
SOLUTION OF THE WORD PROBLEM FOR CERTAIN TYPES
OF GROUPS II
by J. L. BRITTON

(Received 10th February, 1956)
The purpose of this paper is to prove a theorem which concerns the normal subgroup

of a free product 77 generated by a given subset Q. This theorem was stated in the first
paper of this series (Britton [1]) and an application was made to the word problem. The
present work is, however, independent.

Let the group 77 be the free product of the set of subgroups {6T; r e F). These sub-
groups will be called the constituent groups of 77. Let Q be a subset of 77 which meets none
of the constituent groups, i.e., such that Q r\Gr is empty for each r e F. The theorem gives
information about the elements of the normal subgroup generated by Q when Q satisfies
conditions which restrict cancellations between certain conjugates of the elements of Q and
their inverses.

Notation
We denote elements of 77 by capital letters, the identity being denoted by I, and write

X. Y for the product of the elements X and Y. It is convenient, however, to denote elements
which are known to have unit length by small letters ; we write

x ~y or x ~ ' y

according to whether x and y belong to the same constituent group or not.
If X = X1. X2 Xm, where the length of X equals the sum of the lengths of the factors

Xit we omit the dots and write X=XXX2... Xm. Every element Y of 77 except / has a
unique representation Y = yly2...yn and we write l(Y)=n, In (Y)=yl and Fin (Y)=yn.
Thus I (Y) denotes the length of Y. Finally, if X, Y are elements of 77 different from /, we
define ft(X, Y) and e(X, Y) as the numbers of cancellations and amalgamations respectively
in the product X . Y, and write a (X, Y) = fi (X, Y) + e (X, Y). Thus

l(X.Y) = l(X)+l(Y)-2P(X, Y)-e(X, Y)

and s (X, Y) is either 0 or 1.
We may assume,that every element W of Q satisfies the conditions

l(W)>2, In (W) ~ ' Fin (IF).

If an element U satisfying these conditions has normal form U = ata2... an, then by the
cyclic arrangements of U we understand the n elements

axax+1 ... anaxa2... aA_j (A = 1, 2, ..., n).

Let Q* consist of the cyclic arrangements of all elements of Q and their inverses. If
U e Q*, we define the integer a(U) by

OL(U) = Max <%(#'*, V),

where U' is a cyclic arrangement of U, K is ±1 and V is an element of Q* such that
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The conditions we shall impose on Q are :

(l)HU, VeQ* &nd U . V*I, then 6a(J7, F)<Min {l(U), l(V) ) .
(2)UU eG*,then<x(U)*Q.

THEOREM. Let II be a free product of groups and let Q be a szibset of 77 in which every
clement W satisfies the conditions l(W)^2, In (W) ~ ' Fin (W). Further, assume that (1) and
(2) hold.

Then, if Uo is any element, different from the identity, of the normal subgroup of II generated
by Q,

(i) UQ has length at least l0, where lo= Min l(W),
Wet)

(ii) if Uo has length exactly l0, then Uoe Q*,
(iii) the normal form of Uo can be written in the form XKZ, where K is such that an element

V of Q* exists ivith normal form K'K, say, and

and equality ifnplies that Fin (K1) ~ Fin (X) and In (/£') ~ In (Z).
COKOLLABY. The element X . K1'1. Z belongs to the normal subgroup and has length strictly

less than l(U0).
The corollary is easily proved. For Z(F)>6<x(F) and hence either l(K)>$(V) or

l(K)Sz\(l{V) -1), Fin (K') ~ F i n (X) and In (IC) ~ I n {Z).
Note. To prepare the way for a later paper, in which different conditions will be imposed

on Q, the proof of the theorem has been arranged so that most of it remains valid when the
inequality in (1) is replaced by

(1') icc(U,V) + l<mn(l(U),l(V)).

In fact there is only one point where it is necessary to use (1) instead of (1'). (This is at the
end of § 4.)

1. Three basic lemmas. The three lemmas proved in this section are the main tools
used in the proof of the theorem. We require some preliminary definitions.

If Yefl and 7 ¥= I, we define the subsets JS?(7) and ^ ( 7 ) of 77 as follows. Let
Y = yii/z • •. yn ; then JSP (Y) consists of the n — 1 elements

ViVz-'-Vi (i = l, 2, . . . , w - l )

and S% (Y) consists of the n -1 elements

ViVi+i-yn O'=2, 3 n).

