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Infinite-Dimensional Polyhedrality

Vladimir P. Fonf and Libor Veselý

Abstract. This paper deals with generalizations of the notion of a polytope to infinite dimensions. The

most general definition is the following: a bounded closed convex subset of a Banach space is called a

polytope if each of its finite-dimensional affine sections is a (standard) polytope.

We study the relationships between eight known definitions of infinite-dimensional polyhedrality.

We provide a complete isometric classification of them, which gives solutions to several open problems.

An almost complete isomorphic classification is given as well (only one implication remains open).

Introduction

Convex polytopes in finite dimensions play an important role in many areas of math-
ematics. This was the main reason that many attempts have been made to give
definitions of infinite-dimensional convex polytopes (e.g. [17], [19], [1], [14], [3]

and others). Of course, each such definition has some “good” properties of finite-
dimensional polytopes and it is equivalent to the standard definition in finite dimen-
sions. Since each affine section of a (standard finite-dimensional) polytope is again
a polytope, it is quite clear that the most general of such definitions should be the

following: a bounded closed convex (BCC, for short) set is a convex polytope if each
of its finite-dimensional sections is a (finite-dimensional) polytope. This definition
was given by V. Klee [17] for the unit ball of a Banach space, and by M. I. Kadets [15]
in a general setting. As another example of a definition of a polytope, we mention

here the following one, which is an equivalent reformulation (cf. [6]) of the notion
of “quasi-polyhedrality” due to D. Amir and F. Deutsch [1]: a BCC body C ⊂ X

is a polytope if, for every boundary point x of C and each boundary point y ∈ C

sufficiently near to x, the whole segment [x, y] is contained in the boundary of C .

Infinite-dimensional polytopes have an important property that plays a signifi-

cant role in our discussion. Let us start with finite dimensions. It is well known
that any closed convex set in a finite-dimensional space has non-empty interior in
its affine span. As simple examples show, this is not the case in infinite-dimensional
spaces (think of an infinite-dimensional compact set). Nevertheless, the following

important result holds.

Theorem 0.1 ([13], [9]) Let P ⊂ X be a Klee polytope in a separable Banach space

X. Then P has non-empty interior in its affine span and this affine span is closed in X. If

in addition the polytope P is symmetric (with respect to the origin) then the separability

assumption may be omitted.
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As we mentioned above, the most general reasonable definition of an infinite-
dimensional polytope is that given by Klee. Thus Theorem 0.1 remains true if we

substitute a Klee polytope by any other one.
Theorem 0.1 enables us to study so called polyhedral spaces (see below) instead

of symmetric polytopes (and for simplicity we restrict ourselves to symmetric poly-
topes only) which is more convenient from many points of view. Indeed, let P be an

infinite-dimensional symmetric polytope (according to any definition) and let Y ⊂ X

be the linear span of P. Then by Theorem 0.1, Y is a Banach space and P is the unit
ball of Y in an equivalent norm. It is natural to call the space Y a polyhedral space (in
the same sense as P is a polytope). Nowadays, “polyhedral space” standardly means

a space whose unit ball is a polytope in the sense of Klee. We call these spaces (K)-
polyhedral.

The aim of the present paper is to classify eight known definitions of polyhedrality
of infinite-dimensional Banach spaces, from both isometric and isomorphic point of

view. It turns out that, surprisingly enough, these definitions are linearly ordered
by implication (this was proved mainly in [6]) but no two of them are equivalent.
We provide here corresponding counterexamples, solving in this way several open
problems from [6] and [5] (cf. Remark 1.5). Moreover, we prove that the five most

general of the eight definitions are isomorphically equivalent in the sense that, for
any two of these five definitions, if X satisfies one of them then X can be equivalently
renormed to satisfy the other one.

It is easy to see that, if X is a finite-dimensional polyhedral space, each extreme

point of the dual ball BX∗ defines a maximal face of the polytope BX . So it is not
surprising that several of the definitions of polyhedrality deal with the set ext BX∗ or,
more precisely, with weak∗-limit points of this set.

The paper is organized in the following way. Section 1 contains definitions of the

eight notions of polyhedrality considered by us, together with an exact description
of our main results. We collect in Section 2 some equivalent reformulations and re-
marks concerning the eight definitions, as well as some auxiliary facts. Sections 3 and
4 contain the proofs of all results (positive results and counterexamples, respectively)

of the present paper. In Appendix (Section 5), we state two definitions from [5] and
show briefly how they are related to our eight notions, in order to answer a question
from [5] (see Remark 1.5).

1 The Eight Definitions. Description of Main Results

Throughout the paper, X denotes a real Banach space with closed unit ball BX , open
unit ball B0

X and unit sphere SX , and X∗ is the dual of X. By a subspace of X we mean

a closed linear subspace of X. We shall use the following notations.
The density character dens X of X is the smallest cardinality of a dense subset of X.

By ext C we denote the set of the extreme points of a convex set C . For x ∈ SX , D(x) is
the image of x by the (multivalued) duality mapping, i.e.,

D(x) = { f ∈ S(X∗) : f (x) = 1}.

Observe that ext D(x) = D(x) ∩ ext BX∗ by the Krein-Milman theorem.
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If A is a set in X∗, then A ′ denotes the set of all w∗-limit points (called also w∗-
accumulation points or w∗-cluster points) of A:

A ′
=

{

f ∈ X∗ : f ∈ w∗-cl(A \ { f })
}

.

Moreover, for x ∈ X we set 〈A, x〉 := { f (x) : f ∈ A}.

Recall that a finite-dimensional space X is polyhedral if BX is a polytope. The
following definition collects the eight generalizations of polyhedrality to infinite-
dimensional spaces, considered in the present paper. In parentheses we indicate ref-

erences to papers in which they appeared for the first time, in this or equivalent form.
The properties (II) and (III) are formulated for the first time here.

Definition 1.1 Let us consider the following properties of X:

(I) (ext BX∗) ′ ⊂ {0} (Maserick [19]);
(II) (ext BX∗) ′ ⊂ rBX∗ for some 0 < r < 1;
(III) (ext BX∗) ′ ⊂ B0

X∗ ;
(IV) f (x) < 1 whenever x ∈ SX and f ∈ (ext BX∗) ′ (Gleit and McGuigan [14]);

(V) sup{ f (x) : f ∈ ext BX∗ \ D(x)} < 1 for each x ∈ SX (Brosowski and
Deutsch [3]);

(VI) every x ∈ SX has a neighborhood V such that, for each y ∈ V ∩ SX , the
segment [x, y] lies entirely in SX (Amir and Deutsch [1]);

(VII) the set Mv := {x ∈ SX : max〈D(x), v〉 ≤ 0} is open in SX for each direction
v ∈ SX (Durier and Michelot [4]);

(K) the unit ball of every finite-dimensional subspace of X is a polytope
(Klee [17]).

For j ∈ {I, II, III, IV, V, VI, VII, K}, X will be called ( j)-polyhedral if it satisfies

the property ( j).

By an isomorphically ( j)-polyhedral space we mean a Banach space that admits an

equivalent ( j)-polyhedral norm.

