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ABSTRACT. The problem on Chandler period is an unsolved one. Several 
authors suggested a hypothesis that the Chandler wobble is only one free 
period which slightly changes in time and is amplitude-dependent. In this 
paper we shall make the hypothesis more rigorous than that has been 
carried yet. A new deconvolution method for Fourier transform is 
suggested. Using this method the polar motion data are analysed. The 
analysis results are shown; the Chandler period is not stable and is 
indeed amplitude-dependent. The probable explanation for the amplitude-
dependent of Chandler period is that, which might be caused by non-
equilibrium response of the ocean. 

1. INTRODUCTION 

Many authors have estimated the values of Chandler period using different 
methods, an identical conclusion is that the values of Chandler period is 
quite different in different years. In order to explain this condition 
three distinct opinions are suggested; 

1. There are two or more natural free periods near the Chandler 
period (Colombo and Shapiro 1968, Chao 1983). The diff icult ies met by 
this opinion are: 1. There is still no good geophysical theory that could 
explain why the Chandler wobble(CW) have two or more periods. 2. The 
analytical results for BIH and IERS data show CW has only one peak. 

2. The Chandler period should be a stable value(Munk and MacDonald 
1960, Wilson and Vicente 1981, Okobo 1982). The observed Changes are 
either due to the errors of observation or a consequence of a random 
excitation of unknown. This opinion has a big diff iculty which makes the 
short Chandler period in 1920-1940's inexplicable. 

3. There is only one natural free period which slightly changes in 
time, and is amplitude-dependent. This opinion was suggested by Melchior 
(1957), Carter(1981) and Vondrak(1989). Which could explain all 
conditions mentioned above, but the problems are whether this hypothesis 
is correct and why the Chandler period is amplitude-dependent. For the 
purpose first we must investigate the varying process of Chandler period 
and amplitude. This is quite diff icult for traditional spectral analysis 
methods, because it is impossible to separate the Chandler peak from the 
annual peak if the length of polar motion data is shorter than eight 
years. So we suggest a new deconvolution method for Fourier transform. 
Here we express the polar coordinates x(t) and y(t) of instantaneous as, 
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x(t)-Xa+Xcc· cos cOc t+Xcs-siniJt t+Xac-cos t*?» t+Xas-sin iO*t 
y(t)-Ya+Ycc • cos t i Yes · sin t+Yac *cos o^t+YaS'Siric^^t (1) 

here (Xa,Ya) is the position of inertia pole and «λ. and u)a are the 
Chandler and annual circle frequency. Xcc, Xac, Xcs, Xas, Ycc, Yac,Ycs 
and Yas are parameters of Chandler and annual wobble, By using 
deconvolution method these parameters can be determined. 

2. DECONVOLUTION METHOD FOR FOURIER TRANSFORM 

We may think the amplitude and phase of a series ae variable quantities, 
go definite X(f,t) as the actual Fourier Transform at the moment t, and 
it will satisfy the relation; 

x ( t ) - \ X(f,t)exp(2fijft)df (2) 

When analysing a practical series, only the time f inite series could be 
used. It looks like truncating a unlimited series by a window function, 
eo that, 

x'(t)~w(t)x(t) (3) 

In order to guarantee the zero-phase shift , w(t) must be symmetrical 
with respect to the origin. Also x(t) could be symmetrical regarding 
the origin through transform of coordinate . Let X'(f) be the 
Fourier transform of x'(t), then we have, 

X ' ( t ) » \ w(t)x(t)exp( jft)dt (4) 

Define X(f) as the average of X(f,t) about window function w(t), so 

X(f)« \ X(f,t)w(t)/ \ w(t)dt (5) 

From the definitions (2) and (5), it is easy to prove that the 
convolution relation will still be kept. 

X'(f ) -W(f)*X(f)- \ X(f ' )W(f-f ' )df ' (6) 

In above equation, X'(f) and W(f) are known quantities and denotes 
convolution. For an ill- posed equation (6), it is impossible to solve 
X(f). But by using the special attributes of polar motion, we can compute 
X(f) directly. The attributes are; 

1. The principal periodic components of polar motion are the CW and 
the annual polar motion, as to other periodic components they are very 
small. 