If n = 1, then both subsets are empty. If Z is also an element of 77 different from 7, we write

IiBe&(Y,Z) and if, further, In (B'1. Y) ~ I n (B'1. Z), we write

is defined similarly, and if C e ® (7 , Z) and Fin ( 7 . C'1) ~ Fin (Z .C'1), we write
,Z).

If a number of small letters (usually two or three) representing components are enclosed
by round brackets, we mean that the components all belong to the same constituent group
and their product is not the identity. We give this convention priority over the " dot
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convention ", so that dots can be omitted inside the brackets. Thus a(bc)de denotes an
element of length 4 and a'b' (c'd'e1) an element of length 3.

DEFINITION 1.1. A chain is a finite sequence of at least two elements of 77 each of which
has length at least two.

The normal form of a chain 0 = (Flt F2,..., Fn) means the normal form oiF1.F2 Fn

It is denoted by C.
A subchain of the chain 0 means a chain of the form < FP, Fv+l, ..., FQ), where 1 ^p<q^n.
The sum of two subchains,

<?!=<*•„ •*•,«, ...,*•.> and C2=(Fr,Fr+1,...,Fs)

is only defined when q = r and in this case

U1+C2 = (FV,FP+1, ...,FS).

DEFINITION 1.2. The chain 8 = (Ft, Fi+1, ...,-Fj) is simple if its normal form S involves
only components of F( and Fjt in the following way. If F{ = a^2... au and Ft = &162 • • • bv, then

either (i) S = a± ... a,,(av+1bQ) b,,^ ... bv

or (ii) S = »! ... » A + i ••• bv>

where, in each case, l^p<u and l^q<v, and in (ii) we have
aj>+i~'&o+i andaP~'ba (1.21)

The conditions (1.21) are satisfied if av+1 ~ bq. If a simple chain satisfies this stronger
condition, it is called naturally simple.

I t is easy to see that the normal form of a simple chain has a unique decomposition of
the kind occurring in Definition 1.2. We shall write

F\ = a1...av a n d F] = bQ+1 . . . b v ,
so that

where e = 1 in case (i) and e = 0 in case (ii). Clearly F\ <• g (F^ S). Also, F\ i S? (Ft, S) if and

only if e = 1. Similar results hold for F1^.

The first basic lemma deals with chains in any free product and may have other applica-
tions.

LEMMA 1A. Let the chain 8 be the sum of n subchains :

8 = S1+S2 + ...+Sn,
where n > 2 and

S, = <^fr_i), F^D+I, •••, FHv)) (v = l , 2, ...,n).

For each v, let there be a factorization

satisfying the following conditions.

(i) i w ^ ( V i ) ) . CfcW

(ii) / / Bv = I, then Sv is simple.

(iii) l(CkM)+l(Am)^l(Fk{r)) (v = 1,2, . . . , n - l ) ,

https://doi.org/10.1017/S2040618500033475 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500033475


WORD PROBLEM FOR CERTAIN TYPES OF GROUPS 71

and equality implies that either

OkM 19t (FkM, 8.) or A Hy) £ g (Fm, Sv+1).

Then 8 has normal form

ivhere Jv = Ck(v). 2*7(3) . Ak(v). Further, if Hv = BVJVBV+1, then HV*I, In (#„) ~ In (BvCMv))
and Fin (Hv) ~ F i n (Ak(v)Bv+1).

Proof. 1°. For l < v < w - 1, we have

Thus the product of the terms in the chain Sy +ov + 1 equals

^ H » - i A • Jv • Bv+1Ck<v+1) (1-22)

If there is strict inequality in (iii), then J,*I, In (Jy) =In (Ck(y)) and Fin (Jv) =Fin (Ak(v)) ;
so the dots can be removed from (1.22). If there is equality in (iii), then Fk{v)=AkMCk{v)

and J, =1. Suppose nrst that Ck(v) i @ (Fk(v), Sv). Then

Fin (AHv_x)Bv) = Fin (8,. C#>) ~ Fin (Fk(v)) . Ctfr)) = Fin (AHv)) ~ ' In (Bv+1Ck(v+1)).

Now suppose that Ak(y) i SC (FkM, Sv+1). Then

Fin ( i r t . i y B F ) ~ ' In (GkM) = In (^l^1). FkM) ~ In (A^ . S J = In (Bv+1Ck(y+1)).