We refer the reader to Section 2 for basic information about these notions.

Theorem 1.2 (Isometric Classification) For a Banach space X, the following rela-

tionships among the properties from Definition 1.1 hold.

(a) (I) ⇒ (II) ⇒ (III) ⇒ (IV) ⇒ (V) ⇒ (VI) ⇒ (VII) ⇒ (K).

(b) None of the implications in (a) can be reversed.

(c) X is (I)-polyhedral if and only if X is isometric to a subspace of c0(Γ) where

card Γ = dens X.

For (a) above and a counterexample showing that (V) 6⇒ (IV) see [6] (where var-
ious other related results can be found). The remaining counterexamples are con-
tained in Examples 4.1–4.6

Note that for finite-dimensional X, all eight properties are equivalent to polyhe-
drality (i.e., to the fact that BX is a polytope). Indeed, if such X is polyhedral then it

https://doi.org/10.4153/CJM-2004-022-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-022-7


Infinite-Dimensional Polyhedrality 475

satisfies (I) since ext BX∗ is finite, and if X is (K)-polyhedral it is obviously polyhedral;
the rest follows from Theorem 1.2(a).

Let us remark that the properties from Definition 1.1 are hereditary to closed sub-

spaces. It follows easily from the fact that, if Y is a closed subspace of X, then each
g ∈ ext BY ∗ is the restriction of some f ∈ ext BX∗ . (Indeed, by the Krein-Milman
theorem the set of all norm-preserving extensions of g has extreme points; take f as
one of them.)

The next theorem describes the isometric classification of our eight properties in
the class of all spaces satisfying a geometric condition (∆). This condition implies
that each point of the unit sphere is contained only in finitely many solid faces of BX

(cf. Theorem 2.1 for this notion).

Definition 1.3 We shall say that X satisfies the property (∆) if, for each x ∈ SX , the
set ext D(x) is finite.

Theorem 1.4 Let X be a Banach space satisfying the property (∆). Then the following

relationships among the properties from Definition 1.1 hold.

(a) (I) ⇒ (II) ⇒ (III) ⇒ (IV) ⇔ (V) ⇒ (VI) ⇔ (VII) ⇔ (K).

(b) None of the simple implications (⇒) can be reversed.

For (a) in the above theorem, see Theorem 1.2(a), Observation 3.5 and Theo-
rem 3.6. Moreover, since (IV) implies (∆) (Observation 3.5), the first three implica-
tions cannot be reversed by Theorem 1.2. Now, Example 4.4 completes the proof of

(b).

Remark 1.5 Our results give solutions to some open problems from [5],[6].

(a) In [6, p. 872], the authors ask whether some of the implications (V) ⇒ (VI) ⇒
(VII) ⇒ (K) (in our notation) could be reversed, and mention in particular the im-
plication (K) ⇒ (VI) as “an old open problem” (cf. also [5, p. 631]). Our Theo-
rem 1.2(b) answers all these questions in negative.

(b) In [5], two properties (lm) and (PH) are considered (p. 634) and the following

question is posed (p. 642): Does (PH) imply (lm)? As we show in Appendix of the
present paper (Section 5), it is not difficult to prove that

• X satisfies (PH) iff it is (VI)-polyhedral and satisfies (∆);

• X satisfies (lm) iff it is (V)-polyhedral and satisfies (∆).

By Theorem 1.4(b), (PH) does not imply (lm).

As for polyhedrality definitions from the isomorphic point of view, we restrict our-
selves to separable Banach spaces.

For simplicity, we shall use the following notation for “isomorphic implication”

in the next theorem. If (i), ( j) are two of the eight properties from Definition 1.1, the
symbol (i) → ( j) means that isomorphic (i)-polyhedrality implies isomorphic ( j)-
polyhedrality. (Recall that X is called isomorphically ( j)-polyhedral if it is isomorphic
to a ( j)-polyhedral space.)
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Theorem 1.6 (Isomorphic Classification) Let X be a separable infinite dimensional

Banach space. Then the following isomorphic relations hold for the properties from Def-

inition 1.1.

(a) (I) ↔ (II) → (III) → (IV) ↔ (V) ↔ (VI) ↔ (VII) ↔ (K).

(b) (III) 6→ (II).

In the above theorem, (a) follows from Theorems 3.2, 3.3 and 1.2(a); for (b)

see Example 4.2. It remains an open problem whether the isomorphic implication
(IV) → (III) holds for separable Banach spaces, or equivalently, whether each sepa-
rable (K)-polyhedral space can be renormed to satisfy (III).

The next theorem, containing three isomorphic characterizations, follows from
Theorems 3.3, 3.4 and 3.2(b). Recall that boundary for X is a set B ⊂ SX∗ such that,
for each x ∈ X there exists f ∈ B with f (x) = ‖x‖.

Theorem 1.7 Let X be a separable infinite-dimensional Banach space.

(a) X is isomorphically (K)-polyhedral if and only if X admits an equivalent renorming

with a countable boundary.

(b) X is isomorphically (III)-polyhedral if and only if X admits an equivalent renorm-

ing whose dual unit ball has only countably many extreme points.

(c) X is isomorphically (II)-polyhedral if and only if X is isomorphic to a subspace of c0.

2 Remarks on the Eight Definitions. Auxiliary Results

Recall that a set N ⊂ SX∗ is said to be 1-norming if, for each x ∈ X,

(1) ‖x‖ = sup
f∈N

f (x).

By the Hahn-Banach theorem, a set N ⊂ SX∗ is 1-norming if and only if BX∗ =

w∗-cl coN .

A boundary is a 1-norming set N ⊂ SX∗ such that the least upper bound in (1) is

in fact a maximum for each x ∈ X. The set ext BX∗ is easily seen to be a boundary by
the Krein-Milman theorem, hence it is 1-norming.

2.1 (I)-Polyhedrality

Maserick [19] defined a notion of a convex polytope in a geometric way using half-
spaces. Reformulated for BX , his definition reads as follows:

(M) there exists a 1-norming set N ⊂ SX∗ such that, for each x ∈ X,

the set { f ∈ N : f (x) > 1} is finite.

Claim (M) is equivalent to (I)-polyhedrality.
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Proof If X is (I)-polyhedral, then (by an easy w∗-compactness argument), for each
x ∈ X, the set { f ∈ ext BX∗ : f (x) > 1} is finite. Hence X satisfies (M) with

N = ext BX∗ . Now, let X satisfy (M). Since BX∗ = w∗-cl coN , Milman’s theorem
(“converse” of the Krein-Milman theorem) implies that ext BX∗ ⊂ w∗-clN . Conse-
quently, (ext BX∗) ′ ⊂ N ′. Moreover, N ′ ⊂ {0} since, for all x ∈ X and ε > 0, the
set

{ f ∈ N : | f (x)| > ε} = { f ∈ N : f (x/ε) > 1} ∪ { f ∈ N : f (−x/ε) > 1}

is finite.

2.2 (II)- and (III)-Polyhedrality

These two properties were introduced by the authors as natural intermediates be-
tween (I)-polyhedrality and (IV)-polyhedrality. They admit significant isomorphic
characterizations (cf. Theorem 3.2(b) and Theorem 3.4).

