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SPACE FORMS FROM THE VIEWPOINT
OF THEIR GEODESIC SPHERES

TOSHIAKI ADACHI AND SADAHIRO MAEDA

In this paper, we focus our attention on the extrinsic shape of geodesies on geodesic
spheres in a given Riemannian manifold M. We characterise real and complex
space forms in the class of smooth Riemannian manifolds from this point of view.

INTRODUCTION

The aim of this paper is to characterise real and complex space forms by observing
the extrinsic shape of geodesies on their geodesic spheres.

Real space forms are Riemannian manifolds of constant curvature, which are locally
isometric to either one of the standard spheres, Euclidean spaces and real hyperbolic
spaces. In a real space form M , a geodesic sphere Gm(r) — {p € M | d(p,m) = r}
with centre m and radius r is a totally umbilic but not totally geodesic hypersurface
(with parallel second fundamental form). Here, d denotes the distance function induced
by the Riemannian metric ( , ) on M. This fact tells us that every geodesic on Gm(r)
is a circle of positive curvature in the ambient manifold M.

Next we consider geodesic spheres in complex space forms. Complex space forms
are Kahler manifolds of constant holomorphic sectional curvature. It is well-known that
these are locally complex analytically isometric to one of complex projective spaces,
complex Euclidean spaces and complex hyperbolic spaces. We note that a complex
space form M which is not locally isometric to a complex Euclidean space does not
admit real hypersurfaces all of whose geodesies are circles in M. However geodesic
spheres are nice examples of real hypersurfaces in M. For example, for a geodesic
sphere Gm(r) of sufficiently small radius r, we know that all geodesies orthogonal to £
on Gm(r) and all integral curves of £ are circles of positive curvature in M , where £
is the characteristic vector field of Gm(r) in M (for details, see [1, 5]). In this context
we shall give some characterisations of real and complex space forms.

In this paper we study Riemannian manifolds without boundary.
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1. EXPANSION FOR THE SECOND FUNDAMENTAL FORM

Our paper is based on the expansion for the second fundamental form of geodesic
spheres due to Chen and Vanheche [3]. For the reader's convenience, we state their
result.

Let M be a Riemannian manifold of dimension greater than 2 with Riemannian
metric ( , ). We denote by Gm(r) a geodesic sphere with centre m and radius r in
M, and by Am,T the shape operator of Gm(r) in M with respect to the outward unit
normal vector field. We adopt the following signature of the Riemannian curvature
tensor R; R(X, Y)Z = V[X,Y]Z - [Vx, Vy]Z, where V is the Riemannian connection.

LEMMA. [3, Theorem 3.1] For non-zero tangent vectors v,w € TmM at a point
m e M, we choose a unit tangent vector u € TmM orthogonal to both v and w. We
denote by vr,wr € r e x P m ( r u )M the parallel displacements of v, w along the geodesic
segment expm (su), 0 ^ s ^ r. Then for sufficiently small r we have

(1.1) (Am<rvr,wr) = -{v,w)-1-(R(u,v)w,u) + O(r2).
T O

2. CHARACTERISATIONS OF REAL SPACE FORMS

In this section we characterise real space forms in terms of the extrinsic shape of

geodesies on geodesic spheres.

A smooth curve *y(s) in a Riemannian manifold M parametrised by its arclength

s is called a circle of curvature K ( ^ 0), if there exists a field of unit vectors Ys along
this curve which satisfies the differential equations: V^7 = nYa, V ^ F S = — K-y, where
K is a constant and V-y denotes the covariant differentiation along 7 with respect to
V. A circle of null curvature is nothing but a geodesic.

As we mentioned in the Introduction, for a real space form, we know that every
geodesic on each geodesic sphere is a circle of positive curvature. We here show the
converse holds.

THEOREM 1 A . Let M be a Riemannian manifold with dimM ^ 3. Then the

following conditions are equivalent.

(1) M is a real space form.
(2) At any point m € M, every geodesic on a geodesic sphere Gm(r) of M

is a circle of positive curvature in M for each sufficiently small r.
(3) At any point m € M, every geodesic sphere Gm(r) of M is totally

umbilic in M for each sufficiently small r.

