SOLUTION OF THE WORD PROBLEM FOR CERTAIN TYPES
OF GROUPS 1I

by J. L. BRITTON
(Received 10th February, 1956)

The purpose of this paper is to prove a theorem which concerns the normal subgroup '
of a free product IT generated by a given subset £. This theorem was stated in the first
paper of this series (Britton [1]) and an application was made to the word problem. The
present work is, however, independent.

Let the group II be the free product of the set of subgroups {G,; 7€ I'}. These sub-
groups will be called the constituent groups of I1. Let £ be a subset of IT which meets none
of the constituent groups, 7.¢., such that 2 ~ ¢, is empty for each 7 ¢ I The theorem gives

information about the elements of the normal subgroup generated by 2 when £ satisfies
conditions which restrict cancellations between certain conjugates of the elements of £ and
their inverses.

Notation
We denote elements of IT by capital letters, the identity being denoted by I, and write
X . ¥ for the product of the elements X and Y. It is convenient, however, to denote elements
which are known to have unit length by small letters ; we write
x~y or x~y

according to whether x and y belong to the same constituent group or not.

IfX=X,.X,.....X,, where the length of X equals the sum of the lengths of the factors
X;, we omit the dots and write X =X,X, ... X,,. Every element Y of IT except [ has a
unique representation ¥ =4y, ...y, and we write I(Y)=n, In(¥Y)=y, and Fin (¥Y)=y,.
Thus I(Y) denotes the length of Y. Finally, if X, Y are elements of IT different from I, we
define B(X, Y) and (X, Y) as the numbers of cancellations and amalgamations respectively
in the product X . Y, and write (X, Y)=8(X, Y)+¢(X, ¥Y). Thus

HX.Y) =l X)+1(Y)-2B(X, Y)-¢(X, Y)

and (X, Y) is either 0 or 1.

We may assume,that every element W of £ satisfies the conditions

I(W)=2, In (W)~ Fin (W)
If an element U satisfying these conditions has normal form U =a,a, ... a,, then by the
cyclic arrangements of U we understand the n elements
BA@pgy e Oy ... Gy (A = 1,2, ..., n).

Let £2* consist of the cyclic arrangements of all elements of 2 and their inverses. If

U € %, we define the integer «(U) by
a(U) = Max «(U'", V),
where U’ is a cyclic arrangement of U, xis +1 and V is an element of 2* such that
UV #1I.
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The conditions we shall impose on £2 are :
(VDI U, VeQ*and U. VI, then 6a(U, V)<Min ({(U), L(V)).
(2) If U e 2%, then «(U) 0.

TaEorEM. Let 1T be a free product of groups and let 2 be a subset of IT in which every
clement W satisfies the conditions L(W)=2, In (W) ~' Fin (W). Further, assume that (1) and

(2) hold.
Then, if Uy is any element, different from the identity, of the normal subgroup of IT generated
by Q,
(i) U, has length at least Iy, where ly= Min (W),

Wen2
(1i) of U, has length exactly Ly, then Uy e 2%,
(iii) the normal form of U, can be written in the form XKZ, where K is such that an element
V of £* exists with normal form K'K, say, and
HK) = UV)-3a(V)-1,
and equality implies that Fin (K') ~ Fin (X) and In (K') ~ In (Z).
CoroLrLaRY. The element X . K'~1. Z belongs to the normal subgroup and has length strictly
less than 1(U,).
The corollary is easily proved. For I(V)>6a(V) and hence either I[(K)>3l(V) or
I(K)=3(1(V)-1), Fin (K') ~ Fin (X) and In (K’) ~ In (Z).
Note. To prepare the way for a later paper, in which different conditions will be imposed
on £, the proof of the theorem has been arranged so that most of it remains valid when the
inequality in (1) is replaced by

(1) 4o (U, V) +1 < Min ({(U), I(V) ).
In fact there is only one point where it is necessary to use (1) instead of (1’). (This is at the
end of § 4.)

1. Three basic lemmas. The three lemmas proved in this section are the main tools
used in the proof of the theorem. We require some preliminary definitions.

If YeIl and Y # I, we define the subsets #(Y) and Z(Y) of II as follows. Let
Y =3%3 ... ¥o; then F(Y) consists of the n —1 elements

YYe - Y (E=1,2,...,0-1)
and & (Y) consists of the n - 1 elements
: Yi¥ser - Yn (0 = 2,3, ..., m).
If n =1, then both subsets are empty. If Z is also an element of IT different from I, we write
L Y)VNZLEL)=F(Y,2Z).
If Be (Y, Z) and if, further, In (B-1. Y) ~ In (B-1. Z), we write
B¢ P(Y, 7).
R (Y, Z) is defined similarly, and if C ¢ Z(Y, Z) and Fin (Y . C-') ~ Fin (Z . 1), we write
CeR(Y, 7).
If & number of small letters (usually two or three) representing components are enclosed

by round brackets, we mean that the components all belong to the same constituent group
and their product is not the identity. =~ We give this convention priority over the “ dot
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convention ”’, so that dots can be omitted inside the brackets. Thus a(bc)de denotes an
element of length 4 and a'd’ (¢'d’e’) an element of length 3.

DermvrioN 1.1. A4 chain is a finite sequence of at least two elements of II each of which
has length at least two. _

The normal form of a chain =(F, F,,..., F,> means the normal form of . F..... F,
It is denoted by C.

A subchain of the chain € means a chain of the form (F, F,,, ..., F,), where 1 <p<g<n.

The sum of two subchains,

C,=(F,, Fpp, ... F) and C, = (F,, F,y, ... F)
is only defined when ¢ =7 and in this case
C,+C, =(F,, Fpp, ..., Fo.
Dermvrrion 1.2, Thechain 8 = (Fy, Fiq, ..., Fy) issimple if its normal form S involves
only components of F; and F;, in the following way. If Fi=a,a,...a, and F;=bb, ... b,, then

either 1) 8 =ay ...a,(@y1b) by .- b,
or () S=a,...0,04,...b,

where, n each case, 1 <p<u and 1 <<g<v, and n (ii) we have

Aoy ~ by and @y ~ by i, (1.21)

The conditions (1.21) are satisfied if @,,, ~b,. If a simple chain satisfies this stronger
condition, it is called naturally simple.

It is easy to see that the normal form of a simple chain has a unique decomposition of
the kind occurring in Definition 1.2. 'We shall write

1
F;=a,...a, and F] =byyy... b,

so that

8 = Fleels,
where e =1 in case (i) and e =0 in case (ii). Clearly F!e #(F,, S). Also, Fté¢ £ (F,, S) if and
only if e=1. Similar results hold for F7.

The first basic lemma deals with chains in any free product and may have other applica-
tions.

Lemma 1A.  Let the chain S be the sum of n subchains :

§=8+8,+.+8,
where n=2 and
Sv = <Fk(v—l)’ Fk(v—l)+17 LX) Fk(v)) (V':]., 2: They n)‘

For each v, let there be a factorization
Sv = Ak(v-—l)‘Bka(v)
satisfying the following conditions.
(l) Ak(v-—l) € ‘?(Fk(v—l))’ Ok(v) € '%(Fk(v))
(ii) If B, = I, then §, is simple.
(iii) #(Cagy) +1(Ape) = (Frey) 0 =1,2, ...,n-1),
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and equality implies that either
Criy E R (Frpy, S,) or Ay € L (Frgy, Sy11)-
Then 8 has normal form
S = Ao B\J\ByJ, ... Bn-1Jn—1Ban(n),

where J, = Cyy,) . FL_(.}) - Ay Further, if H, = B,J,B,,,, then H,+#1I, In (H,) ~In (B.Cie)
and Fin (H,) ~ Fin (4,4)B,11)-

Proof. 1°. For 1<<v<<n -1, we have

Sv = Ak(v—l)‘Bvok(v) and Sv+1 = Ak(v)Bv+10k(v+1)‘
Thus the product of the terms in the chain S, +8,,, equals