2. We may think the form of the actual transform of CW and annual 
polar motion are known. If we express the movement of CW as, 

xfc (t)«Mc· exp(-*tt)»cos(2*J» f c t ) (7) 

then according to the Fourier transform the actual spectral transform of 
Xc(f) will be the following form, 

X c ( f ) — : T — T - , (8) 
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The actual spectral transform of Xa(f) will be the same form 

Xa(f)- (9) 

Hence we may express the actual Fourier transform of polar motion as 
follow, 

X(f)-Xc(f)+Xa(f) (10) 

Here <-t»fc/Qc. Let f t -0 .8432/yr, f^-l /yr, Qc-60 and Qa-40. So here 
the problem of solving X(f) will become a simple one, which is how to 
determine Mc and Ma. It is obvious that the four Fourier transforms of 
polar motion will be the same form. Because the side lobes of Hanning 
window are very small, we would think that Hanning window is band-limited 
in both time and frequency domain. It is given by 

w(t)« r 0.5(l+cos(iit/T.) 
1 0 

when 
when 

| t |< -T. 
!tj> Te (11) 

We adopt T0«3yrs, so the lower and upper limits of integral (4) are -3 
and 3 respectively. Then we can know the width of the main lobe of W(f) 
is 0.54/yr. Let f , -0 .30/yr and f2-1.67/yr, and consider the symmetry of 
the Fourier transform about the origin, we may have, 

Λ 
X'(f) Γ X(f')W(f-f')<tf (12) 

and the spectral energy of CW and annual wobble only have a very little 
leak. Let f^-( f c +f B ) /2 , and integrate the formula (12) from f , to f^ and 
from f* to f} respectively, and substitute formula (8), (9) and (10) for 
X(f), then we got, 

\ X'( f )df- M 

\ X' ( f )df - M 
\ 

At lef t side of 

0.5 

0.5 + Ma (13) 

Unit: Xc(Ms), 

Actual Fourier titnsfor* 

above formula 
the integrated values can be 
obtained directly, we may 
express it as S, and S v And : 
at right side the integral 
values can also be known, we 
denote them as Sei , Sat, Sc* 
and Sa*. So we have, 

M c S c i + Ma· Sai - S, 
Mc-Scj+ Ma· Sa> - S* (14) 

From (14) it is very easy to 
solve Mc and Ma, then the 
actual Fourier transform X(f) 
can be obtained by (8), (9) and 
(10). But because the noise, Figure 1, Shapes of Fourier 
the existence of other periodic transform and the actual one. 
spectral components and the error of peak shape, values of X(f) have a 
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big error, so we only take it as initial values. Then using successive 
approximation method we can compute the precise values of X(f), For 
the four components of Fourier transform of polar motion we operate four 
times and get four group solutions. As the Chandler and annual peaks of 
the actual Fourier transform are very narrow, from formula (2) it is easy 
to prove that the values of parameters of Xcc,Xac(Xcs,Xas; Ycc,Yac; Yes, 
Yas) equal to the areas under the Chandler and annual peaks respectively. 

Because the weight of the taken value of Hanning window concentrates 
chiefly on the middle series, that is to say the actual Fourier transform 
chiefly reflects the average state of the middle series. For example, if 
we take the polar motion data from 1982.0 to 1988.0, then parameters of 
Xcc, Xac, Xcs, Xas, Ycc, Yac, Yes and Yas which we obtain by using 
above deconvolution method will reflect chiefly the movement of pole at 
the epoch of 1985.0. 

3. THE ANALYSIS FOR POLAR MOTION DATA 

In order to research the variations of Chandler period and amplitude, the 
polar motion data of ILS(1900-1978), BIH(1962-1982) and IERS(1983-1992) 
are analysed. We first use sliding method year by year within every six 
years to find out subsets. For ILS data there are 20 samples in one year, 
so every subset has 120 samples. The sampling time interval for BIH and 
IERS are 5 days, so every subset has 438 samples. Let Ν denote the number 
of samples of subset, the position (Xa, Ya) of inertial pole for every 
subset are; 

Χ β - Γ * . / Ν Y a « E y . / N (15) 
Lsl 

Subtracting (Xa, Ya) from every datum, we get the new subsets with zero 
average values. 