2.3 (IV)-Polyhedrality

(IV)-polyhedrality was introduced by Gleit and McGuigan [14], who showed that

it is sufficient for (K)-polyhedrality. Moreover, they proved that (IV)- and (K)-
polyhedrality coincide for Lindenstrauss spaces.

(IV)-polyhedrality has the following obvious reformulation:

(IV ′) (ext BX∗) ′ ∩ D(x) = ∅ for each x ∈ SX .

It follows from Theorem 1 in [6] and [5, p. 634] that (IV)-polyhedrality is equiv-

alent to the following property:

X has the property (∆) and

sup{ f (x) : f ∈ ext BX∗ \ D(x)} < 1 for each x ∈ SX .

2.4 (V)-Polyhedrality

This property appears in [3, Lemma 2.2].

Claim X is (V)-polyhedral if and only if it satisfies the property

(

ext BX∗ \ D(x)
) ′

∩ D(x) = ∅ for every x ∈ SX .

Proof It suffices to consider the following chain of equivalent statements for every

fixed x ∈ SX :

• sup{ f (x) : f ∈ ext BX∗ \ D(x)} = 1;
• there exists a sequence { fn} ⊂ ext BX∗ \ D(x) with fn(x) → 1;
• there exists a net { fα} ⊂ ext BX∗ \ D(x), w∗-converging to some h ∈ BX∗ , such

that fα(x) → 1;

• there exists h ∈ D(x) belonging to the set
(

ext BX∗ \ D(x)
) ′

.
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2.5 (VI)-Polyhedrality

Amir and Deutsch [1] defined the following notion: X is said to be quasi-polyhedral

if

x /∈ K(x) ∩ SX for any x ∈ SX ,

where K(x) = {v ∈ X : f (v) < 1 for all f ∈ D(x)}. It was proved in [6] that the
following statements are equivalent:

(i) X is (VI)-polyhedral;
(ii) every x ∈ SX has a neighborhood V such that D(y) ⊂ D(x) holds for each

y ∈ V ∩ SX ;

(iii) X is quasi-polyhedral.

(Note that [6, Theorem 3], contains many other characterizations of (VI)-polyhe-
drality.)

2.6 (VII)-Polyhedrality

Durier and Michelot considered the following property in [4, Section 3, pp. 517–

519]:

the set Uv := {x ∈ SX : f (v) < 0 for some f ∈ D(x)}
is closed for each direction v ∈ SX .

This property is just a reformulation of (VII)-polyhedrality since the set Uv is the
complement of −Mv in SX .

It is easy to see that a point x ∈ SX belongs to Uv if and only if the half-line
{x − tv : t ≥ 0} intersects BX only at x and is not tangent to BX . Roughly speaking,

Uv is the set of all points of SX that can be hit from outside of BX in a non-tangent
way by shooting in the direction v.

2.7 (K)-Polyhedrality

(K)-polyhedrality, which was introduced by V. Klee [17], seems to be the most natural
and simplest generalization of finite-dimensional polyhedrality. This is what now is

standardly meant by “polyhedral space”. It follows from [16, Theorem 4.7], that X is
(K)-polyhedral if and only if each of its two-dimensional subspaces is polyhedral.

Let us remark that (K)-polyhedrality admits an equivalent formulation using the
finest locally convex topology on X. See [6] for further details.

Let us collect some basic properties of (K)-polyhedral spaces in the following the-
orem. Recall that a set B ⊂ SX∗ is a boundary for X if for every x ∈ SX there exists
f ∈ B such that f (x) = 1.

Theorem 2.1 Every (K)-polyhedral Banach space X has the following properties.

(a) X admits a boundary B0 such that, for each f ∈ B0, f −1(1)∩ SX is a solid face, i.e.,
its relative interior in the hyperplane f −1(1) is nonempty.
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(b) X is c0-saturated (i.e., every infinite-dimensional subspace of X contains c0 almost

isometrically). In particular, X contains no infinite-dimensional subspace isomor-

phic to a dual space.

(c) BX∗ is the norm-closed convex hull of ext BX∗ , and every subspace Y of X has the

same density character as Y ∗ (hence X is an Asplund space).

(a) and (b) were proved in [8] (see also [10]; for shorter and simpler proofs of (a)
see [11] or [21]), (c) is contained in [21] and [11].

Let us conclude this section with a few examples:

• for each set Γ, the space c0(Γ) is (K)-polyhedral (it is easily seen to be even (I)-

polyhedral);
• the space c is not (K)-polyhedral (this is an easy exercise), but it is isomorphically

(K)-polyhedral (since it is isomorphic to c0);
• for each ordinal α > 0, the space C[1, α] is isomorphically (K)-polyhedral [7];
• no infinite-dimensional Lp(µ) space (1 ≤ p ≤ ∞) is isomorphically (K)-polyhe-

dral (it is dual if p > 1, and it contains the dual space `1 if p = 1).

3 Positive Results

Proposition 3.1 For every infinite-dimensional (III)-polyhedral Banach space X, the

cardinality of the set ext BX∗ is equal to the density character of X.

Proof (III) easily implies that the set ext BX∗ consists of ‖ · ‖-isolated points. Then,

by Theorem 2.1,

card(ext BX∗) = dens(ext BX∗) ≤ dens SX∗ = dens X∗
= dens X

and BX∗ = conv‖·‖ ext BX∗ . Consequently, the set of all rational convex combina-
tions of points of ext BX∗ is dense in BX∗ and has the same cardinality as ext BX∗ .

Thus we can complete the proof: dens X = dens X∗
= dens BX∗ ≤ card(ext BX∗).

Theorem 3.2 Let X be an infinite-dimensional Banach space.

(a) X is (I)-polyhedral if and only if X is isometric to a subspace of c0(Γ) where

card(Γ) = dens(X).

(b) A separable space X is isomorphically (II)-polyhedral if and only if X is isomorphic

to a subspace of c0.

Proof (a) Let X be (I)-polyhedral. Choosing one representant from each pair of
mutually opposite elements of ext BX∗ , we get a set Γ such that Γ ∪ (−Γ) = ext BX∗

and Γ ∩ (−Γ) = ∅. Then, for each x ∈ X, the function

γ 7→ γ(x) (γ ∈ Γ)

belongs to c0(Γ) by (I). In this way, we have defined a linear mapping from X into
c0(Γ), which is easily checked to be an isometry. Moreover, card(Γ) = card(ext BX∗)
= dens(SX) by Proposition 3.1 (and Theorem 1.2(a)).
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On the other hand, any c0(Γ) space, and hence also each its closed infinite-dimen-
sional subspace, is (I)-polyhedral (see the examples after Theorem 2.1).