In either case, therefore, the dots can be removed from (1.22).
2°. I t will now be shown that

Ck(v+1)eW(Sv+1,Pv), (1.23)

where Pv denotes the expression (1.22) with the dots removed. This is trivial if By+1=Al.
If BV+1=I and Jr*I, then, by 1°, Fin (J,) = Fin (Ak(v)) and (1.23) follows. Finally, if
BV+1 = JV=I, then FkM = Ak(v) GHv) and one of the alternatives of (hi) holds. If

then Fin {Ak(v)) ~ F i n (A^.^,), which is just the required result. The other alternative
cannot hold, since Sy+X is simple when By+1 =1.

3°. It now follows that Hv#/. For Hv=l implies that Bv = JV=BV+1 =1, which, by 2°,
implies that Fin (AkM) ~ Fin (Ak^+1)) and therefore that CkM i 0£{Fk{y), 8,). This contra-
dicts the fact that By is simple when Bv-I.

4°. The results of 2° and 3° combine to give Fin (#„) ~ Fin (AkMBv+l). The other
result, namely In (Hv) ~ In (BvCk(v)), follows by symmetry.

5°. Finally, it will be proved by induction on m that if 2<m<w, then Sl+Bi +... +Sm

has normal form Ak(0)BxJl... Bm_1Jm_1BmCkim). By taking v = l in 1°, we obtain the result
for m = 2. Assume the result true for m. Then S1+S2 +... + Sm+l has normal form

i-e-, EBm . Jm . Bm+1Ck(m+1), (1.24)

where E=Aki0)B1 ... Jm_v But Sm+Sm+1 has normal form ^Mm-i)5m^m5m+1CMm+1), so
that the dots in (1.24) can be removed if Fin (EBm) =Fin (AHm_x)Bm), that is, if

Fin (B^J^BJ ~ Fin
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which is so, by 4°.
This completes the proof of the lemma.
Considering now the situation of the theorem, let Uo be an arbitrary but henceforth

fixed element of the normal subgroup and let Uo &I.
Thus

UQ=Fx.Ft Fh, (1.25)

where h^l and each Ft is a conjugate either of an element of Q or of the inverse of an element
of Q, so that F{ has normal form

eje2. . . esx-p2... xoie^ ... e'1^1, (1.26)

where either (i) xxx2... xa.e Q* or (ii) (xaix1)x2... xai_x e Q*. In both cases we denote the

element of Q* by Wf. Let A,- and 0( be defined by

Xi=l(Wi) and fl< = ai-A<)

so that 0j =0 in case (i) and 6t = 1 in case (ii).

DEFINITION 1.3. The kernel of F( is the sequence of components

Evidently these are components of Wt.
The representation (1.25) is not of course unique. From the many possible representa-

tions, we select a particular one as follows :
Take those representations (1.25) for which h is minimal, and from them select one for which

h

2. HFf) is minimal.
<=i

Henceforth we shall assume that (1.25) is this fixed minimal representation of Uo.
Defining a,- and a,-,- by ai=a(PF<) and aij='Mxa (a,-, a3) (i,j = l, 2, ..., h), we have a,-^l

and a w > l .
From (1.26), we have

B( may of course be zero.
In what follows, the letters i, j , k, I, m, when used as suffixes, will denote integers in

the range 1 to h.
The second basic lemma gives an upper bound for the number of cancellations and

amalgamations between a product B-Fi. Fi+1 Fj_x and a neighbouring single factor
Fjt whenl(B)<l(Fj).

LEMMA IB. In the representation (1.25), let h^2 and let B=F{. Fi+1 Fj_v

tohere l < i < j - l < & . Let l(B)<l(Fj). Denote the normal forms of B and F} by bj)2... bn

and CjC2... c^z^ ... za.cjl... c~'lc~l, respectively,^ and denote by a, fi and e the integers

x{B, Fj), /?(JB, Ft) and e(B, Fj), respectively. Then we have the following results :

(i) If jSsSS,-, then j8<|w and <x< 1 +\n.
(ii) / / /S>8y) then £ < 8,- + o-y, j3<w - 8i and <x^n- 8y - fa (e), where fa (e) = Bt (1 - e).

Note. <j>j(e) retains this meaning throughout the paper.
Proof. 1°. We prove first that

t Bi=I, for if B were equal to 1, there would be a representation of Uo with less than h factors.
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l(B . F,. B-^HFj) (1.31)

Write F= B.Fj. B~\ Then F .B=B .F, and

U0 = (F1 f H ) . F . {Ft *V-i). (Fj+1 Fh).