Using deconvolution method for every subset, we can obtain the 
Chandler and annual parameters that corresponding to different epoch (For 
ILS, the epoch is from 1903.0 through 1975.0. For BIH and IERS the epoch 
is from 1966.0 through 1989.0). In order to examine the reliability and 
precision of this method, we suggest three different methods. 1. Taking 
different initial values of fc, Qc and Qa, we find out the results are 
similar. 2. Comparing x(t), y(t) that calculate from formula (1) with 

y(t) that given by polar motion data, we find they are very 
identical with each other and the 
error is only 12 mas (B. 
Gao 1990). 3. Making a 
spectral analysis for 
x(t)-x(t) and y(t)-y(t), we 
find that the Chandler and 
annual spectral components 
are vanished for any sub-
interval. The Chandler 
amplitude Ac and phase q> 
are calculated by 
following formula, 

tancf =0.5(Xcs/Xcc-Ycc/Ycs) 
a. V 

Ac=(Xcc +Xcs +Ycc +Ycs )* 
and fc with time. 

m e S 38 ~4§ s5 ?3 
(16) Figure 2. The variations of Ac 
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Taking fco«l/1.185yr, converting phase values into a same epoch (For ILS 
to 1902.0, for BIH and IERS, to the 1964.0). From the changes of phase we 
can get the variations of Chandler frequency. Let fc be the average 
frequency from epoch Y, to Y2, then we have, 

(fc-fc«)( YX-YT)-1%-FT (17) 
.91331 . Unit: fcü/»*), 

Let Υ*-Υ,-2 yrs and Ac be the , w w j \ l m i 
average of amplitudes in this ! . | 
3 years, consequently values ,8!Si| » ; +«12,5 
of Ac and fc could be .S71?!\ 
obtained. (For ILS, from i'. ^ C . · · , · · 
1904.0 to 1974.0, for BIH and .8578Ï ^ \ f«5.8 
IERS, from 1966.0 to 1988.0). i8439| "·••«· .^432.8 

In Figure 2, the solid j ' · * 
line shows the variations of .838β| '· ·· · 4440.1 
Ac with time. The points and j ! 
l ittle circles show the - H U ^ ^ m ^ 555 £ jg g j ^ · « 
values of fc in different 
epochs that got from ILS or Figure 3. The variations of 
BIH(IERS) data respectively. fc with Ac. 
It can be seen that; the variations of Ac and fc with time are very 
coincident even in small parts. This fact denotes that Chandler 
frequency is indeed amplitude-dependent.From Figure 3 it is obvious 
that fc may have a non-linear exponential relation with Ac. 
Vondrak(1989) gave the formula as; 

fc - f , +d· exp(K· Ac) (18) 

For the old polar motion data Vondark gave; fe»0.8644/yr, d»0.1918/yr, 
K=- 0.02; for the new technical data, f e »0.8394/yr, d-0.0866/yr, K—0.02. 
The two curves are shown in Figure 3 in dotted lines respectively. Using 
the least square method we get the statistics relation as; 

fc -0.826+0.0722.exp(-0.0064- Ac) (19) 

This result is shown in Figure 3 in the solid line, it may be seen that 
out result is more coincident with the observational results. 

4. CONCLUSION 

The result of this paper further demonstrates that the Chandler frequency 
is not stable and is amplitude-dependent. Lambeck(1980) suggested that 
the only explanation for this phenomenon are the unequilibrium pole 
tide. Smith(1977) estimate that for the elastic oceanless earth the 
Chandler period is about 404 days, for the earth which have ocean and the 
pole tide in equilibrium the Chandler period is 433 days. Dickman(1977) 
had investigated the pole tide in considerable detail. He find that the 
pole tide could be observed only in some region. So he conclude that the 
ocean tide may have a big departure from the equilibrium state, and this 
departure may have a big ef fect on the Chandler period. The surface of 
Earth is covered by ocean in the ratio 7/10. For the small Chandler 
amplitude it may only cause a very small tide, and when the Chandler 
amplitude become larger, the pole tide will become larger and larger in 
exponential relation. Naito(1977) reported that the enhancement of 
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amplitude of pole tide in Honolulu ie generally larger during periods of 
larger polar motion than that of small polar motion. As the amplitude of 
pole tide is extremely small(about 0.6 cm), so the observing and analysing 
of realistic pole tide is a diff icult problem. 
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