(b) Since any subspace of c0 is (I)-polyhedral by (a) (and hence also (II)-poly-
hedral), it is sufficient to prove that any separable (II)-polyhedral space X can be
renormed to be (I)-polyhedral. By Proposition 3.1, the set ext BX∗ is countable. Let
us write ext BX∗ = {±hn}

∞
1 . The w∗-topology on BX∗ is metrizable by a metric

d. Since (ext BX∗) ′ is w∗-compact, for each n there exists gn ∈ (ext BX∗) ′ such that
d(hn, gn) = d- dist

(

hn, (ext BX∗) ′
)

. Put

fn = hn − gn (n ∈ N) and C := w∗-cl co{± fn}
∞
1 .

Let x ∈ X be an arbitrary point. We have

|||x||| := sup
n

| fn(x)| ≤ sup
n

[

‖hn‖ + ‖gn‖
]

· ‖x‖ ≤ (2 − δ)‖x‖.

On the other hand, there exists k ∈ N such that |hk(x)| = ‖x‖. Therefore

|||x||| ≥ | fk(x)| ≥ |hk(x)| − |gk(x)| ≥ δ‖x‖.

Consequently, ||| · ||| is an equivalent norm on X whose dual unit ball is C .
It remains to show that (ext C) ′ = {0}. By Milman’s theorem,

ext C ⊂ w∗-cl{± fn}
∞
1 .

Hence (ext C) ′ ⊂ ({± fn}
∞
1 ) ′. We claim that ({ fn}

∞
1 ) ′ = {0}. Indeed, by w∗-

compactness, it suffices to show that, if hni

w∗

→ h0 and gni

w∗

→ g0 (as i → ∞), then

h0 = g0; and this is easy: d(h0, g0) = limi d(hni
, gni

) = limi d- dist
(

hni
, (ext BX∗) ′

)

=

d- dist
(

h0, (ext BX∗) ′
)

= 0.

Theorem 3.3 For a separable Banach space X, the following statements are equivalent:

(i) X is isomorphically (IV)-polyhedral.

(ii) X is isomorphically (K)-polyhedral.

(iii) For some equivalent norm, X has a countable boundary.

Proof The implications (i) ⇒ (ii) and (ii) ⇒ (iii) follow, respectively, from Theo-
rem 1.2(a) and Theorem 2.1(a).

To prove the remaining implication (iii) ⇒ (i), suppose that {± fn}
∞
1 ⊂ SX∗ is

a countable boundary for X. Fix a decreasing sequence {εn} of positive numbers
converging to 0, and define

|||x||| := sup
n

(1 + εn)| fn(x)|, C := w∗-cl co{±(1 + εn) fn}
∞
1 .

Since ‖x‖ ≤ |||x||| ≤ (1+ε1)‖x‖, the function |||·||| is an equivalent norm on X, whose
dual unit ball is C . Using Milman’s theorem and the properties of {εn} we obtain

(ext C) ′ ⊂
(

{±(1 + εn) fn}
∞
1

) ′
= ({± fn}

∞
1 ) ′ ⊂ BX∗ .
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Let g ∈ (ext C) ′ and |||x||| = 1. There exists k ∈ N such that | fk(x)| = ‖x‖. Then
g ∈ BX∗ and

g(x) ≤ ‖x‖ = | fk(x)| < (1 + εk)| fk(x)| ≤ |||x||| = 1.

Thus (X, ||| · |||) is (IV)-polyhedral.

Theorem 3.4 For a separable Banach space X, the following statements are equivalent:

(i) X is isomorphically (III)-polyhedral.

(ii) For some equivalent norm on X, the set ext BX∗ is countable.

Proof (i) ⇒ (ii) follows from Proposition 3.1. Let us prove the inverse implication.

Let ext BX∗ = {± fn}
∞
1 . As in the proof of Theorem 3.3, consider a sequence

εn ↘ 0 and the corresponding equivalent norm |||x||| := supn(1 + εn)| fn(x)| whose
dual unit ball is the set C := w∗-cl co{±(1 + εn) fn}

∞
1 satisfying (ext C) ′ ⊂ BX∗ .

Consider an arbitrary g ∈ (ext C) ′. By the Choquet theorem, g is a barycenter of

a probability measure on ext BX∗ . This means that there exist nonnegative numbers
αn, βn (n ∈ N) such that

∑∞
n=1(αn + βn) = 1 and g(x) =

∑∞
n=1(αn − βn) fn(x) for

each x ∈ X. The definition of ||| · ||| implies

|g(x)| ≤

∞
∑

n=1

(αn + βn)| fn(x)| ≤
(

∞
∑

n=1

αn + βn

1 + εn

)

|||x|||.

Consequently |||g||| ≤
∑∞

n=1
αn+βn

1+εn
< 1. This proves that (X, ||| · |||) is (III)-polyhedral.

The remarks on (IV)- and (V)-polyhedrality in Section 2 give immediately the
following observation.

Observation 3.5 A Banach space X is (IV)-polyhedral if and only if X is (V)-poly-

hedral and satisfies (∆).

Theorem 3.6 Let X be a Banach space satisfying the property (∆). If X is (K)-poly-

hedral then it is (VI)-polyhedral and its unit ball BX has no extreme point.

Proof Let x0 be an arbitrary point of SX . By the Krein-Milman theorem and the
property (∆), we have D(x0) = conv

(

ext D(x0)
)

and the closed linear subspace

Y :=
⋂

{ f −1(0) : f ∈ D(x0)} =

⋂

{ f −1(0) : f ∈ ext D(x0)}

has finite codimension in X and does not contain x0. The Hahn-Banach theorem
implies that (Rx0⊕Y )∩BX (which is the unit ball of Rx0⊕Y ) has a unique supporting
hyperplane in (the (K)-polyhedral space) Rx0 ⊕Y , namely the hyperplane x0 +Y . By
Lemma 2 in [21], x0 belongs to the relative interior of a solid face of (Rx0⊕Y )∩BX in
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Rx0 ⊕ Y . Note that this implies that x0 is not an extreme point of BX and, moreover,
there exists a neighborhood V of 0 in Y such that x0 + V ⊂ SX .

There exists a finite-dimensional subspace Z ⊂ X such that

X = Rx0 ⊕ Y ⊕ Z.

Since the unit ball of Rx0 ⊕Z is a polytope, for every point y in its boundary which is
sufficiently near to x0, the whole segment [x, y] lies on the boundary of this polytope.

It is easy to see that the linear projection

P : X → Y ⊕ Z, P(tx0 + y + z) = y + z (t ∈ R, y ∈ Y, z ∈ Z)

defines a homeomorphism of an open relative neighborhood of x0 in SX onto an open
neighborhood N of 0 in Y ⊕ Z. Let us denote by Q the inverse of this homeomor-
phism.

Let Y0, Z0 be open convex neighborhoods of 0 respectively in Y and Z such that

• W := conv(Y0 ∪ Z0) is contained in N ;
• Y0 ⊂ V (hence Q(Y0) = x0 + Y0);
• for every z ∈ Z0, the segment [x0, Q(z)] is contained in SX .