AroyBy - o BoiaCrtan) vveeermerinniiiiiiiiiici e (1.22)
If there is strict inequality in (iii), then J,#/, In (J,) =1In (Cy,)) and Fin (J,) =Fin (4xw)) ;
so the dots can be removed from (1.22). If there is equality in (iii), then F )= 4,0,
and J,=1. Suppose first that Cy(,) é X (Fy), S,). Then
Fin (A4,-1)B,) = Fin (S, . Ciy) ~ Fin (Fy)) - Cxy) = Fin (Ayq)) ~' In (B, 1Chpn))-
Now suppose that 4, é L (Fie), S,p1). Then
Fin (44-1)B,) ~' In (Cre)) = In (digy - Frep) ~ I (4iy - 8,41) = In (B,11Crgan)-

In either case, therefore, the dots can be removed from (1.22).
2°. It will now be shown that

C’lc(v+l) é .% (Sv+1’ Pv): ...................................... (123)

where P, denotes the expression (1.22) with the dots removed. This is trivial if B,,; #1.
If B,,,=1 and J,=I, then, by 1°, Fin (J,)=Fin (4,)) and (1.23) follows. Finally, if

B, =J,=1, then F,=A,) Ci) and one of the alternatives of (iii) holds. If

Cit) € Z (Fri, 8,),
then Fin (A,)) ~ ¥in (4,,_1)B,), which is just the required result. The other alternative

cannot hold, since §,+1 is simple when B, ,=1.
3°. It now follows that H /. Tor H,=1I implies that B,=J,=B,,, =1, which, by 2°,

implies that Fin (4,,)) ~ Fin (4;,,)) and therefore that Cy,) € #(Fy,), S,). This contra-
dicts the fact that S, is simple when B, =1.

4°. The results of 2° and 3° combine to give Fin (H,) ~ Fin (4,(,B,,;). The other
result, namely In (H,) ~ In (B,C,,)), follows by symmetry.

5°. Finally, it will be proved by induction on m that if 2<m<n, then §, + 83, +... +§,,
has normal form A ,B,J; ... Bp1dm_1BmCrem)- By taking v=1 in 1°, we obtain the result
for m=2. Assume the result true for m. Then Sl +;§2 +... +S',,, 41 has normal form

EBmOk(m) . FI:(}n) . Ak(m)Bm+1Ok(m+1)r
ie., o7 I A S N (1.24)

where E=4,0B; ... Jp_y. But §m+gm+1 has normal form A44-1)BpdnBmiiCrimsr) 80
that the dots in (1.24) can be removed if Fin (EB,,) =Fin (4,(_1)Bx), that is, if

Fin (Bm—lJm—le) ~ Fin (Ak(m—l)Bm)s
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which is so, by 4°.
This completes the proof of the lemma.
Considering now the situation of the theorem, let Uy be an arbitrary but henceforth
fixed element of the normal subgroup and let Uy 1.
Thus
Up=F, . Fyooo e Fpy v (1.25)

where h>>1 and each F, is a conjugate either of an element of £ or of the inverse of an element
of 2, so that F; has normal form

o—1 -1 -1
€1€g oo €5 Tn +ow Toilay +ov €g €] 5 weeeririiiiiniineii (1.26)

where either (i) 2,2, ... %, € Q% or (i) (%%)) %y ... ¥py—y € £*. In both cases we denote the
element of 2* by W;. Let A; and §; be defined by

A'=l(W,) a;nd ot’ = CT,'—A",
so that 6, =0 in case (i) and 6, =1 in case (ii).
Dermvrrion 1.3. The kernel of F, is the sequence of components

Ty40p Basop - > g
Evidently these are components of W,.

The representation (1.25) is not of course unique. From the many possible representa-
tions, we select a particular one as follows :

Take those representations (1.25) for which h is minimal, and from them select one for which
A

> UF,) is minimal.
i=1

Henceforth we shall assume that (1.25) is this fixed minimal representation of U,

Defining o; and ay; by a;=a(W,) and oy =Min («;, o) (¢,5=1,2, ..., k), we have a;=>1
and «;;>1.

From (1.26), we have

I(Fy) =28;+0; (¢=1,2,...,R)
8; may of course be zero.

In what follows, the letters i, 4, k, I, m, when used as suffixes, will denote integers in
the range 1 to A.

The second basic lemma gives an upper bound for the number of cancellations and
amalgamations between a product B=F;.F;,,..... F;_, and a neighbouring single factor
F;, when |(B)<I(F};).

Lemva 1B. In the representation (1.25), let h=2 and le¢ B=F,.F;,..... F;,,
where 1<i<j - 1<h. Let UB)<l(F,;). Denote the normal forms of B and F; by bb, ... b,
and ¢, ... CoptaZy - 2o ... €;leTY, respectively,t and denote by a, B and e the inlegers
«(B, Fy), B(B, F;) and ¢(B, F)), respectively. Then we have the following results :

(i) If B<§;, then B<in and a<<1 +4n.

(ii) If B>3;, then B<3; + 0;, B<n — 8; and a<<n — 8; — ¢, (¢), where $; () =0;(1 —¢).

Note. ¢;(c) retains this meaning throughout the paper.

Proof. 1°. We prove first that

t B=1, for if B were equal to I, there would be a representation of U, with less than h factors.
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UB.Fy . BYZUE). oo (1.31)
Write F= B. F;. B-1. Then F.B=B.F;and
Uy=(Fy.... . Fi ) . F.(Fyu . . Fyl)) . (Fypqe ... . Fp).
This is & representation of U, because F is a conjugate of F; and hence a conjugate either of

an element of 2 or of the inverse of an element of 2. Since the number of factors in this

)
representation is A, the sum of the lengths of the factors is not less than 2 I(F,) and so

y=1
LF)=U(F,).
2°. Write 8=3, and o0 =0;,. We prove (1). Now
B.F; =b;..b, g.Coyyeee Ca2p e 2,650 .0 ]t
and B.F; . B =by..by g.Cayy ... CoZy oor 25" ... Cat1-bplg... BT

Hence I(B. F;. B-1)<2(n-B)+2(3 - B) + 0 —¢, where ¢ cannot be replaced by 2¢ because
we allow 8=8. Thus I(B.F,.BY)-1(F,)<2(n-B)-28-& By (1.31), we obtain
B<in-1e.

Thus B<C4n. It remains to prove that a<C1 +4n. Thisis trivial if B< 4n. So assume that 8 =4n.
This gives }e<0, 4.e., 6=0, s0 that a =<1 +1n.

3°. Finally, we prove (ii). Suppose that 8=>8+0¢. Then B.F;=b,...b,.¢5" ... ¢},
where u=n -8 -0, and B. F;, B1=b, ... b, . bz2s ... by. Therefore

I(B.F; . BY)-l(F)su+n-8-(20+0) = 2(n-28 - 0)<0,

in contradiction to (1.31).

Therefore §<<f< 8 + ¢ and

B.Fy=by...byge2py o208 i 670 rreiiiiiiiniiiiiiiniean, (1.32)
where v=8-5.
Also by, g,y --- by €y oe €2y .. 2, = I, 50 that
B.F; Bl =b..b, g2,y 2 2...2.bg .. b7 . (1.33)

The length p of the last expression is not greater than 2(n - 8)+o. By (1.31), 28 + o<<p.
Hence 8<n - 8. It remains to prove that «a<{n — 8 — ¢,(¢) or, equivalently, that

ﬁ<n—8—(01—0,e+£). ..................................... (1.34)

The bracketed expression is either 0 or 1; so (1.34) certainly holds if S<n-8~1. But
when B=n -8, we have p=2(n - B) + o or, in other words, the dots in (1.33) can be removed.
Therefore the dot in (1.32) can be removed (giving ¢=0) and also z, ~' 2, (giving 6,=0).
(1.34) follows, and this completes the proof of the lemma.

