + • • • + am)b =
mb, as b §1 d . If m is even, then mb = 0. If m is odd, then mb = b. Whence, b is
an atom of B.

COROLLARY 4.2. Let C be a sublattice of L that generates B. If 0 f£ L and
R -generates B, then C does not have a smallest element and hence, C R -generates
B.

The proof of the next proposition is similar to the proof in Gratzer (1971,
Lemma 27) and will be omitted.

PROPOSITION 4.3. Let C be a chain in L that generates B. Then

(i) C U {0} is a maximal chain in B;

(ij) if L does not have a smallest element and a E. L, then a § c for some
cGC.

As an immediate consequence of (i) of this proposition, we have

COROLLARY 4.4. If C is a chain in L and C generates B, then C is a
maximal chain in L.

COROLLARY 4.5. If C is a chain in L, L R-generates B, and C generates B,
then C is strongly maximal in L.
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PROOF. Let <f> be a homomorphism of L onto a distributive lattice K and let
D be a generalized Boolean lattice R -generated by K. Then by Gratzer (1971,
Corollary 7), <f> can be extended to a homomorphism a of B onto D. Since C
generates B, C<(> = Co- generates D. By Corollary 4.4, (C<j>)° is a maximal chain
in K. Thus, C is strongly maximal in L.

THEOREM 4.6. Let B be R-generated by L and C be a chain in L.

(i) IfO&L, then C generates B if and only ifCis strongly maximal in L.

(ii) If 0 j£ L, then C generates B if and only if C is strongly maximal in L and
[C)L = L.

PROOF. If C generates B, then by Corollary 4.5, C is strongly maximal in L.
If 0 £ L, then L does not have a smallest element and so by Proposition 4.3,
[C)L = L. Thus, we have proven the only if part in both (i) and (ii).

(i) Suppose that 0 G L and that C does not generate B. Then if A is the
subring of B generated by C, A ^ B. If A is an ideal of B, then A C P for some
P G 0>(B). Define <j> from L into C2 by

( 0 if a G L n P,

1 if d £ L \ P .
Then <£ is a homomorphism of L onto C2 and C<£ = {0}. Therefore, C is not
strongly maximal in L. Suppose that A is not an ideal of B. Then there exists
x G B\A such that x < z for some 2 G A and z S c for some c G C. By
Proposition 3.8, there exists P,QE&(B) such that x G Q \ P , P n A = Q D A ,
and c ^ P U O . By Theorem 3.6, P(1L/ Q DL. Now as in Gratzer (1971, p.
115) define <j> from L into C2x C2 by

(0,0) if a G L D P n Q,

(1.0) if a G(LDQ)\P,

(0,1) if a G ( L n P ) \ O ,

(1.1) if a G L \ ( P U O ) .

Since P n A = Q n A, it follows that CC(P D Q ) U ( L \ P U Q)) and so
C<f>C {(0,0), (1,1)}. Now, c,0GL, hence, {(0,0), (1,1)}C L$ (note, this is the
first place that we have used the hypothesis that 0 G L), and since P n L / Q n
L, L4> has at least three elements. Again, we have that C is not strongly maximal
in L.

(ii) Suppose that 0 £ L, [C)L = L, and that C does not generate B. Then, as
in the proof of (i), -A is not an idea) of B and there exists x GB\A such that
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x g c for some c G C. If x G E, then x + c£ E, x + c E B \ A , and x + c < c. By
Byrd, Mena and Troy (1975, Corollary 2.2) x + c^a for some a G L. If d G C
such that d S x , then d < x + c. Thus, by Proposition 3.8, there exists P,QE
»(B) such that x + c G O \ P , c G P U Q , P n A = Q n A , and
P n O f l L ^ D . Define <f> from L into Q x C i as in (i). Then again, C<f> C
{(0,0), (1,1)} and (1,1) G L<f>. Since P D Q n L ^ D, (0,0) G L<j> and by Theorem
3.6, PflL, O fl L are distinct elements of i?(L). Thus, again Ltfr has at least
three elements and so C is not strongly maximal in L.

An immediate consequence of the theorem and Proposition 4.3 is

COROLLARY 4.7. Let B be R-generated by L and C be a chain in L.

(i) // 0 G L and C is strongly maximal in L, then C U {0} is a maximal chain
in B.