To complete the proof, it suffices to show that [x0, Q(w)] ⊂ SX whenever w ∈ W .
Let w ∈ W be arbitrary. There exist y ∈ Y0, z ∈ Z0 and λ ∈ [0, 1] such that

w = (1 − λ)y + λz. Consider the point x = (1 − λ)Q(y) + λQ(z). Certainly x ∈ BX

(since BX is convex) and P(x) = (1−λ)y+λz = w. Since [x0, Q(z)] ⊂ SX , there exists
a supporting hyperplane H to BX that contains [x0, Q(z)]. Then H is a supporting
hyperplane at x0, which implies (by the definition of Y ) that H contains x0 + Y and
hence also [x0, Q(y)]. We conclude that H contains co{x0, Q(y), Q(z)}; in particular,

[x0, x] ⊂ H. This implies [x0, x] ⊂ SX and x = Q(w). The proof is complete.

4 Counterexamples

As we have seen at the end of Section 2, the space c0 plays an important role in
infinite-dimensional polyhedrality: it is (I)-polyhedral (and hence satisfies each of
our eight definitions); and it is almost isometrically contained in every (K)-poly-
hedral space (and hence also in each space satisfying any of our eight definitions).

Moreover, it is an easy exercise to show that every finite-dimensional polyhedral space
is isometric to a subspace of c0. So, it is not surprising that all our counterexamples,
except Example 4.2, are renormings of c0.

Example 4.1 There exists a (II)-polyhedral renorming X of c0 such that X is not
(I)-polyhedral.

Proof The direct sum X = c0 ⊕ R is isomorphic to c0, and X∗
= `1 ⊕ R. Let X be

equipped with the norm whose dual unit ball is the (w∗-closed bounded convex) set

U∗
= conv

(

B(`1⊕∞R) ∪ {(0,±2)}
)

,
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where B(`1⊕∞R) denotes the unit ball of the `∞-sum `1 ⊕∞ R. It is easy to see that
the set E = ext U ∗ contains exactly the points

(0,±2) and (±e∗n ,±1) (with all combinations of signs).

Thus (0, 0) /∈ E ′
= {(0,±1)} ⊂ (1/2)U ∗.

Example 4.2 There exists a (III)-polyhedral separable Banach space X which is not
isomorphic to any (II)-polyhedral space.

Proof Consider the space C(K) where K is the (countable) interval of ordinals
[1, ωω] with the usual interval topology. Its dual space C(K)∗ is isomorphic (even
isometric [20]) to `1 (see [7]) whose unit ball has countably many extreme points.
By Theorem 3.4, C(K) is isomorphic to a (III)-polyhedral space X. In view of The-

orem 3.2(b), it remains to show that C(K) is not isomorphic to any subspace of c0.
But this follows from Theorem 2 in [2] and from the easy fact that c0 is isomorphic
to c ∼= C

(

[1, ω]
)

.

Example 4.3 There exists a (IV)-polyhedral renorming X of c0 such that the set
ext BX∗ is uncountable. In particular, X is not (III)-polyhedral.

Proof The idea, how to get uncountably many extreme points, is to find a norm on
c0 and a sequence f = ( f1, f2, f3, . . .) ∈ `1 such that fk 6= 0 (k ≥ 1) and all the points

(± f1,± f2,± f3, . . .) are extreme points of the new dual ball; these points are clearly
uncountably many. We are going to proceed in several steps.

Step 1: Definition of X. Fix an arbitrary % ∈ (0, 1) and any sequence {λi}
∞
1 of

positive numbers such that
∑∞

i=1 λi = 1. Let us define

a =
1

λ1
and an =

a
∑n

1 λi

1 − %
∑∞

n+1 λi

.

It is not difficult to see that the following three properties are satisfied:

(i) a
an

∑n
1 λi + %

∑∞
n+1 λi = 1 (n ∈ N);

(ii) an → a (as n → ∞);
(iii) 1 < a1 < a2 < a3 < · · · .

(To see the last property, note that the inequality an < an+1 is equivalent to
∑n

1 λi(1 − %
∑∞

n+2 λi) < (
∑n

1 λi + λn+1)(1 − %
∑∞

n+2 λi − %λn+1), which, in its turn,
can be written as 0 < 1 − %(

∑n
1 λi + λn+1 +

∑∞
n+2 λi); and this is true by the choice

of % and {λi}.)

For m ∈ N define the following subset of `1:

Am =

{

am

(

m
∑

1

λi

)−1
m

∑

1

εkλke∗k : εk = ±1
}

.
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Then the set

U∗
= w∗-cl co

(

{±e∗n}
∞
1 ∪

∞
⋃

m=1

Am

)

is the dual unit ball of an equivalent norm ||| · ||| on c0. It is easy to see that

|||x||| = max
{

sup
n∈N

|x(n)|, sup
m∈N

max
εk=±1

am

(

m
∑

1

λi

)−1
m

∑

1

εkλkx(k)
}

= max
{

‖x‖∞, sup
m∈N

am

(

m
∑

1

λi

)−1
m

∑

1

λk|x(k)|
}

.

Put X = (c0, ||| · |||).

Step 2: X is (IV)-Polyhedral. Denote E = ext U ∗ and consider f ∈ E ′ and x ∈ c0

be such that |||x||| = 1. We want to show that f (x) < 1. Suppose the contrary, i.e.,
f (x) = 1. By Milman’s theorem, f must be a w∗-limit point of {e∗n}

∞
1 ∪

⋃∞
m=1 Am,

and hence also of
⋃∞

m=1 Am (since e∗n
w∗

→0).

We claim that f is necessarily of the form f = a
∑∞

k=1 εkλke∗k for some choice
of signs (εk) ∈ {±1}N. Indeed, there exists a sequence of positive integers m j →
∞ and functionals g j ∈ Am j

such that f = w∗- lim g j . If f =
∑∞

1 fke∗k , g j =

am j
(
∑m j

1 λi)
−1

∑m j

1 ε
( j)
k λke∗k , and ek denotes the k-th vector of the standard basis of

c0, we have

fk = f (ek) = lim
j

g j(ek) = lim
j

am j

(

m j
∑

1

λi

)−1

ε
( j)
k λk = aλk lim

j
ε

( j)
k .

Thus, for each k, (ε
( j)
k )∞j=1 is convergent to some εk ∈ {±1}, and fk = aεkλk as

claimed.

Choose m so large that a · max{|x(k)|}∞k=m+1 < %/2. Then the definition of ||| · |||
implies

1 = f (x) = a

m
∑

k=1

εkλkx(k) + a

∞
∑

k=m+1

εkλkx(k)

≤
a

am

[

am

(

m
∑

1

λi

)−1
m

∑

k=1

λk|x(k)|
]

m
∑

1

λi +
(

a · max
k>m

|x(k)|
)

∞
∑

k=m+1

λk

<
a

am

·

m
∑

1

λi +
%

2
·

∞
∑

m+1

λi < 1

(the last inequality follows from the property (i)). This contradiction shows that X is
(IV)-polyhedral.
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Step 3: It is standard to prove that the second dual norm of the norm ||| · ||| is given
by

|||Φ||| = max
{

‖Φ‖∞, sup
m∈N

am

(

m
∑

1

λi

)−1
m

∑

1

λk|Φk|
}

(

Φ = (Φk) ∈ `∞
)

.