Note 1.4. By one of the assumptions of the theorem, we have A;>6«; (=1, 2, ..., A).
However, most of the arguments in the proof of the theorem require only that

Adai 1 6= 12 i B) e, (1.41)

This inequality will be used freely, but whenever a stronger inequality is required, the fact
will be mentioned explicitly. (See, e.g., Lemma 2.2 (vi).)

The third basic lemma does not use the full minimal hypothesis for the representation
(1.25) but only the hypothesis that % is minimal.

P G.M.A,
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Leyma 1C.  In the representation (1.25), suppose that h==2 and let
B=F;,.F;y.....F;_4,
where 1 <i<j —1<<h. Let the normal forms of F; and F, be

dy...dy . g 470 AT and e ... ez, ...z(,je;l .. el

respectively, so that s =3; and p=3;.
If there exists an integer p such that
dl vee dsxl iy x“EZ(B) and 1 +a,-,-<p</\i,
let B=d, ...dg, ... £,60c, ... ¢, (120). Then we have the following results :
() Ifp+1+6;<r+2<p +o0;5—0y, then a<<r +1 + oy
1) If r+2<p+1 +0; <t +p + 1 -y, then a<<P +0; + ;5 — 5 ().
(Here, as in Lemma 1B, «, § and ¢ denote « (B, Fy), (B, F;) and (B, F), respectively.)

Proof. 1°. To prove (i) we observe first that the result is trivial if B<r+1. So we
assume that 8=+ +1. Then

B.Fy=dy..dx .2, .2.. Zaje;l el'1 ..................... (1.42)
and Colp +or Cpo €y vee €921 oo By = 4, tevviiiiii (1.43)
where ¢ =7+2 ~p. Thus
1 +0§<q<0'j e 2 T R R (1.4:4:)
Now define X’ and Z' by
X' =g %o @y and T =2p 25021 T e (1.45)

X' is obviously in £2* when 6;=0. But the same is true when 6; =1, because then there is at
least one component on each side of the dot (since u<<\;=o0;—1<<0o,). Similarly Z' ¢ 2%,
by (1.44).
We shall prove that X’ . Z'=I by showing that the supposition that X’ . Z’ =1 implies
that the products
D=F,, Fip.... . F,., and E=F;. F;;..... F;

are equal. (This is inconsistent with the minimal hypothesis.)
Suppose that X’ . Z'=1. Since
D=F7'.B=dy...da, ...a} . ¢t ... Cp
we have, by (1.43),
D =dy...dazt ... apgy ler o ez o 2]
Consequently
E.D?'=(B.F).D?
=y @y By 2y 2yt e e Ry 2 By e By
=dyodgy 2y L Ty T dy AT
The last expression is a conjugate of X' . Z’. Hence E.D1=1.

This completes the proof that X' . Z’' = 1.
Since X', Z' € Q* and X' . Z' #1I, we have o(X', Z')<ay;. Let
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X' =X"3y..m, and Z' =z,...2,,2".
Then Iy ... w)=a; and Iz, ... zoj_1)>oc,~,.
Moreover Fin (X") ~ z, and In (Z") ~2,,. So, by (1.42) and (1.45), the number of cancella-

tions and amalgamations which can occur in (1.42) is not greater than «,;. Therefore

a<7 + ]. + Olgje
2°. The proof of (ii) is similar, although an additional argument is necessary when
¢i(e)=1. We may suppose that =p +0;. Then

B.F,=d,..dx, ...z,. Z14gj - Zofpl e €71 i (1.46)
and Bpig voe BuColy or Cre €y v €92y a2y = I, i (1.47)

where v=p +7+1-p -6;, so that 1 +o;;<v<<p—1. Define X’ and Z’ by

22y e Zgie

’ 3 l_
X' =x,,..2, .2,..2 and Z = 21405 -+ 4 ;

0| L4 O'j
These are elements of @*. If X', Z’' =1, then, by (1.47),
E=B.F,=4d,..d2,...72,. Z14gj e 2o (21 -+ 25« By +-n bl - €]
and D =B F; =c et By e Ty dy L AT
Hence E. D' =d..d@ .22 a2, 4 dTY
giving the same contradiction D =E as before. It is straightforward to deduce that
a<p + 0j + &yj-

3°. It remains to be proved that if ¢;(e) =1, then a<<p +6; +a;; —1. Suppose that this
is false, i.e., suppose that a=p +6; +a;;. Now ¢;(¢) =1 implies that §;=1 and ¢=0. There-
fore B=p +8; +a;; ; so, from (1.46),

Bppgat e By e Zg e 29y =1 At = o),

and, from (1.47), x,,, .2, =1.

Now consider the product Z, . X,, where

Zy = 2gyg oo Zopm1 (Zo21) 29 -0 P

and Xy = ®qg e B oee By e By e Ty
It is easily verified that Z, and X, are cyclic arrangements of W; and W, respectively. But
a(Zy, Xy)=a;+1, so that Z; . X; =I. This implies that (221) « %4y =1. We have already
seen that ,,, .z, =1, so that 2o, =1.

This contradiction completes the proof of the lemma.

2. Some special chains. TUntil § 6 we shall neglect the trivial case in which & =1 in the
representation (1.25). It is clear that (F,, Fy, ..., F,) is a chain; we denote it by U, and
in what follows the word “ chain ” will mean a subchain of U,

DermrrioN 2.1, A chain (Fy, Fy,,, ..., F)) is left-closed if the following conditions are
satisfied.

(i) The chain is naturally simple, so that its normal form s, say, Fécng.
(i) L(FY= 8+ — g + by o).
(iii) L(F7)=8; +c;(e), where
C,-(e) = [1}(0’"“8‘*‘1)]—&", ................................... (21].)

square brackets denoting the integral part of the number concerned.
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A right-closed chain is defined similarly. It will be shown later that a chain with two
terms is in general either left-closed or right-closed.
It is easily verified that

(0)=¢; (1)>C;(0)
and ¢e)=3(A - 1) —ay,
so that c;{e)=ay.

For the next definition we require two more integers b () and by (¢), defined, like c,(e),
when the suffix is in the range 1, 2, ..., k and e=0 or 1. The special property of b, (e) is that

bk(sl) + Cp (82)>Uk, ......................................... (212)
where equality implies that ¢, =1 or ¢,=1. We define b, (¢) by
bk 6) [% —5)]+ak+l. ................................ (2.13)

To prove (2.12), we observe that the left-hand side is an integer and is not less than
ak+% —%(51 +62)>

which is not less than o, — 4 and, in the case in which & =&, =0, is not less than o, + 4.

We define by (¢) by
bE () = Max (A — 2ax + $x(e), De(e) ). weervromremrnerrereeeenae. (2.14)

Levma 2.2
() If Ay>Boy, then b (¢) = Ay — 2z + i (€)
If A <6ay, then bf () =by(e).

(i) b¥(0)=bF(1)=b¥(0)-1.

(i) BF ()b (6)>Hhs +

(iv) b¥ (6)>X; — 3ay +0; — 1.

(v) B (&) + (A — e+ i (6) ) — 04>Ap — Bap - 1,

where equality implies that O, =¢, =¢,=1.

(vi) Ag —oe=bF(0). [Ap>day +1 is required here.]
(vi) A — o+ () =D (o).

Proof. We only prove (iv) and (v); the other results are trivially verified. We note
that (v) can be written in the form b¥ (&)=, — 2a; — 1 + 0,5, so that (v) implies (iv). To
prove (v), we assume first that A,>6c;. By (i), we have to prove that ¢(g)= -1 +8,¢,.
This is trivially proved, and equality implies that 6, =¢; =¢,=1. Now suppose that A, <6a,;
then by (¢,) =b(¢;) and it is easy to verify that (v) holds (with strict inequality).

DermviTioN 2.3. A chain S =(Fy, Fi,, ..., F,) has double barriers if its normal form
has a factorization

8 = A;BC,
satisfying the following conditions.
() A;e P(F,) and C;e RB(F,).

(i) If B=1I, then the chain is simple (but not necessarily naturally simple).