PROOF: (1) => (2). See Introduction.

(2) => (3). Let 7 be a geodesic on a geodesic sphere Gm(r) of sufficiently small

radius r. We denote by V and V the Riemannian connections of Gm(r) and M,
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respectively. By the Gauss formula we have

where N is a unit normal vector field of Gm(r) in M. Hence the Weingarten formula
Vx-/V = -Am<rX implies

(2.1) V

On the other hand, since 7 is a circle in M by hypothesis, there exists a positive
constant ny satisfying that

(2.2)

By comparing the tangential components of (2.1) and (2.2), we find the following:

7 = *S7

In particular, we have for every unit tangent vector v € T(Gm(r))

(2.3) Am<rv — KVV or Am^rv = -nvv

for some positive KV . This guarantees that at an arbitrary point p G Gm(r), the equality
Am,rv = kv holds with some positive k for each tangent vector v 6 Tp{Gm(r)) at p,
that is, Gm(r) is umbilic at p in M. Hence Gm(r) is totally umbilic in the ambient
manifold M.

(3) => (1). This is a result of Chen and Vanheche (see [3, Theorem 3.3]). For
completion we here recall their proof. At an arbitrary point m € M, since Gm(r) is
totally umbilic in M for sufficiently small r , Equation (1.1) yields that

(R{u, V)W, U) = 0

for any orthonormal vectors u,v,w € TmM. Therefore we obtain the conclusion (see

[4])- D
Motivated by the argument in the proof of Theorem la, we establish the following

which is an improvement of Theorem la. By the same discussion as in [5] we find

THEOREM 1 B . A Riemannian manifold M with dim M = n ^ 3 is a real space
form if and only if at any point m € M for each sufEciently small geodesic sphere Gm (r)
of M, there exist orthonormal vectors v\, V2, • • • , f n - i at each point p of Gm(r) such
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that all geodesies of Gm(r) through p in the direction Vi + Vj (1 ^ i < j ^ n - 1) are
circles of positive curvature in the ambient manifold M.

P R O O F : We have only to show that Gm(r) is umbilic at a fixed point p e Gm(r)

in the ambient manifold M. Let 7J = 7J(S) (1 ^ i ^ n - 1) be geodesies of M with
7t(0) = P and 7i(0) = Vi. Then the same discussion as in the proof of Theorem la
yields

(2.4) (AmtrVi,yi)AmtrVi = K?WJ for 1 < i ^ n - 1

for some positive constants K*. Hence we find

(2.5) <Am,r«i. »i> = 0 for 1 ^ i < j ^ n - 1.

Let 7ij = 7ij(s) (1 < i < j ^ n — 1) be geodesies of Gm(r) with 7i,(0) = p and
7tj(0) = (vi + Vj)/\/2. So, from (2.4) we similarly get

(Amir(Vi + Vj), {Vi + Vj))Am<r(Vi + Vj) = 2/t?7-(l>i + Vj)

for some positive Kij. This implies

(Am,r(vi + Vj), Vi - VJ) = 0 for 1 < i < j < n - 1,

so that

(2.6) <^m,r«i.Wi) = <^m,r«j,Vj> for 1 < t, J ^ fl - 1.

It follows from (2.5) and (2.6) that Gm(r) is umbilic at the fixed point p € Gm(r) in
M . Therefore we obtain the conclusion. D

3. CHARACTERISATIONS OF COMPLEX SPACE FORMS

In this section we study geodesic spheres in a Kahler manifold M with complex
structure J. Let N be a unit normal vector field on Gm(r). Since Gm(r) is a real
hypersurface in M, it admits an almost contact metric structure (({>,€, T), ( , )) induced
from the Kahler structure J of M , which satisfies

(for details, see [2]). We easily have

(3.1) (Vx<A)y = v(Y)Am>rX -

(3.2) V X £ = 4>Am,rX.