Step 4: The Set E = ext U ∗ is Uncountable. We shall show that, for each choice of
signs (εk) ∈ {±1}N, the functional

f = a

∞
∑

k=1

εkλke∗k

is an exposed (end hence extreme) point of U ∗.

Because of symmetry we can (and do) suppose that εk = 1 for all k. Note that
||| f ||| ≤ 1 since f = limm hm with hm ∈ Am (m ≥ 1). Consider the functional

F = (1, 1, 1, . . .) ∈ `∞.

We have |||F||| = max{1, supm am} = a and F( f ) = a
∑∞

1 λk = a. Consequently, F

attains its ||| · |||-norm at f .

It remains to show that F exposes U ∗ at f . Let g = (gk)∞1 ∈ U∗ be such that
F(g) = a. For each s ∈ N we have U ∗

= co[Ps ∪ Qs], where

Ps = w∗-cl co
(

{±e∗n}
∞
n=1 ∪

s
⋃

m=1

Am

)

Qs = w∗-cl co
(

∞
⋃

m=s+1

Am

)

.

Let ps ∈ Ps, qs ∈ Qs and µs ∈ [0, 1] be such that g = µs ps + (1 − µs)qs. Then we
have

a = F(g) = µsF(ps) + (1 − µs)F(qs)

≤ µs max
{

‖F‖∞, max F
(

s
⋃

1

Am

)}

+ (1 − µs)|||F|||

= µs max{‖F‖∞, max
m≤s

am} + (1 − µs)|||F|||

= µsas + (1 − µs)a.

This implies µs = 0 since as < a. Consequently, g ∈ Qs for each s ∈ N.

We claim that gk ≤ aλk for all k ∈ N. If not, there exists k ∈ N such that

gk − aλk =: 2δ > 0.
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By the property (ii) of {an}, there exists s ∈ N such that

∣

∣

∣
a − am

(

m
∑

1

λi

)−1∣
∣

∣
< δ for each m > s.

Then, for each m > s, we have

gk − am

(

m
∑

1

λi

)−1

λk ≥ gk − aλk −
∣

∣

∣
a − am

(

m
∑

1

λi

)−1∣
∣

∣
λk

> 2δ − δλk > δ,

In other words, am(
∑m

1 λi)
−1λk < gk − δ. But this implies that the k-th coordinate

of each element of
⋃∞

m=s+1 Am is smaller that gk − δ, which is in contradiction with
g ∈ Qs = w∗-cl co(

⋃∞
m=s+1 Am). Our claim is proved.

Since
∑∞

1 gk = F(g) = a =
∑∞

1 aλk and gk ≤ aλk (k ∈ N), we have necessarily
gk = aλk for every k. In other words, g = a

∑∞
1 λke∗k = f . This completes the proof

that that f is exposed by F.
The last assertion of the statement follows from Proposition 3.1.

Example 4.4 There exists a (VI)-polyhedral renorming X of c0 such that X satisfies

(∆) but X is not (V)-polyhedral.

Proof Fix an arbitrary sequence {εn}
∞
1 ⊂ (0, 1) such that εn → 0. For n ≥ 2,

consider the functionals

hn = (1 − εn)e∗1 + 2εne∗n ∈ `1 = (c0)∗

and the set
U∗

= w∗-cl co({±e∗n}
∞
1 ∪ {±hn}

∞
2 ).

Since U ∗ is symmetric and B`1
⊂ U∗ ⊂ 2B`1

, it follows that U ∗ is the dual unit ball

of an equivalent norm ||| · ||| on c0. We shall show that X =
(

c0, ||| · |||
)

has the required
properties.

It is easy to see that

|||x||| = max
{

‖x‖∞, sup
n≥2

|hn(x)|
}

.

Milman’s theorem asserts that the set ext U ∗
= ext BX∗ is contained in the w∗-closure

of the set {±e∗n}
∞
1 ∪ {±hn}

∞
2 . Note that hn

w∗

→ 0 and ext U ∗ cannot contain the

origin. Thus we have
ext U∗ ⊂ {±e∗n}

∞
1 ∪ {±hn}

∞
2 .

Observe that, for every fixed n ≥ 2, we have

|e∗i (e1 + en)| ≤ 1 ∀i ≥ 1,

|hi(e1 + en)| = 1 − εi < 1 ∀i ≥ 1, i 6= n,

|hn(e1 + en)| = hn(e1 + en) = 1 + εn.
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This easily implies that e1 + en exposes (even strongly) U ∗ at hn. Thus {±hn}
∞
2 ⊂

ext U∗. Moreover, hn /∈ D(e1) since |hn(e1)| = 1−εn < 1 = |||e1||| (n ≥ 2). It follows

that
(ext U ∗ \ D(e1)) ′ ⊃ ({±hn}

∞
2 ) ′ = {±e1}.

Moreover, e∗1 ∈ D(e1), since e∗1 ∈ U∗ and e∗1 (e1) = 1. Consequently, X is not (V)-
polyhedral.

It remains to show that X is (VI)-polyhedral and satisfies (∆). Fix x ∈ SX and
δ ∈ (0, 1

2
). There exists N ≥ 2 such that |x(n)| < δ whenever n > N . If y ∈ SX and

‖x − y‖∞ < δ, we have for all n > N

|y(n)| ≤ |x(n)| + |y(n) − x(n)| < 2δ < 1

and

|hn(y)| = |(1 − εn)y(1) + 2εnx(n)| < (1 − εn)|||y||| + 2εnδ = 1 − (1 − 2δ)εn < 1.

It follows that, for y ∈ SX with ‖y − x‖∞ < δ,

D(y) ∩ ext U ∗ ⊂ D(y) ∩ ({±e∗n}
∞
1 ∪ {±hn}

∞
2 ) ⊂ {±e∗n}

N
1 ∪ {±hn}

N
2 =: A.

This implies that D(x) ∩ ext U ∗ is finite, therefore X satisfies (∆).

Moreover, since the set B := A \ D(x) is finite, there exists λ ∈ (0, 1) such that
max{ f (x) : f ∈ B} < λ. Hence, for some δ ′ ∈ (0, δ),

max{ f (x) : f ∈ B} < λ whenever y ∈ SX , ‖y − x‖∞ < δ ′.

For such y we have D(y) ∩ ext U ∗ ⊂ A \ B ⊂ D(x). Consequently D(y) ⊂ D(x)
whenever y ∈ SX , ‖y − x‖∞ < δ ′. By Section 2 (remarks on (VI)-polyhedrality), X

is (VI)-polyhedral.

Example 4.5 There exists a (VII)-polyhedral renorming X of c0 such that X is not
(VI)-polyhedral.

Proof Fix an arbitrary sequence {ωn}
∞
2 ⊂ ( 5

6
, 1) such that ωn → 1. Then the for-

mula

|||x||| = max
{

max
n≥2

|x(n)|, sup
n≥2

[

|x(1)| +
1

3
|x(n)|

]

, sup
n≥2

[

ωn|x(1)| +
1

2
|x(n)|

]}

defines an equivalent norm on c0. Let us put X = (c0, ||| · |||). In several steps, we are
going to show that X has the required properties.