(iii) Either 1(4,)=8;+bf(0), or 1(4,)=8,+b¥(1) and A;¢é¢ L (F, S).

(iv) Bither 1(C;)=8;+bF(0), or 1(C;)=8+bf(1) and C;éR(F, S).

Levma 2.4, The sum of two chains with double barriers has dtself double barriers.
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Proof. Let the two chains be

Fiy oo By and (Fy, ..., F5,
with normal forms
ABC, and A,B'C,,
respectively. Then I(C)) +1(4,;)>1(F,), because
l(Cl)>81 + br (1);8; + %Al +ozl

(by Lemma 2.2 (iii)) and similarly for I(4,). By Lemma 1A, the sum {F,, ..., F,,> has normal
form 4,BJB'C,,=A,HC,,, where H=+I, In (H) ~ In (BC,) and Fin (H) ~ Fin (4,B"). This
shows that the sum has double barriers.

Complementary to the chains with double barriers are the open chains.

DermviTION 2.5. A chain (Fy Fyy,, ..., F;) satisfying the condition ofF,, F.,)+#0
(t=2,7+1,...,7 - 1) and such that no subchain has double barriers, is called an open chain.

(We can express the first condition by saying that there is at least an amalgamation
between each adjacent pair of terms.)

LeMMa 2.6.  Any chain S in which at least an amalgamation occurs between each adjacent
pair of terms has a decomposition into a sum of subchains,

S =8,+8,+..+48, (=1

wn which the subchains are alternately open chains and chains with double barriers.

Proof. 1f 8 has only two terms, it is, by Definition 2.5, either an open chain or a chain
with double barriers. Thus we have a basis for induction on the number of terms. Assum-
ing the result true for » terms, let

S = <Flc: Fk+17 sres Fk+n>:
so that S has n +1 terms. If § is either an open chain or a chain with double barriers, there
is nothing to prove. If not, there is a proper subchain B =(F,, F,,,, ..., F,,> with double
barriers. If k<I, there is a decomposition
Fy Frpgs s B = 8,48, +... +8,
and if m<k +mn, there is a decomposition
CF s Frnsas ooy Py = 81+ 8, +... +8].
Hence
S=8+8+..+8,+B+8+8,+...+8,,

where now one, but not both, of ¢ and r may be zero. This is not yet necessarily a decomposi-
tion of the required kind, because S, or 8] may have double barriers, but such a decomposition
clearly exists, by Lemma 2.4. This completes the proof.

3. Open chains with two terms. In this section it will be proved that an open chain
(F;, Fi > with two terms is either left-closed or right-closed. It is convenient to write
J=1+1,8=38;and p=38,. There is no loss of generality in assuming that

SHOKP+0;5 coeeiiieeiiiiiiin (3.01)
and we do so. We denote the normal forms of F; and F, by

—1 -1 -1 -1
dy...d@y ... w7t ... d71 and €y oo €52y e Zojept e €Y,

respectively, and we write a« = (¥, F;), with similar definitions for £ and e.
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Lemma 3.1, For an open chain with two terms,

AP A0 oy —Pi(E) e (3.11)
and eSS+ (0 +0; oy —di(e). oo, (3.12)

Proof. 1°. From Lemma 1C with n=A; and =0, +s -1 it follows that

Hifp+1+6,<0,+5s+1<p+o0;-«ay then a<O+5+ay;;
and (i) if §;+s+1<p+1+0,<0,+s+A; —a;;, then a<p+6;+ay—-¢;(e).

2°. We prove (3.11). Equality cannot hold in (3.01). For, assuming equality, (i) is
satisfied, giving a<Cl;+s+«;; and hence also a<<p +0; +o;. It is easily verified from (vi)
of Lemma (2.2) that the chain has double barriers in this case, contrary to the hypothesis
that the chain is open.

Therefore (ii) and hence (3.11) hold, unless p+1+6,>60;+s+A; — ;. But the last
inequality implies that [ (F;)>1(F;), so that Lemma 1B is available. Moreover, this inequality
combined with a<Cl(F;) - 8; — ¢;(¢) implies that (3.11) holds. So we may assume that B<C§;,
7.e., that B<<p. But then «<{p +1, and (3.11) follows trivially.

3°. Finally, we prove (3.12). The case in which a<<1 -+ 31(F;) is trivial. So we assume
that «>1 +4I(F,;). Then, by (3.11), we have I(F;)>I(F,), so that Lemma 1B is applicable ;
we find that S>p and a<<{(2s + ;) —p — ¢;(e). The last inequality combined with (3.11) leads
at once to (3.12).

This completes the proof of the lemma.

Lemma 3.2.  An open chain of two terms is either left-closed or right-closed.

Proof. Using the notation of the previous lemma, we shall show that the chain (F,, F,>
is right-closed when (3.01) is satisfied.

The chain will be naturally simple if «<<I(F,) and a<<I(F;). These inequalities are
simple consequences of (3.12) and (3.11), respectively. Moreover, it is easily verified that

UFy) —azd;+ X —a; +¢;(e)

and L(F,) —az=6; +c;(e).
So the chain is right-closed.

4. The sum of a left-closed chain and a right-closed chain. This section is devoted
to proving the following lemma.}

Levya 4.1. An open chain C which is the sum of a left-closed chain €, and a right-
closed chain G, (so that € =C, +C,) is either left-closed or right-closed.
Notation. Let Cy=(Fy, Fipy, oo, Frd and G, =(F,, Frupa, -y Fi>. Then
é = <st Fk+1: ey Fl>'
Define D by D="FppeFrppe...Fiy
Then D=1. In the notation introduced for simple chains, let
Ol F;Ccfl-F;m 02 = ancze'F{:
Fy=a0,..a, F, =0bb,.. 50,
Fi = ay0y ... ap,  F} = byyibgss - o,
. Fm =f1f21"'fw’
Fn, =ffff+1 ~--fw: Fr = f1f2 fn

t It may help the reader if he postpones the proof and passes now to § 5.

where

https://doi.org/10.1017/52040618500033475 Published online by Cambridge University Press


https://doi.org/10.1017/S2040618500033475

WORD PROBLEM FOR CERTAIN TYPES OF GROUPS 79
Levma 4.2, [(Fh) +1(FL) - U(F,,) is either —1 or 0. In the first case,
n=¢-2 = =1 and P fZl.cF =T i (4.21)
In the second case
n=£(-1 and & =65 =0..ccoeennnn. erereer————————- (4.22)
Proof. We shall assume that neither (4.21) nor (4.22) holds and prove that C' = Fy4F?,
where [(4)>1. This is a contradiction to the assumption that ¢ is open, because
UFLY) 285+ M — oy + i () =8, + i (0)
and similarly [(F7)=8, + by (0), by Lemma 2.2 (vi), so that € has double barriers.
Let X =Fic® and Z =c§*F} ; then
C=XF, F . FoZ = X . fi . fT0 fo o £, 2.
Ifn<é -1, then C=X.f7, ... fot1. Z. Since €, is simple, f,_, #Fin (X) and f,_, ~ Fin (X)
if and only if ¢, =1. Similarly, f,,, ~ In (Z) if and only if ¢,=1. Thus C is of the required
form unless (4.21) holds. On the other hand, if n>£¢ -1, we can apply Lemma 1A to the sum
C,+ 02 and hence C has the required form.
LevMa 4.3, F,. D has normal form FLE, where 1(E)>1 and In (E) #a,,,.

Proof. C=F%. F], because if (4.21) holds, then ¢ =X . fz}; . Z and if (4.22) holds, then
C=X.Z. Thus

F..D=C.F' =aa,...a,.05" ... 7.
The dot in the last expression can be removed, and a,,,, #b; 1. For in the first case of Lemma
4.2 we have ¢; =,y « feoy, Ca=fn41 - Dgs €1 - fe2y . co=1 and ¢ =1 =5 +1, so that
byt =0t for1 = 0 = Gp  fe ~ iy ~ 0y
In the second case we use the fact that ¢, and §, are naturally simple chains, so that a,, ~ fea

and f,,; ~b,. But yn=¢-1; hence a,,, ~'b, so that a,,; #b;. Finally, since ¢ =0, we
have that a, ~' fy=f,.1 ~ 0, ~ b
This proves the lemma.