(ii) If 0 £ L, C is strongly maximal in L, and [C)L = L, then C U {0} is a
maximal chain in B.

5. Examples

The first example serves to illustrate several points.

EXAMPLE 5.1. Let B - {x | x G p(N), x is finite or N \ x is finite}. Then B
is a Boolean sublattice of p(N). If L = {a \ a G p(N) and i V \ a is finite}, then L
is a sublattice of B, L does not have a smallest element, and B is R -generated by
L.

If J = {a\aGL a n d l £ a } , then JG&(L),L\J = {a \aSL and I E a},
and N , N \ { 2 } £ L \ J . Thus, {2} = N + N\{2}G ELXJ. Also, N\{1}G J and
so {2}G (/]B. Hence, (J]B + EL^j is not the direct sum of (J]B and ELXJ.

Next let Xi = D, for n > 1, let xn = {2, • • •, n}, and for m G N, let cm =
N \ x m . Then C = {cn | n G N} is a chain in L. Now N \ {1} G L and for each n,
c n ^ N \ { l } . Thus, by Proposition 4.3 (ii), C does not generate B.

We now show that C is strongly maximal in L. Note that if aua2E.L with
d C a2 and a2\ai C xn for some n, then aiAcn - a2ACn. Let <£ be a homomorph-
ism of L onto a distributive lattice K and let a £ L such that a $ £ C<£ and
C<£ U {a<\>} is a chain in K. We show that a<£ is the zero of K. Now Ci<£ > a<£ as
Ci is the largest element of L. Let M = {n | c<£ > a#}. Then M is nonempty and
either M is finite or M = TV. Suppose (by way of contradiction) that m is the
largest element of M. Then cm<f> > a<f>> cm+1<£. If b - (cmiiva)*cm, then cm+1 S
fc g cm and b# = a$. Hence, cm+1 < b < cm, but this is impossible as {d | d G L
and cm+1 < d < cm} = D. Thus, M = N.

If 1 G a, then N \ a C x m for some m. But then a^cm, which implies
a<$> S cm$, a contradiction. Hence, 1 £ a. Next let i £ L and d = 6 A a. Then
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1 £ d. Now, a\d is finite and s o a \ d C x n for some m. Then, as noted above,
we have d A cm: = a A cm. Thus,

a<j> - a<t> A cm<£ •= ( a A c m )4> = (d A c m )<j> - d<f>\ cm<p S d<f> S b<f>.

It now follows that a<f> is the smallest element of K and so (C<f>)° is maximal in K.
Hence, C is strongly maximal in L, but C does not R -generate B as asserted in
Gratzer (1971, Theorem 28).

Finally, since C is strongly maximal in L, C is a maximal chain in L. But C°
is not a maximal chain in B, for {1}G B\L and c U{{1}} is a chain in B. This
shows that the conditions given in (ii) of Corollary 4.7 cannot be weakened.

EXAMPLE 5.2. Let Z denote the set of integers, for n G Z let (n] denote the
ideal of Z generated by n, let F denote the collection of finite subsets of Z, let
L =-{(«] I neZ}, and let B = F U{(n]U x\n E Z and i £ F}. Then B is a
Boolean sublattice of p(Z). Moreover, L is linearly ordered and R -generates B,
and F is the ideal of B evenly generated by L.

If G = {x | x G F and 0 £ x}, then G is a maximal ideal of F and the index
of G in B is 4. Thus, B/G = {G, G +{0}, G + ( - 1], G + (0]} and BIG is
isomorphic to the four element Boolean lattice Ci x C2. If <£ is the natural
mapping of B onto BIG, then L<£ does not R-generate B<f> as is suggested in the
proof of Gratzer (1971 Theorem 28). It is easily seen that L<f> is strongly maximal
in BIG and, as noted above L<f> does not R-generate B/G = B<j>, showing that
the if portion of Gratzer (1971, Theorem 28) is not valid. Also, BIG is the
smallest sublattice of itself containing (L<j>)° and closed under the formation of
relative complements. Thus, the if portion of Gratzer (1971, Lemma 15) is not
true.

Finally, B is R -generated by itself and L is a chain in B that R -generates B.
Thus, by Theorem 4.6 (i), L is strongly maximal in B. However, [L)Bj* B.
Hence, apparently we cannot combine (i) and (ii) of Theorem 4.6 into a single
assertion.
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