Step 1: It is easy to see that BX∗ = w∗-cl coA where

A = {±e∗n}
∞
2 ∪ {±e∗1 ± (1/3)e∗n}

∞
2 ∪ {±ωne∗1 ± (1/2)e∗n}

∞
2

(here and later on we consider all possible combinations of signs).
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Let (τn, σn) be the solution of the system

{

τn + 1
3
σn = 1

ωnτn + 1
2
σn = 1.

The properties of ωn imply, via elementary calculation, that τn, σn ∈ (0, 1), τn → 1,
σn → 0.

Step 2: ext BX∗ = A. By Milman’s theorem, ext BX∗ is contained in the set

w∗-clA = A ∪ {±e∗1} ∪ {0}.

Consequently, ext BX∗ ⊂ A since e∗1 is the midpoint of the points e∗1 ± (1/3)e∗2 . On
the other hand, for each f ∈ A there exists x f ∈ X such that

sup{g(x f ) : g ∈ A, g 6= f } < f (x f )

(indeed, for f = e∗n take x f = en, for f = e∗1 + (1/3)e∗n take x f = (1 + τn)e1 + σnen,

for f = ωne∗1 + (1/2)e∗n take x f = e1 + en, analogously for different signs). This easily
implies that BX∗ is w∗-exposed at f ∈ A by x f ; in particular f ∈ ext BX∗ .

Step 3: X is Not (VI)-Polyhedral. Fix n ≥ 2 and observe that

|||te1 + sen||| = max
{

|s|, |t| +
1

3
|s|, ωn|t| +

1

2
|s|

}

.

It follows easily that the ||| · |||-unit ball of span {e1, en} is the polygon whose vertices

are the following ten points: ±e1, ±τne1 ± σnen, ± 1
2ωn

e1 ± en. Moreover, an easily
made diagram shows that the point e1 is a common endpoint of two sides of this
polygon, both of them of length

|||e1 − (τne1 ± σnen)||| = |||(1 − τn)e1 ± σnen||| → 0 (as n → ∞).

But this implies that X is not (VI)-polyhedral.

Step 4: X is (VII)-Polyhedral. Fix x, v ∈ SX such that max〈D(x), v〉 ≤ 0. We want to
prove that max〈D(y), v〉 ≤ 0 for all y ∈ SX sufficiently near to x. By symmetry, we
can (and do) suppose that x(n) ≥ 0 for each n ≥ 1. We shall distinguish two cases.

1-st Case: x(1) < 1. Choose λ such that x(1) < λ < 1 and note that there exists
N ≥ 2 such that

x(n) < λ

x(1) +
1

3
x(n) < λ

ωnx(1) +
1

2
x(n) < λ



























whenever n > N.
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Consequently, denoting

A0 = {±e∗n}
N
2 ∪ {±e∗1 ± (1/3)e∗n}

N
2 ∪ {±ωne∗1 ± (1/2)e∗n}

N
2 ,

we obtain 1 = |||x||| = max〈A0, x〉 and sup〈A \ A0, x〉 ≤ λ < 1. This implies that
D(x) ∩ ext BX∗ ⊂ A0 and, putting B = A \ D(x), that

sup〈B, x〉 < 1 = sup〈D(x), x〉.

By continuity, for every y ∈ SX sufficiently close to x, we have

sup〈B, y〉 < sup〈D(x), y〉.

Remembering that ext BX∗ = A = B ∪
(

D(x) ∩ ext BX∗

)

, we conclude from the last
inequality that D(y) ∩ ext BX∗ ⊂ D(x). Consequently, D(y) ⊂ D(x) for each y ∈ SX

sufficiently near to x.

2-nd Case: x(1) = 1. In this case, the definition of ||| · ||| (and the fact that |||x||| = 1)
implies that x = e1. Moreover,

D(e1) ∩ ext BX∗ =

{

e∗1 ±
1

3
e∗n

}∞

2

since, for each n ≥ 2,

e∗n(e1) = 0,
(

e∗1 ± (1/3)e∗n
)

(e1) = 1,
(

−e∗1 ± (1/3)e∗n
)

(e1) = −1,
∣

∣

(

ωne∗1 ± (1/2)e∗n
)

(e1)
∣

∣ = ωn < 1.

The assumption

0 ≥ max〈D(e1), v〉 = sup〈[D(e1) ∩ ext BX∗], v〉 = sup
n≥2

[

v(1) +
1

3
|v(n)|

]

implies 1
3

supn≥2 |v(n)| ≤ −v(1). Consequently v(1) < 0 (note that v(1) = 0
would imply v = 0). Suppose that arbitrarily near to x there are points y ∈ SX

with max〈D(y), v〉 > 0. This means that there exist a sequence {xk}
∞
1 ⊂ SX and

functionals hk ∈ ext BX∗ = A such that:

(1) xk → e1,
(2) ‖xk − e1‖∞ < 1,
(3) hk(xk) = 1,
(4) hk(v) > 0.
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Then (4) implies that hk cannot be one of the vectors e∗1 ± (1/3)e∗n (since these
vectors belong to D(e1) and max〈D(x), v〉 ≤ 0). Using (2), it is easy to see that

f (xk) < 1 whenever f ∈ {±e∗n}
∞
2 ∪ {−e∗1 ± (1/3)e∗n}

∞
2 ∪ {−ωne∗1 ± (1/2)e∗n}

∞
2 .

Thus, by (3), we must have

hk = ωn(k)e
∗
1 +

ϑk

2
e∗n(k) for some n(k) ≥ 2, ϑk ∈ {±1}.

By (4), 0 < hk(v) = ωn(k)v(1) + ϑk(1/2)v
(

n(k)
)

, but the last quantity is negative
whenever n(k) is sufficiently large since v(1) < 0 and v ∈ c0. Thus there are only
finitely many possible values for n(k). Passing to a suitable subsequence of {xk}

∞
1 ,

we can (and do) suppose that

hk = ωn0
e∗1 +

ϑ

2
e∗n0

for each k and some fixed n0 ≥ 2, ϑ ∈ {±1}.

But in this case

1 = lim
k

hk(xk) = lim
k

[

ωn0
xk(1) +

ϑ

2
xk(n0)

]

= ωn0
< 1.

This contradiction completes the proof.

Example 4.6 There exists a (K)-polyhedral renorming X of c0 such that X is not
(VII)-polyhedral.

Proof Fix a sequence {ωn}
∞
3 ⊂ (0, 1) such that ωn → 1. Let us define a new norm

on c0 by the formula
|||x||| = max{G(x), H(x)}

where

G(x) =
1

2
max
n≥3

|x(n)| + max{|x(1)|, |x(2)|},

H(x) = sup
n≥3

[|x(n)| + ωn|x(1)| + (1 − ωn)|x(2)|].

It is easy to see that (1/2)‖x‖∞ ≤ |||x||| ≤ 2‖x‖∞. Let us denote X =
(

c0, ||| · |||
)

.