COROLLARY 4.31. HOY<L(F}) +1(F}).
Proof. By the proof of the lemma, C =Fy, . F} ; so it is required to prove that
«(Fi, F})>0.
Suppose that this is not the case. Then it is easily seen that L(FL) >3, + bt (0) and
L(F])>8,+ b7 (0).

We show that € is simple. Now C=a,a, ... @by,10gsa --- by SO we wish to prove that
@pyy ~ byeq and a, ~'b,. The proof of the lemma shows that a, ~'b,. Moreover in the
first case, b;' ~ a,,,, so that a,,, ~" b,,,. In the second case, since s, =0, we have

boa ~' Jfo = fer ~ 0pia

Thus we have proved that € has double barriers. This contradiction completes the
proof.

CoroLLARY 4.32. Let o' =a(Fy, D) and o'’ =a(D, F,). Then
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() o =1(F;) - 1(F}) and o <1(F) - 1(F]),
(il) I(D)=a'+a" —¢,
(iii) I(F,.DD)=L(FL) +o",
(iv) &(Fy, D) =¢,.
Proof. Since Fi. D=a, ...ab;... b, we have D=ay ...apt;.b;t ... bi!, where, by
the proof of the lemma, the dot can be removed in the second case but in the first case there is a
single amalgamation because ap}; « by ' =f;_;.
Thus [(D)=(u ~p)+q —& and ¢(Fy, D)=¢,. By the lemma, [(F}) - o' =I(F}L) and so,
by symmetry, I(F;) —«'' =1(¥]). Thus o' =u—-p, «'’ =¢ and (ii) follows. Finally,
I(F,.D) = p+q = U(FL) +a".
CoroLLARY 4.33. In the notation of the lemma,
«(Fy. D, F))>1(E).
Proof. Using an obvious notation, we have
1(C) = U(Fy.D)+U(F;) —2a+¢ = L(Fy) +1(F]) + 2" -2 +e.
By Corollary 4.31, we obtain 2«'" —2x+¢<0. Thus &''<«. By Corollary 4.32 (iii) and the
lemma, we have o« =I(E), so that «>I(E) as required.
In the remainder of § 4, we shall be concerned mainly with cancellations between F . D
and F;. We use a notation conforming to that of Lemma 1C and write
Fp=dy...dg ...x,dt .. d, Fi=e ...e2 .2, ...,
so that s=3§, and p=3,.
By Lemma 4.3, the normal form of F, . D starts with Fi. Now €| is left-closed, so that

LFL) =0, +Ap = @+ Bp(61).  wvveeererrrereeiieenreenninnens (4.34)

Thus the normal form of F% starts with d; ... dg, ... z,,, where p =Min (L(FL) -5, ). Clearly
Ap— o+ (e)SEKAp coveiniiii (4.35)

Since @, is a simple chain, I(F7)<!(F;) and therefore, by Corollary 4.32 (i) and (iii), we may

write
Fo.D=d;..dg ... 200 ...C

T

(==0).
Bounds for 7 are given in the next lemma.
Lemma 4.4. O -1<r-s<<op +oy—pn - 1.
Proof. By Corollary 4.32, [{F,, . D) =l(F,)—a' +a"', i.c.,
r-s=a"-a' +o,—p-1.

We first prove that 8, -1<r-s, i.e., that p — A, <a' —a’. This is obvious if «'<a'';
8o assume that «”’<<«’. Then I(D)<I(F}); for, by Corollary 4.32,
UD) - UF)<U(Fy) - 2U(F}) - &y,
and the right-hand side of this inequality is non-positive, by (4.34). Lemma 1B is therefore

applicable, and if §>s, we obtain o' <I(D)-s~¢,(¢;). But the other case, S<s, cannot
hold. For if B<s, then B<}/(D) and a'<<1 +3{(D) ; hence

20’1 +1(D) = 1+a' +a" —g;<2a" - &,
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which implies that & =0, 2’ =1 +1(D), i.e., that 28 =1 +1(D), which is a contradiction.
The result just proved can be written in the form s + ¢, + ¢, (5,) <a'’, and the required
result will follow if
o+ — A8 + gy (&)
This is so because

Ca Ay = UF) - LF A - A < (284 0) —(u+8) Fpp— A = 8+0, <8 +e; +y(ey).
The other part of the lemma is easily proved. For p=A, — o, and hence —o <o’ —a'.
By symmetry, —a;<<a'—«'’, which is equivalent to the required inequality.
Henceforth we shall assume that I (F,)<I(F,), so that
284+ 0, <2p+ 0. (4.41)

This involves no loss of generality, but the symmetry of our assumptions is now destroyed.
We wish to study cancellations between F, . D and F;, that is, between

dy oo Ay .. o0y - ¢, and ey ...e2) . 20t el

Let B and ¢ be the numbers of cancellations and amalgamations, respectively, and let a =8 +e¢,
so that a=a(F, . D, F)).
Lemma 1C is available because 1 +a,, <<p<<A, ; s0 it is natural to consider the four cases

T=Pp<ap+0 =y i (A)

o+l —p<T—p<O =], (B)
8, —1<r-p<Ko,—a~2, oot (C)
=0y — 2T =P it (D)

In case (B), a<<p + 0, + o, — ¢, (¢), and in case (C), a<<t +1 + oy,
In fact, case (D) cannot occur. For if it did, then from the equation
@-7)+(E-p)+(r-8) =0
in conjunction with (D), (4.41) and Lemma 4.4, it would follow that
3oy —op) +p = oy — 0y <0.

But Ay —a,<p and «;,; <# (o4 +«;), S0 that a contradiction would arise.
It will be shown eventually that in cases (A) and (B), the chain € is right-closed. First
we have the following lemma.

Ledmma 4.5. In cases (A) and (B), « has the following bounds :

oc<p +01+akl—¢l(€)3 ............................................. (451)
a<1’+1 +%(F;+akl+el"‘0k—'¢l(€) ). ............................ (4.52)
Proof. TFirst suppose that I(F)<I(F,.D), that is, that 2p + o;<<s +u +7+1. Then,
by Lemma 4.4,
P-7<H2 =0, +p—07). i (4.53)

It is not difficult to show that case (A) cannot hold. Therefore case (B) holds, and (4.51)
follows immediately. (4.52) follows from (4.51) and (4.53).
Now suppose that I(F, . D)<l(F;). By Lemma 1B,

if B<p, then a<<l +4(s+p+7+1)
and if B>p, then a<(8+p+T7+1) =P =1(€). crrnrriiiiiiir e (4.54)
If B<p, then, since 8, - 1< —s, we have
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203+ 27+ =0 i (4.55)

(4.52) now follows because 1<Cey; + 6, — by (e). (4.51) holds in case (B), as we have seen, and
in case (A) it is a consequence of (4.55).

If B>p, then case (A) cannot hold. For

PpHl<a<(S+p+7+)—p—i(e)<((+1 -0 +p+7+1)—p - (e)

and on using (A) we obtain an inequality independent of p and 7, which contradicts the
assumption that A,=>4o; +1.

Thus (B) holds, giving (4.51) at once. Combining (4.51) with (4.54), we obtain

2oc<(8+,u+7‘+1) 2¢l +01+akl
Now s<<r +1 -0, and - ¢,(£) <0, so that (4.52) follows.
. This proves the lemma.

COROLLARY 4.56. In cases (A) and (B), € is a right-closed chain.
Proof. Tt follows from (4.51) and (4.52), respectively, that

LF) —azp+A; o+ (e)
and Wy . D) —azs+cp(e).

In view of Lemma 4.3, € will be naturally simple if « >I(E) =1 (F, . D) - (F}), a<l(F} . D)
and a<I(F,;). But the last two of these inequalities are trivial consequences of the inequalities
just proved, while the first was proved in Corollary 4.33.