This is a representation of Uo because F is a conjugate of Ft and hence a conjugate either of
an element of Q or of the inverse of an element of Q. Since the number of factors in this

h

representation is h, the sum of the lengths of the factors is not less than VZ(^) and so

2°. Write S = 8̂  and a = Oj. We prove (1). Now

B . Fj = 6 X . . . bn_f,. cp + 1 ... ofiy... zacax... c^1

and B.Fj.B-1 = 6 t . . . bn_$ . c0+1... cazx... z^i1... c^ . b~lp ... b~*.

Hence l(B. Ft. B~1)^.2(7i- fl) +2(8 -/3) + a-e, where e cannot be replaced by 2e because
we allow j8 = 8. Thus l(B . Fj. B'1) -l(Fj)^2(n -/3) -2/3-e. By (1.31), we obtain

Thus j3<Jn. It remains to prove that <x< 1 + \n. This is trivial if /3< \n. So assume that /3 = \n.
This gives Je^O, i.e., e=0, so that a = /3<l +^w.

3°. Finally, we prove (ii). Suppose that ft^zS + a. Then B . Fj=bl ...bu. c^1 ... c^1,

where u =w - 8 - CT, and B . Ft. B~x =6X... 6U . 6^28... ft^1. Therefore

^ ( B . ^ . £ - 1 ) - i ( ^ ) < w + w - 8 - ( 2 8 + ff) = 2(w-2S-o-)<0,

in contradiction to (1.31).
Therefore 8</S< 8 + a and

B.Fj=b^ ... 6n_p . zv+1 ... z^a"1 ... c-\ (1.32)
where v = ̂  - 8.

Also &rt_,3+1 ... 6n . Cj ... c8z1 ... 2,, = / , so that

B.Fj.B-i = bt... bn_B . zv+1... 2O . Z l . . . zv. 6^3 ... ^ (1.33)

The length p of the last expression is not greater than 2(W-/3) + CT. By (1.31), 28 + a^p.
Hence JS^JI - 8. It remains to prove that a^n - 8 -<j>j{s) or, equivalently, that

P^n-S-(8j-6jE + e) (1.34)

The bracketed expression is either 0 or 1 ; so (1.34) certainly holds if / } < w - S - l . But
when /S=n-8, we have p = 2 (n - jS) + a or, in other words, the dots in (1.33) can be removed.
Therefore the dot in (1.32) can be removed (giving e=0) and also za ~ ' zx (giving fy=0).
(1.34) follows, and this completes the proof of the lemma.

Note 1.4. By one of the assumptions of the theorem, we have Aj>6a,- (i = l, 2, ..., h).
However, most of the arguments in the proof of the theorem require only that

A,>4a,. + 1 (t = 1.2.....A) (1.41)

This inequality will be used freely, but whenever a stronger inequality is required, the fact
will be mentioned explicitly. (See, e.g., Lemma 2.2 (vi).)

The third basic lemma does not use the full minimal hypothesis for the representation
(1.25) but only the hypothesis that h is minimal.

t G.M.A.
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LEMMA 1C. In the representation (1.25), suppose that h^2 and let

B = F{. Fi+1 Fj-i,

where 1 < i < j - l<h. Let the normal forms of F{ and Ft be

d1... dfr ... xa.d~l... d'1 and ex.. . e ^ ... za.e~l ... e"1,

respectively, so that s = 8,- and p = Bj.
If there exists an integer ju such that

d1... dp:x... x^e SC(B) and 1 + aw</i<A<(

let B=a\ ... d^ ... x^cfa ... CT (TJSO). Then we have the following results :

(i) If p + \+ 6j^T + 2<J3 + Oj - a.i}, then a < r +1 + atj.
(ii) / / T + 2<p + 1+ ^ J < T + fx + 1 - txit, then a < p + Bt + aa -<£,• (e).

(Here, as in Lemma IB, a, j8 and e denote a(-B, J1^, fl(B, F{) and e(£, J1,), respectively.)

Proof. 1°. To prove (i) we observe first that the result is trivial if j3<r + l. So we
assume that JS^T + 1. Then

B . F, = d1... dfr ... xll.zg... za.e-* ... e"1 (1.42)

and coc1...cT.e1...eIlz1...zQ_1 = / , (1.43)

where q=T+2 -p. Thus

Now define X' and Z' by

X ' = x » + i ••• x < > i - z i ••• x n a n c l ^ ' = z a ••• 2
CTi •

 z i ••• z « - i ( 1 - 4 5 )

X' is obviously in £?* when 9{ =0. But the same is true when 04 = 1, because then there is at
least one component on each side of the dot (since ^.^Aj = <T,- - 1<CT(). Similarly Z' e Q*,
by (1.44).