Step 1: X is (K)-Polyhedral. It is sufficient to prove that BX ∩ L is a polytope for
every finite-dimensional subspace L ⊂ X that contains the vectors e1, e2. Let {xi}

K
1

be a basis of L ∩ span {en}
∞
3 (thus {x1, x2, . . . , xK , e1, e2} is a basis for L). For a =

(a1, . . . , aK) ∈ R
K and (β, γ) ∈ R

2, we put

p(a, β, γ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

K
∑

i=1

aixi + βe1 + γe2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= max
{ 1

2
g(a) + max{|β|, |γ|}, sup

n≥3

[

hn(a) + ωn|β| + (1 − ωn)|γ|
]

}
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where

g(a) =

∥

∥

∥

K
∑

i=1

aixi

∥

∥

∥

∞
, hn(a) =

∣

∣

∣

K
∑

i=1

aixi(n)
∣

∣

∣
.

Clearly, p is an equivalent norm on R
K+2, and (L, ||| · |||) is isometric to (R

K+2, p).

Claim There exists N ≥ 3 such that hn(a) ≤ 1
2
g(a) for each a ∈ R

K and each n > N.

To show this, note that, since g is an equivalent norm on R
K , there exists r > 0

such that ‖a‖∞ ≤ rg(a) for every a ∈ R
K . Choose an integer N ≥ 3 such that

r
∑K

i=1 |xi(n)| ≤ 1
2

whenever n > N . Then, for each a ∈ R
K and n > N , we have

hn(a) ≤ ‖a‖∞

K
∑

i=1

|xi(n)| ≤ rg(a)

K
∑

i=1

|xi(n)| ≤
1

2
g(a),

which proves our claim.

This implies that the definition of p can be equivalently written in the following
way:

p(a, β, γ) = max
{ 1

2
g(a) + max{|β|, |γ|}, sup

3≤n≤N

[

hn(a) + ωn|β| + (1 − ωn)|γ|
]

}

.

This means that the unit ball of (R
K+2, p) is the set B ∩

⋂N
n=3 Cn where

B =

{

(a, β, γ) :
1

2
g(a) + max{|β|, |γ|}

}

≤ 1,

Cn =
{

(a, β, γ) : hn(a) + ωn|β| + (1 − ωn)|γ| ≤ 1
}

.

It is easy to see that the (finite-dimensional normed) space Y =
(

R
K , 1

2
g(·)

)

is poly-
hedral (indeed, BY is the intersection of 2K halfspaces). Since B is isometric to the

unit ball of the `1-sum
Y ⊕1 (R

2, ‖ · ‖∞),

B is a polytope (indeed, it is the convex hull of a K-dimensional polytope and a
2-dimensional one). Moreover, each Cn is the intersection of eight halfspaces in R

K+2.

It follows that the unit ball of (L, ||| · |||) is a polytope.

Step 2: X is Not (VII)-Polyhedral. It is elementary to see that, for each n ≥ 3, the
solution (ξn, τn) of the system

{

1
2
ξn + τn = 1

ξn + ωnτn = 1

satisfies τn ∈ (0, 1), ξn > 0 and, moreover, τn → 1, ξn → 0. Let us define un =

τne1 + ξnen (n ≥ 3). Note that un → e1 and

|||un||| = max
{

(1/2)ξn + τn, ξn + ωnτn, sup
j≥3
j 6=n

ω jτ j

}

= 1 = |||e1|||.
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The functionals fn = e∗n + ωne∗1 + (1 − ωn)e∗2 (n ≥ 3) satisfy fn(un) = ξn + ωnτn = 1
and

| f (x)| ≤ |x(n)| + ωn|x(1)| + (1 − ωn)|x(2)| ≤ |||x||| for every x ∈ c0.

Thus fn ∈ D(un) (n ≥ 3). Moreover,

max〈D(un), e2〉 ≥ fn(e2) = 1 − ωn > 0.

The proof that X is not (VII)-polyhedral will be complete if we show that
max〈D(e1), e2〉 ≤ 0.

Let ϕ be an arbitrary element of D(e1). Consider the two points z± = e1 ± e2. We
have

e1 =
1

2
(z+ + z−) and |||z+||| = |||z−||| = |||e1||| = 1.

Then necessarily ϕ(z+) = ϕ(z−) = ϕ(e1) = 1. But this implies ϕ(e2) =

ϕ(z+ − z−) = 0. We have proved that max〈D(e1), e2〉 = 0.

5 Appendix Related to Remark 1.5

Definition 5.1 ([5], p. 634) Let us define the following two properties of a Banach
space X:

(lm) For each x ∈ SX , there exists a finite set Ix ⊂ ext BX∗ such that sup{ f (x) : f ∈
ext BX∗ \ Ix} < 1.

(PH) For each x ∈ SX , there exist δ > 0 and a nonempty finite set ‖x − y‖ < δ and
f (y) ≤ 1 ∀ f ∈ Jx.

The aim of the present section is to prove briefly the following proposition, as
promised in Remark 1.5(b).

Proposition 5.2 Let X be a Banach space. Then

(a) X satisfies (lm) if and only if X is (V)-polyhedral and satisfies (∆);

(b) X satisfies (PH) if and only if X is (VI)-polyhedral and satisfies (∆).

By the above proposition, our results imply the following facts.

• By Theorem 1.2, (lm) implies (PH) (this was known: [5, p. 634]).
• By Theorem 1.4, (PH) does not imply (lm) (this solves an open problem; see Re-

mark 1.5).
• By Observation 3.5, (lm) is equivalent to (IV)-polyhedrality.

To prove Proposition 5.2(a), it suffices to note that (lm) can be equivalently re-

formulated considering only Ix = ext D(x) (see [5]). Considering the fact that
ext D(x) = ext BX∗ ∩ D(x), the assertion follows immediately from definitions.

To prove Proposition 5.2(b), we shall need the following lemma.
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Lemma 5.3 Let x ∈ SX . Then the following are equivalent:

(i) ‖y‖ ≤ 1 whenever y ∈ X is sufficiently close to x and such that f (y) ≤ 1

∀ f ∈ ext D(x).

(ii) D(y) ∩ D(x) 6= ∅ whenever y ∈ SX is sufficiently close to x.

Proof By the Krein-Milman theorem, (i) is equivalent to

(i ′) For every y ∈ X sufficiently close to x, we have the equivalence
[max〈y, D(x)〉 ≤ 1 ⇔ ‖y‖ ≤ 1].

Using homogeneity of the functions max〈 · , D(x)〉 and ‖ · ‖, it is an elementary

exercise to show that (i ′) is equivalent to:

• For every y ∈ X sufficiently close to x, we have max〈y, D(x)〉 = ‖y‖.

By positive homogeneity again, this is equivalent to:

• For every y ∈ SX sufficiently close to x, we have max〈y, D(x)〉 = 1, which is

obviously equivalent to (ii).

It was proved in [5, p. 635], that (PH) can be equivalently reformulated consider-
ing only Jx = ext D(x). Using Lemma 5.3, we conclude that X satisfies (PH) if and

only if X satisfies (∆) and the property (ii) from Lemma 5.3 holds for every x ∈ SX .
Then Proposition 5.2(b) follows from Theorem 3 in [6].
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