Therefore € is right-closed.

Lemva 4.6. In case (C), if u=A, and either $,(c) = 0 or a<<t+1+ay, then C is
left-closed.

Proof. Tt is sufficient to prove the two inequalities

WFy. D) —azs+ A, — oy +dyle)
Z(FL) - >p+ Cl(E).
The first inequality is easily proved, since it can be written in the form
a<(p = Ap) + (7 +1 + o) -y (e)
The second inequality can be written in the form
(P-8)+Es-7)+(r-a)+ (o, (e)) =0. iiiiiiii (4.61)

Now, in case (C), a<<r +1 + 0, ; s0, using (4.41), Lemma 4.4 and the definition of ¢, (&), we
find that the left-hand side of (4.61) is not less than

(Bor—to) +(ut+l-op—oy) + (-1 —ap) + (Yo, - § +ay),
which is equal to $o, — 0, —;; ~ 4 ; so (4.61) follows. This proves the lemma.
To complete the proof of Lemma 4.1, we have to show that C is left-closed or right-

closed in case (C) when the conditions of Lemma 4.6 do not apply. Thus we now assume
that

and (ii) Either u<,

(i) 0,-1<7r~p<o; — 0y - 2, }
or p=2A, dp(e)=1 and a=7+1 +ay.

We note that, since (C') implies (C), a<{r + 1 + oy, and further that, if p=2,, then 8,=1, so
that p +1< 0, in any case.
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Levma 4.7. Under assumption (C'), if a=7+1+oy, p<r and =0, then ¢ =¢,=0
and FL has length s + p.

Proof. Since p +1<ay, the normal form of F, contains the component z,,,. We shall
prove that this component does not belong to the same constituent group as the component
¢o in the normal form of Fy . D. This will imply that (¥}, D) =0 and I(FL)=s+ i, and hence,
by Lemma 4.2, that ¢, =&, =0.

Suppose then that ¢, ~ 2,,,; we shall obtain a contradiction. Since ¢=0, we have
B=7+1+ay,, so that

By oo By e Cp o €1 onn €12y 1 2y = U
where i=p+1 —a and j=7+1 4oy - p.
Define W| and W by
Wi =241 002,22 .00 25,

7
Wi =2...23,.. Ty, -

Ty oee Xy

These are cyclic arrangements of W, and W, respectively, because in both expressions there
is at leagt one component on each side of the dot. (E.g., j +1<{o, follows from (i) of (C’).)
Also « (W], Wi)=ay+1. Forey.z,=1, where f=7+1-p, so that if @ is the component next
to the right of =, in the normal form of W; and b is the component next to the left, of z,,, in
Wi, we have a ~,,, and b ~2,. But x,,, ~ ¢y ~ 2, ; hence a ~ b, and the result follows,
since ay ... x, has length oy,.

Therefore W, . Wi=1. But In (W]) ~ 2;,; and Fin (W}) ~ x;_;, so that z;,; ~z;_;, in
contradiction to the assumption that ¢ =0.

This proves the lemma.

Levva 4.8. Under assumption (C'), F has length s + . Thus Fi=d, ... dg, ... ,.

Proof. If p<<A,, the result follows by the definition of n. Now let p=2,, so that
dr(e)=land a=7+1 +a,. Sincea<r+1 +ay, wehavea,, =a,; s0if p<r, the result follows
from Lemma 4.7. But if < p, we are led to a contradiction as follows :

0,~1<r-—p<0;
hence §,=0 and 7 - p= -1. Therefore a<<7 +1 + o, <<p +a; and
Z(Fl) —a}p-}-al—al}p%—bf (O), :
I(F,.D)—a =8+, —op=s+bF (0),
so that € has double barriers (' is simple, even naturally simple, by Corollary 4.33). This
proves the lemma.
CoroLLARY 4.81.

(1) 742<a<<r +1 + oy,
(1) p+0;+1<a<<p +0; 4 20, — Py (55).
(iii) 2(F})=2p+0,-7-1.
(iv) 7+1<<p + 0, + oy — Py (s,).
v) Cisa naturally simple chain.

Proof. l(Fi)=s+p. ; 80, by Corollary 4.33, a>7+1. But 8, -1<r - p, so that
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p+0,+1<e.
By Corollary 4.32,
UFy. D) -L(FL) = o = U(F)) -L(F)),

and (iii) follows at once. Now C, is right-closed. Thus I(F])=p + A, -~ a;+¢,(e,) and (iv)
follows. (i) and (iv) imply the remaining inequality in (ii). Finally, (v) follows by the usual
argument (see, e.g., the proof of Corollary 4.56).

Lrmma 4.9.
(i) C is left-closed if
I(Fy. D) —az=s+Ap—ap+dile) ;
(i) € is right-closed if
WEY) —azp+Ai—a+¢y(s)

Proof. For (i), it is only necessary to prove that I(F,) —a>=p + ¢, (), ¢.e., that

a<p+a; - ¢ le).
This follows from (ii) of Corollary 4.81. )

For (ii), we need only prove that {(F, . D) —az=s+ ¢, {e). The left-hand side is not less
than (s+p+7+1) — (7 +1 + ), which, by (4.35), is not less than s+ A, —a; — o, and the
result follows easily.

Proof of Lemma 4.1. In view of the preceding lemmas, we need only consider the case
in which (C’) holds and the assumptions of Lemma 4.9 do not apply. Thus we assume that

a>p T+ = Aptar — i) s, {(4.91)

and a>P+0+o—i(e). v (4.92)
We shall obtain a contradiction ; it will be shown that

Z(Fk. _D) —a>8 +Ak—2ak +¢k(€) .............................. (4:.93)

and L) —azp+A; =20+ @1(e). covveeireiiiiiiiireiianees (4.94)

From these, making our only use of the fact that
A6, (1 =1,2,..,4),
it follows that (¢f. Lemma 2.2 (i) )
U(Fy. D) ~azs+bi (c) and L(F)) —a>p + b (e).

Since € is simple (Corollary 4.81), we have that € has double barriers, in contradiction to
the hypothesis that C is open.

First, we note that p<{r and equality implies that « =7 + 1 + &, and 6,6 =0. This follows
by combining (4.92) with a<{r +1 +ay; and a;;<a,.

Next, we prove (4.93). Since a<r +1 +ay; and u=A;, — oy +¢i(¢,), we have

Z(Fk . .D) —¢Z>S +/\k—2ak +¢k(£1);

where equality implies that @ =741 +ay,. If there is strict inequality, then (4.93) follows at
once. If not, the result is trivial when ¢, (¢)=>¢.(e); but when ¢, (e)<d.(e), we have
6,=1, e=0 and ¢ =1, in contradiction to Lemma 4.7.

Finally, we prove (4.94), i.e., we prove that a<p +0,+2x, - ¢,(¢). By Corollary 4.81,
aKp+ 0, +2a; - ¢, (c;) ; we need only consider the case of equality, with 8,=1, ¢e=0 and
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g =1. But equality together with (iv) of the corollary implies that a>=7+1 +«;. Hence
o=7+1+a;; so Lemma 4.7 is applicable and we obtain a contradiction.
This completes the proof of Lemma 4.1.

5. Normal form of an open chain. The remainder of the proof of the theorem is
straightforward ; it consists merely of a number of applications of Lemma 1A. This lemma
gives us information about the normal form of a sum of chains in terms of the normal forms
of the summands. In this section we show that any open chain can be built up from left-
closed or right-closed chains in such a way that the lemma can be applied, and in § 6 we
prove that an arbitrary chain can be built up in a similar way from open chains and chains
with double barriers. We shall then, in particular, possess information about the normal
form of the chain U,, that is, about the normal form of the element U,,.