We shall prove that X' . Z' +1 by showing that the supposition that X' . Z' =1 implies
that the products

D = Fi+1. Fi+2 F^ and E = Ft. FM F,

are equal. (This is inconsistent with the minimal hypothesis.)
Suppose that X'. Z' =1. Since

D = Fi1. B = d\ ... dsx~^ ... a;-^ . c^ ... cT,

we have, by (1.43),

D = d j . . . . fl!^-1 ... x ~ ^ . [ e i . . .

Consequently

E .D-1 = (JB . JP3) . D-1

= dx... dfr ... x^. za... z^e j 1 . . . e^1. e1

= d1... dsxx... x^.Z'. x^+1 ... x^dT1... d'1-

The last expression is a conjugate of X' . Z'. Hence E . D'1 =1.
This completes the proof that X' . Z' i±I.
Since X', Z' e Q* and X' .Z'*I, we have a(X', £!')<<*«• Let
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X' = X"x2 ... x^ and Z' = zq ... zo._xZ".
Then l(x2 ... zjSsa,-,- and l(za ... z^^a.^.

Moreover Fin (X") ~ xl and In (Z") ~ za.. So, by (1.42) and (1.45), the number of cancella-
tions and amalgamations wliich can occur in (1.42) is not greater than a.(i. Therefore

2°. The proof of (ii) is similar, although an additional argument is necessary when
<f>i(e) = 1. We may suppose that fl^p + 9,. Then

B.F, =a\ ... dsXl ... x,. z1+g.... zo.e-i ... e-i (1.46)

and xv+1...xlfioc1...cT.e1...e^z1...zBj = I, (1.47)

where v =/n + T +1 -p -6j, so that 1 + aw<v</x - 1 . Define X' and Z' by

X' = xv+1 ... xB.. xl ... xv a n d Z' = z1+$j ... za.. zL ... zg..

These are elements of Q*. If X'. Z' =7, then, by (1.47),

E = B .F, = dx... dfr ...x,. z1+ej... zo.. \_zx ... zv.. xv+1... x/,<px... cT]

a n d D-1 = B~l. Ft = c~\.. c f V 1 • ^+ i -X
H d7l • • • d?-

Hence E . D ' 1 = d1 ... dp:x ... x v . Z'. xvJrl • • • x H d j x ... d^1,

giving the same contradiction D =E as before. I t is straightforward to deduce that

a^p + dj + aij.

3°. I t remains to be proved that if <f>} (e) = 1, then u^p + #,• + aw - 1 . Suppose that this
is false, i.e., suppose that a =p + Qt + atj. Now </>,• (e) = 1 implies that 6j = 1 and e =0. There-
fore jS =p + 0, + a,-3-; so, from (1.46),

x,+1_t ...xy.z2... z1+t = I {t = a w ) ,

and, from (1.47), xv+1 .z1=I.

Now consider the product Zx. Xv where

^ 1 = 2 2 + < • • • zaj-l (,zofl) Z3 ••• z l + (

a n d Z x = xv+1_t ... xv+x ...xa..x1... x,_t.

I t is easily verified that Zy and Xx are cycUc arrangements of Wj and IF,-, respectively. But
a(Zlt X^^aij +1, so that Z j . Xt=I. This implies that (z .2X). xv+1 =1. We have already
seen that xv+1. z1=I, so that zg. =1.

This contradiction completes the proof of the lemma.

2. Some special chains. Until § 6 we shall neglect the trivial case in which h = 1 in the
representation (1.25). I t is clear that (Fv F2, ..., .Ffl) is a chain ; we denote it by Vo, and
in what follows the word " chain " will mean a subchain of Uo.

DEFINITION 2.1. A chain (F(, Fi+1, ..., Fj) is left-closed if the following conditions are
satisfied.

(i) The chain is naturally simple, so that its normal form is, say, Fl.ceFr..
(ii) HF\)>S, + \{-«t++t(e).

(iii) I (F^)^S3- + ct (e), ivhere

cy(«) = [ 4 K - « + l)]-«y, (2.H)

square brackets denoting the integral part of the number concerned.
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A right-closed chain is defined similarly. It will be shown later that a chain with two
terms is in general either left-closed or right-closed.