By paying attention on the characteristic vector field £ of sufficiently small geodesic
spheres, we obtain the following characterisation of complex space forms in the class of
Kahler manifolds.
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THEOREM 2 . Let M be a complex n (^ 2) -dimensional Kahler manifold. Then
the following conditions are equivalent each other.

(1) M is a complex space form.

(2) At any point m € M, each sufficiently small geodesic sphere Gm(r) of
M is a Hopf hypersurface of M, that is, the characteristic vector £ of
Gm(r) is a principal curvature vector in M at each point p & Gm(r).

(3) At any point m € M, for each sufficiently small geodesic sphere Gm(r),
every integral curve of the vector Geld £ is a geodesic on Gm(r).

(4) At any point m € M, for each sufficiently small geodesic sphere Gm(r),
the geodesic on Gm(r) through p in the direction of the vector £ is a
circle of positive curvature in M at every point p £ Gm(r).

PROOF: (2) <$ (3). See Equality (3.2).

(1) =» (2), (1) => (4). See [1, 5].

(2) => (1). In the Lemma in Section 1 we choose w orthogonal to both v and
Jv and we set u = Jv. Since ur is a normal vector of Gm(r) in M at expm (ru),
the vector vT is the characteristic vector of Gm(r) at this point. By condition (2),
Equation (1.1) shows that the curvature tensor R of M satisfies

(R(u,Ju)w,u) = 0.

Hence we find that R(u, Ju)u is proportional to Ju for every u 6 TmM, so that M is
a complex space form (see [6]).

(4) => (2). For a fixed point p of Gm{r), we denote by 7 the geodesic on Gm(r)

with 7(0) = p and 7(0) = £. Then by the same discussion as in the proof of Theorem
la we find that V^-y = (^4m,r7i7)-^- This, together with the hypothesis that the curve
7 is a circle in the ambient manifold M, implies that (Am^-y, 7) is constant and V^iV
is proportional to 7 for all s. Then the Weingarten formula Vx-N = — AmrX shows
that -y(s) is a principal curvature vector for —00 < s < 00, so that in particular at
s = 0, the vector 7(0) = £ is principal. Hence we can see that our geodesic sphere
Gm(r) is a Hopf hypersurface. D

Next we consider the extrinsic shape of geodesies on a geodesic sphere orthogonal
to the characteristic vector. The following is an analogy with Theorem la in some sense.

THEOREM 3 A . A complex n ( ^ 2) -dimensional Kahler manifold M is a complex
space form if and only if at an arbitrary point m € M for any geodesic sphere Gm(r) of
sufficiently small radius r, every geodesic through any fixed point p of Gm(r), which
is orthogonal to the vector £ at the point p, is a circle of positive curvature in the
ambient manifold M.

PROOF: (=>) See [1, 5].

We investigate the shape operator Am<r of a geodesic sphere Gm(r) in M. For
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a fixed point p € Gm(r) and a fixed unit tangent vector v € Tp(Gm(r)) orthogonal to
£, we denote by 7 the geodesic with 7(0) = p and 7(0) = v. Then the same discussion
as in the proof of Theorem la yields that there exists some positive kv satisfying

= KVV or = -KVV.

Hence we see that Amsv — kv holds with some positive k for any v € Tp(Gm(r))
orthogonal to £. So, in particular £ is a principal curvature vector, because (Amtr£, v) =
(£,Am,rv) = 0 for every tangent vector v orthogonal to £. Therefore by virtue of
Theorem 2 we obtain the conclusion. U

As an immediate consequence of our argument we find the following result which
corresponds to Theorem lb.

THEOREM 3 B . A complex n(S? 2) -dimensional Kahler manifold M is a complex
space form if and only if at an arbitrary point m e M for any geodesic sphere Gm(r) of
sufficiently small radius r, there exist orthonormal vectors vi, ta , . . . , ^2n-2 orthogonal
to the characteristic vector £ at eaci point p ofGm{r) such that all geodesies on Gm(r)
through p in the direction Vi + Vj (1 ^ i ^ j ^ 2n - 2) are circles of positive curvature
in the ambient manifold M.
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