Let §=¢7,, Fii1s ..y F5) be an open chain. It follows at once from Definition 2.5 that
any subchain of § is open. Thus there exists a decomposition of S into a sum of subchains,
where each subchain is either left-closed or right-closed, namely, that in which each sub-
chain has two terms (¢f. §3). Of the decompositions of this type we choose one in which
the number of subchains is minimal. Let this be

S =848+ 48,5 e (5.01)
where S, = Friery Fronon o Fred (v = 1,2, ..., n).
Thus k(0) =+ and k(n)=j. Let
S, = Fl 1@ Fi,
in the usual notation for simple chains.
Tf »>1, we can apply Lemma 1A, provided that

L(Fi) +1(Fe) 2 Fag)) (0= 1,2, .., = 1),
where equality implies that ¢, =1 or ¢,,, =1.
Now, by Lemma 4.1, S, and S,,, cannot be left-closed and right-closed respectively,

since # was chosen minimally. Assume, as we may do without loss of generality, that S is
right-closed. Then, whether S, is left-closed or right-closed, we have (if k=k(v) )

LEFD) +LFL) (85 + M — ot +ic(8,) ) + (8 + Crle41) )-
By Lemma 2.2 (vii), the right-hand side is not less than 28, + by (6,) + C4(€,41) Which, by (2.12),

is not less than 23, + o, which is equal to I(¥}), and equality implies that ¢, =1 or ¢,,; =1.
Applying Lemma 1A, we have

8 = Figtdy . 627 s F } .............................. (5.02)
= FIB'F, say.
Note that (5.02) is also an expression for the normal form of § when n=1.
Lemya 5.1.  Anopen chain 8 =(F,, F,,,, ..., F;> has normal form given by (5.02), where
i) if B' =1, then § is simple,
(i) UFH=8;+ c;(e)) and LEF))=8; +¢;(en),
(iii) & =1 if and only if Ft ¢ L (F,, 8),

(iv) &,=1 if and only if F; é R (F;, S),
{v) at least one of the followmg conditions is satisfied :
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(5.1A) L(FH>8;+ A — o + b ey).
(5.1B) L(F5)=8;+ A, — i+ s (e,).
(56.1C) n=>2 and there exists an integer p such that 1<p<n -1 and J, contains at least
A — 20~ Oy + bre(e) + rclep)

elements of the kernel of some F,, where i< k<j.

Proof. (i), (i), (iii) and (iv) are trivial consequences of Lemma 1A if n>>2, or of the fact
that S is either left-closed or right-closed if n=1. (Note that n>>2 implies that B’ #1.)

To prove (v), we assume that neither (5.1A) nor (5.1B) holds. Then 8, is right-closed
and S,, is left-closed. But, for v=1, 2, ..., 2 ~1, we have seen that the chains S',, and §,+l
cannot be left-closed and right-closed, respectively. Therefore there is an integer p in the
range 1<p<n -1, such that §, is right-closed and S, is left-closed.

Write k=k(p); then

UFE) = 8+ A — o +Pr(ey)
and UFY) > O+ A — g + i e51).
Therefore U(J,) = UFD) +U(FE) —UFy)
= A= 20— Oy + i (e5) + rlepna),
and it is not difficult to see that J, (and hence B’) contains at least this last number of ele-

ments of the kernel of F,.
This proves the lemma.

An alternative expression for S. Since S =F.§B'F§, we may write
S = AiBCi! .......................................... (5.11)

_ [8+c(0) i U(FD=8,+(0),

where HA) = (5 e(t) € UF<+,(0),

and O, is defined similarly. Note that if I(F5)<§; + ¢;(0), then, by Lemma 5.1 (ii), &, =1 and

L(FY)=8;+c;(1). Also, F{é¢ & (F; 8). Thus 4;¢ L (F,) and C; ¢ R (F;), and it follows that
B=XB'Y. (Wemayhave X=1or Y=1)
Thus if B=1, then S is simple, by Lemma 5.1 (i).

6. Normal form of an arbitrary chain. In the fixed minimal representation

Uy=F o Fge i e Flay i, (6.01)
let us insert brackets between each pair of factors F;, F,,, for which «(F,, F,,;)=0. Thus
Uy=U,.U0pe....Up, i, (6.02)

where 1<<m<Ch and U, is a product of, say, m, factors F, such that if m,>1, then there is
at least an amalgamation between each adjacent pair of factors.
To discuss the normal form of any U, with m,>1, we use Lemma 2.6, which shows that

O, =8 +8,+...+8,, oo, (6.03)

where the subchains §, are open or have double barriers. Consider a typical subchain
S, =(Fy, Fipyy ooy Fip. We write 8, =A4,BC;, where if S, has double barriers the factoriza-
tion is taken as in Definition 2.3, but if 8, is open we take the factorization (5.11). The
following remarks show that Lemma 1A is applicable.
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Assume, as we may do without loss of generality, that S, has double barriers and §,,,
is open. Suppose that S8, =<{F; F,,,, ..., F> and 8§,,,=4,B,C;,. Now C; has length
8;+ by (0) or &, + b (1), and A, has length §;+¢;(0) or 8;+c;(1). By (2.12), the sum of the
lengths of C; and A; is either greater than I(F,) or else it equals [(¥;) and then C; ¢ Z (F}, S,)
or A; & L(F;, 8,,)-

Lemma 6.1, Let U, be a product of my=2 consecutive factors of (6.01), say

Uy=F;. Fipy..... Fy,
such that «(F,, F, ;}#0 (v=1,7+1, ...,5-1). Then
(A) 1>8;+8;+ A, where I=1(U,) and Ay=Min A, (v=1,2,...,4),
(B) there exists a factorization U,=XKZ, where K is part of the kernel of some factor F,
(t<v<{j) and
either L(K)>3A,,
or L(K) =3\, and at least one of the following conditions (i) and (ii) is satisfied,
or L{K)=4(2, - 1) and both (i) and (ii) are satisfied.

The conditions (i) and (ii) are :

(1) The kernel of F, does not start with the component In (K), X =1 and the component of
F, next to the left of In (K) is in the same constituent group as Fin (X).

(i) The kernel of F, does not end with ¥in (K), Z #1 and the component of F, next to the
right of Fin (K) is in the same constituent group as In (Z).

Further,

(C) UK)=A, —3a, — 1 and equality implies that both (i) and (i) hold.

Note 6.2. If A, >6q, +1, then (C) implies (B) ; if A, <6, +1, then (B) implies (C).

Proof of the lemma. The following inequalities are trivial ; II, III and IV are conse-
quences of the inequality A;>4ea; +1 (1=1, 2, ..., k).

1. b(e)>4A;+9,.
II. A, — ;23 (32, +1).
101 Ay —2a,23(A; +1).
IV. c:(e)=[} (X +26; —2¢ +3)).
V. If N is an integer, then [}N]=>3}(N -

1°.  We first consider the case in which f=1 in (6.03). Thus U,=S,=4,BC;.
it S 1 has double barriers, then, by I,
LU= A) +UC)=8; + by (1) +8; + by (1) >8, + 8, + A,

Now the part of the kernel of F; appearing in A; has length 1(4;) ~§; - 8,=b¥ (1) - 6,>4A,.
Finally, if A,>60, +1, we have

bf (1) -8 = A — 20, - 6;,>2, -3, - 1,
by Lemma 2.2 (i}. By Note 6.2, we have proved (A), (B) and (C).
Now assume that S, is open. Then 8; can be expressed in the form (5.02), so that -
ifn =1, I=I ,)+el+l(F'),
ifn =2, ;l(F')+1+l(F’)
ifn >3, I=UFH+I(J,)+1 +UF) (=1,2,...,n-1).
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We first prove (A). If {(5.1A) holds, it is sufficient to prove that
(Ar—o) ey +¢i(e) > ifn =1
&nd (AI‘—(X")'F]. +Cj(€n)>A0 lf'n/ > 1
These are consequences of II, IV and V. There is a similar argument when (5.1B) holds.
Now assume that (5.1C) holds. Here n>2 ; hence, by (5.02),
IUEY 425 + 1T+ piq FLET)  eeerierieenie e, (6.21)
=(8; + ¢i(&1) +ep+ (A~ 20y — O + e (e) + Dre(500) ) + Epq + (85 + ¢5(ep) )
But ¢;(e) + (A — 204) + ¢;(e,) =7 — 4, by 1L, IV and V, so that (A) will follow if
&y = Ok + brley) +brlepyy) + 6541021,
ie., if e (1 = 03) + £y (1 = 6) +6,>1.
If this is not the case, then ¢, =¢,,, =0, =0. We have seen that, if n>>3, then (6.21) remains
true if we replace ¢, +¢,,, by 1, so that we need only consider =2 in the case we are dis-
cussing. Since 1<<p<n -1, we have p=1, ¢, =¢, =0 and hence ¢,=0. Therefore
1=(8; + ¢, (0} ) +(Ag — 2oz) + (8, + ¢4(0) )
=68;+8;+A;+%, byIIl,IVandV.