It is easily verified that

and
so that J { ) J

For the next definition we require two more integers bk(e) and b* (E), defined, like ck(e),
when the suffix is in the range 1, 2, ..., h and e = 0 or 1. The special property of bk (e) is that

b*(«i) + c*(e,)><rfc, (2.12)

where equality implies that EX — 1 or e2 = 1. We define bk(e) by

*M = [*("*-«)]+«* + ! (2-13)

To prove (2.12), we observe that the left-hand side is an integer and is not less than

which is not less than ak — £ and, in the case in which ex = e2 =0, is not less than ak + it.

We define b£(e)by

bjf (e) = Max (Xk-2ak + <f>k(e), bk(e) ) (2.14)

LEMMA 2.2.

(i) If\k>6«k, then bjf (e)=Afc-2«t+^t(e).

(ii) b
(iii) b
(iv) b
(v) bjf («i) + (Xt -«k+<f>k (e2) ) -

where equality implies that 9k = e1 = e2 = l.

(vi) Aj. - a ^ b * (0). [Afc>4at +1 is required here.]

(vii) Af c-a t+^(«)>bf(e).

Proof. We only prove (iv) and (v); the other results are trivially verified. We note
that (v) can be written in the form b*(e1)>Afc-2ai.-l +6kE2, so that (v) implies (iv). To
prove (v), we assume first that Xk>6ak. By (i), we have to prove that <f>{e1)'^ - 1 +6ke2.
This is trivially proved, and equality implies that 6k = e1 = e2 = 1. Now suppose that Afc<6at;
then b*(e1) = bi(e1) and it is easy to verify that (v) holds (with strict inequality).

DEFINITION 2.3. A chain S ={F{, F{+1, ..., Fty has double barriers if its normal form
has a factorization

S = AfBCj
satisfying the following conditions.

(i) Ate&iFJandCfeaiF,).
(ii) If B=I, then the chain is simple (but riot necessarily naturally simple).

(iii) Either l(Ai) = $i + b?(O), or Z(4<) = 8, + b?(l) and AikSe(Fi,S).

(iv) Either I(C,) = 8, + bf (0), or I(C,) = 8, + bf (1) and CfiSt(Fjt S).

LEMMA 2.4. The sum of two chains with double barriers has itself double barriers.
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Proof. Let the two chains be

<Fk,...,Fxy and <FU...,F^,
with normal forms

AkBCl and AtB'Cm,

respectively. Then I (CJ +1 (A t) >l (Ft), because

bf
(by Lemma 2.2 (iii)) and similarly for l(At). By Lemma 1A, the sum (JFX, ..., Fm} has normal
form AkBJB'Cm=AkHCm, where # * I , In (#) ~ I n (BCJ and Fin (#) ~ Fin (AtB'). This
shows that the sum has double barriers.

Complementary to the chains with double barriers are the open chains.

DEFINITION 2.5. A chain ^Fi,Fi+1,...,Fj} satisfying the condition a{Ft, Ft+1)&0
(£ = t, i +1 , ...,j — l) and such that no subchain has double barriers, is called an open chain.

(We can express the first condition by saying that there is at least an amalgamation
between each adjacent pair of terms.)

LEMMA 2.6. Any chain § in which at least an amalgamation occurs between each adjacent
pair of terms has a decomposition into a sum of subchains,

in ivhich the subchains are alternately open chains and chains with double barriers.
Proof. If (S has only two terms, it is, by Definition 2.5, either an open chain or a chain

with double barriers. Thus we have a basis for induction on the number of terms. Assum-
ing the result true for n terms, let

*> = (,Fk> F k + v •••> ^ Y H > > >

so that 8 has n +1 terms. If S is either an open chain or a chain with double barriers, there
is nothing to prove. If not, there is a proper subchain B = (Ft, Fl+V ..., Fmy with double
barriers. If k<l, there is a decomposition

and if ?/i< k + n, there is a decomposition

<Fm,Fm+1,...,Fk+ny =.
Hence

S = §1+§2 + ...+q 1 i r,

where now one, but not both, of q and r may be zero. This is not yet necessarily a decomposi-
tion of the required kind, because SQ or S'x may have double barriers, but such a decomposition
clearly exists, by Lemma 2.4. This completes the proof.

3. Open chains with two terms. In this section it will be proved that an open chain
(Fit Fi+iy with two terms is either left-closed or right-closed. I t is convenient to write
j =t +1 , s = 8f and p = 8,-. There is no loss of generality in assuming that

s+Bi^p + 6,; (3.01)

and we do so. We denote the normal forms of Ft and Ff by

a\... d^ ... x^d'1 ...d-1 and e~\

respectively, and we write a =a(Fi, Ft), with similar definitions for /S and e.
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LEMMA 3.1. For an open chain with two terms,

«<3>+0,+a«-&( 8 ) (3.11)
and a < s + \{ai + 6j + a,-,- (/>,•(£) (3.12)

Proof. 1°. From Lemma 1C with /J. = A< and T = Qt +s -1 it follows that

(i) if p + 1 + 6i^8i+s + l^p + ai -aw, then a^S.+s + a^-;
and (ii) if 0j+s + l < p + l + ^ < ^ + s + Af-a,j, then a^p + dj +a,,- -<f>j(e).

2°. We prove (3.11). Equality cannot hold in (3.01). For, assuming equality, (i) is
satisfied, giving a<0t+s + a0 and hence also a^p + dj + a^. It is easily verified from (vi)
of Lemma (2.2) that the chain has double barriers in this case, contrary to the hypothesis
that the chain is open.

Therefore (ii) and hence (3.11) hold, unless p + 1+8i>6i+s+Xi-aij. But the last
inequality implies that I (Fj) >l {Ft), so that Lemma IB is available. Moreover, this inequality
combined with a^liFf) - 83- -<f>j(e) implies that (3.11) holds. So we may assume that /3<8^,
i.e., that /?<£>. But then <x<p + 1) a nd (3.11) follows trivially.

3°. Finally, we prove (3.12). The case in which a< 1 + il(F() is trivial. So we assume
that a > l + \l(Fi). Then, by (3.11), we have l(Fi)>l(Fi), so that Lemma IB is applicable ;
we find that fi>p and a^(2s + o-,) -p -<^(e). The last inequality combined with (3.11) leads
at once to (3.12).

This completes the proof of the lemma.

LEMMA 3.2. An open chain of tioo terms is either left-dosed or right-closed.
Proof. Using the notation of the previous lemma, we shall show that the chain (Fu Ff}

is right-closed when (3.01) is satisfied.
The chain will be naturally simple if a<l(Ff) and a.<l{Fj). These inequalities are

simple consequences of (3.12) and (3.11), respectively. Moreover, it is easily verified that

and
So the chain is right-closed.

4. The sum of a left-closed chain and a right-closed chain. This section is devoted
to proving the following lemma.f

LEMMA 4.1. An open chain 0 which is the sum of a left-closed chain Ct and a right-

closed chain Q% (so that C =01 + C2) is either left-closed or right-closed.

Notation. Let 0^(Fk, Fk+1, ..., Fmy and C, = (Fm> Fm+1, .... Ft}. Then

C = <,Fk,Fk+1, ..., Jj>.

Define D by D = Fk+,. Fk+2 Ft_v

Then D ¥=1. In the notation introduced for simple chains, let

where

Fk = a ^ j . . . au, .F, = 6 ^ ... bv,
Fi = 0^2 ...av, F\ = 6a+1&a+2 ...&„,

£ m ~ JlJ2 ••• Jv»
F r _ f f t V*l — f f f
•"m — J(Je+i • • • Jw -"m — J1J2 •••Jir

t It may help the reader if he postpones the proof and passes now to § 5.
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LEMMA 4.2. I (F^) +1 (Fl
m) -1 (Fm) is either -lorO. In the first case,

7j = f -2 , £l-= e2 = 1 and 41.f(z\.cf=I (4.21)
In the second case

? ? = ! - l and fil = £2 = 0 (4.22)

Proof. We shall assume that neither (4.21) nor (4.22) holds and prove that C
where l(A)~^\. This is a contradiction to the assumption that 0 is open, because

and similarly l(Fri)^Sl + b* (0), by Lemma 2.2 (vi), so that C has double barriers.

Let X = Fl
kc{1 and Z =4'Fi \ then

c = xrm. F-1 . Fl
mz = x ,/r-i - / r 1 -A •••/„ • z.

If rj<£ -1, then C = X. fj\ ...f'^.Z. Since Q1 is simple, f(_x * Fin (X) and /f_x ~ Fin (X)
if and only if et = 1. Similarly, / , + 1 ^~ In (Z) if and only if E2 = 1. Thus C is of the required
form unless (4.21) holds. On the other hand, if ?}>£ - 1 , we can apply Lemma 1A to the sum
Cx +02 and hence C has the required form.