Finally, we prove (B) and (C). If (5.1A) holds, there appear in the normal form of U,
at least (8; + A; — a; + ¢ (€)) — (8; + 8;) components of the kernel of F,. This number is strictly
greater than A; —3«; ~1 and is also, by II, strictly greater than 4A;. Case (5.1B) is similar.
If (5.1C) holds, then the normal form of U, contains at least

A — 2oy~ Oy + i (e5) + i (ep0)
components of the kernel of F,. This number is not less than 4(A, -1), by III, and if it
equals (A, -1), then e, =¢,,,=1. If it is greater than 4(A, ~1), it is, obviously, not less
than 4, and if it equals 4], then again ¢, =¢,,,=1. This proves (B). The proof of (C) is
trivial.

2°. Now we consider the case in which f>2 in (6.03). We have seen that Lemma 1A
is applicable ; so writing

Sl = A,-Blom, S[ = A,,B,O,-,

we obtain U,=A4,B,EB,C;, say.

3°. To prove (A), it is sufficient to show that 4B, and B,C; have lengths strictly
greater than 3, +4A, and §; + 3A,, respectively. We shall only prove that I(4:B,)>8; +3Ay;
the other case is similar.

If S, has double barriers, then

UAB)=U(A)=8,+bf(1)>8,+3), byl
If §, is open, we have, by (5.02), A,-B1=chf‘ Y, say. If (5.1A) holds, there is no diffi

culty, since 1(4,B,)=L(F})>5; + 1A,
Now suppose that (5.1B) is satisfied. Then

Z(F:n)>8m + Ay — oy, +m (en) =0 + € (0),
so that, by definition, I(C,,) =8, + ¢, (0). Further, from (5.02) (with an appropriate change
of notation) it follows that [(S;)>1(F}) + e, +1(FT,). Therefore
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L(B,) = U8, -1(4,) -UCp)
> (1(F) ~1(dy) ) +en + ((Fr) ~L(Cr) )
= 0+en+(An —om+Pm(en) —cn(0))
= entAn—ap +¢m(€n) = (3 (om+1) —ap)
= %‘)‘m'i'en(l "em) +%(0m_1)
= $(An - 1).
But 1(4,)=8; + ¢;(1)=8; + 1, so that 1(4,B,)>38; + 3A,.
Finally, let (5.1C) hold. Then there exists an integer k such that I(B)=A; —2«, -0,
and, by III, we obtain I(B,)=% (A, — 1), and hence I(4;B,)>38; +}A,.
4°. We now prove (B) and (C). If S, has double barriers, we use the same argument
as in 1°. We assume, then, that S, is open. Again the case (5.1A) presents no difficulties.
Now let (5.1B) hold. We write
Sl = At'BICvrn S2 = AmBzor,
so that, by Lemma 1A,
U, = 4;B,XB,T,
say, where X,,=C,,. Fy;1. 4,,. Since S, is open, S, has double barriers and hence 4,, has
length 8, + b (0) or 8, + bj,(1). Define the symbol ¢ by

. {0 i 1(4,) = 8+ b%(0)
1 otherwise.
Then I(4,,) =8, + bk (¢). Also, e=1 implies that 4,, ¢ Z (F,., S,). By (5.02), we may write
8, =AB,Cro=A;Yc;"Fh, say. By (5.1B), U(F5) =8, +Ap -t + b (). Now
U, = A,B,C,, . Fa'. A,,B,T

En

o ALY Dy By, oo, (6.22)

where Z,,=Fy, . F,;'. A,. We proceed to show that the number I(F},) +1(4,,) ~1(F,,) is
strietly positive, which will imply both that this number equals I(Z,,) and that in (6.22) the
dots can be removed. The number in question is not less than N, where

N = (8 + A — tn + P (£) ) + (81 + BX () ) = (28, + 0,m)

= by (e) —am+ b (€n) = O

First, if A,,>6a,, +1, then, by Lemma 2.2 (i),

N = (’\m _3“m - 1) +(1 +¢m(e) +¢m(8n) _am)>’\m _3°‘m - 1,
where equality implies that e=¢,=1. Thus certainly N>0. Second, if A,<6«,, +1, then
b} (e)=b,,(¢). Hence N =[4A,, +2], where x=0,(} —¢,) +1 —%e. Clearly >0 and z=0
implies that e=¢,=1. If >0, then x>=4 and moreover x =% implies that ¢=1 or ¢,=1.
In any case, we have N >0, as required.

Now write F,, = MLKJ, where MLK =A,,, LKJ =Fj, and (K J) =8,, + Ay — oty + P (€4).
Then I(K) =N and K is part of the kernel of F,,. Further, Z,, =LK and, since the dots can
be removed from (6.22),

U, = XKZ,

where X =4,Y &L and Z =B,T. We wish to prove (B) and (C) for this factorization of U,.
Let us first show that conditions (i) and (ii) of the lemma are implied by ¢,=1 and s=1,
respectively.

G G.M.A.
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If ¢, =1, we need only prove that Fin (ML) ~ Fin (X), ¢.e., that Fin (ML) ~ Fin (c,L).
This is easily verified ; if L =1 we use the fact that Fy, ¢ & (F,,, S,), i.e., that Fin (M) ~ c,,.
If e=1, it is sufficient to prove that 32 #1 and In (J) ~In (Z). But if B, were equal
to I, then S, would be simple and §, would be equal to 4,,C,, in contradiction to

Am é n?(ﬁvm: S2)

Also, 4,, ¢ # (F,,, S,) implies that In (J) ~ In (B,C,) and hence that In (J) ~ In (Z).

The above discussion of the number N now shows that (C) is true when A, >6«,, +1,
and that (B) is true when A, < 6«, +1. By Note 6.2, this completes the proof of (B) and (C)
for the case under discussion.

The remaining case is that in which S, is open and satisfies (5.1C). Thus, since

S, =A,-Yc§"F§,,= VF;, say, we have that V contains a factor c;” J,,cf,ﬂ*{l. But the normal

form of U, starts with V, since the dots can be removed from (6.22). (B) and (C) now follow
as in 1°,
This completes the proof of Lemma 6.1,

7. Proof of the theorem. In the decomposition (6.02) of U,, consider any particular
U, If m,#1, we have seen that U, satisfies the conditions (A), (B) and (C) of Lemma 6.1,
But if m, =1, these conditions are trivially satisfied, except that equality may occur in (A).
Further, if U,=F;. F;,; . .... F;, then In (U ) =In (¥;) and Fin (U,) =Fin (F}), so that

m
WUy = D UT,).
g=1
Thus I(Uy) =mA,=A=1,, in the notation of the theorem.
Now suppose that I(Ug)=1l,. Then m=1, i.e.,, U=U,, and m; =1, for m,>1 implies
that I(U,)>A,, by Lemma 6.1. Therefore U, = F,. Comparing lengths, we have

Iy = 28, + 0, + A\ =A==,
so that 8, =6, =0 and F, e Q*.
This proves (i) and (ii). But (iii) follows from (C) of Lemma 6.1,
This completes the proof of the theorem.
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