LEMMA 4.3. Fk . D has normal form Fl
kE, where l(E)^l and In (E) ^aP+1.

Proof. G=F[. F\, because if (4.21) holds, then C=X. fj^ . Z and if (4.22) holds, then
C=X.Z. Thus

Fk.D = C.Ff1 = axa2 ...av. b^1... ftf1.

The dot in the last expression can be removed, and av+l ¥= bj1. For in the first case of Lemma

4.2 we have cx =av+1. ff_u c2 =fv+1. bq, cx. ff}r .c2=I and f - 1 =?? + 1 , so tha t

bq1 = cs'1 • /n+i = ci = av+i • f(-i ~ a»+i ~ ' av

In the second case we use the fact that Cx and 02 are naturally simple chains, so that aP+1 ~/f_1

and /,,+1 ~/ bQ. But -q =^ - 1 ; hence ap+1 -~' bq, so that av+1 ^b^1. Finally, since sx =0, we
have that av ~ ' f{ =fv+1 ~ 6a ~ fe^1-

This proves the lemma.

COROLLARY 4.31. l{C)<l{Fl
k) +l(Fi).

Proof. By the proof of the lemma, G=Fk.F\ \ so it is required to prove that

Suppose that this is not the case. Then it is easily seen that l(Fl
k)~^hk + b* (0) and

We show that 0 is simple. Now C = a1a2... avbQ+1ba+2... bv, so we wish to prove that
av+1 ~ ' bg+1 and av ~ ' bq. The proof of the lemma shows that av <~J bq. Moreover in the
first case, b^1 ~ aJ)+lJ so that ap+l -~' bQ+v In the second case, since e2 =0, we have

&a+i ~ ' fv = fe-i ~ a3>+i-

Thus we have proved that € has double barriers. This contradiction completes the
proof.

COROLLARY 4.32. Let *'=a{Fk, D) and a"=a(Z>, Ft). Then
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(i) oL'=l(Fk)-l(Fl)andu"=l(Fl)-l(F
r
l),

(ii) l(D)=a'+a"-ei,
(ih)l(Fk.D)=l(Fl

k)+oc",
(iv) e(Fk,D)=ev

Proof. SinceFk. D=ax... ajb^1... 6J"1, we have D = aJ7 ... aj+i . b ^ 1 . . . ftf1, where, by
the proof of the lemma, the dot can be removed in the second case but in the first case there is a
single amalgamation because a^+i • b^1 =/^_i.

Thus l{D)=(u-p)+q-e1 and e(Fk, D)=ex. By the lemma, l(Fk) -«=l(F[) and so,

by symmetry, l(Ft) -a" =l(Fj). Thus a =u-p, a." =q and (ii) follows. Finally,

l(Fk.D) =p+q=l(Fl
k)+*".

COROLLABY 4.33. In the notation of the lemma,

a(Fk.D,Ft)>l(E).

Proof. Using an obvious notation, we have

Z(C) = l(Fk. D)+l(F{) -2a + e = l(Fl
k) + l(Fl) +2a" - 2 a + e.

By Corollary 4.31, we obtain 2a" - 2 a + e<0. Thus a"<a . By Corollary 4.32 (iii) and the
lemma, we have a" =1{E), so that a>l(E) as required.

In the remainder of § 4, we shall be concerned mainly with cancellations between Fk. D
and J1,. We use a notation conforming to that of Lemma 1C and write

Fk = dt... d^ ... x^dr1... df1, Ft = ex... evzx... zo^ ... e^1,

so that s = Bk and p = 8j.

By Lemma 4.3, the normal form of Fk. D starts with F\. NOW CX is left-closed, so that

J(*i)>8fc +A*-«*+&(«!) (4.34)

Thus the normal form of Fl
k starts with d1... d^ ... x^, where p =Min (I(Ft) -s, Xk). Clearly

Afc-«* + ̂ t(«1)</*<A» (4.35)

Since C2 is a simple chain, l(Fi)<l{Fl) and therefore, by Corollary 4.32 (i) and (iii), we may
write

Fk.D = dx... dp

Bounds for T are given in the next lemma.

LEMMA 4.4. 0 j . - l < T < S j /

Proof. By Corollary 4.32, l(Fk . D) =l(Fk) -cc'+oc", i.e.,

r -S = a" - a' + ak-(i-\.

We first prove that 0k-l^.r-s, i.e., that ft-Afc<a"-a'. This is obvious if a '<a" ;
so assume that a"<a'. Then l(D)<l(Fk); for, by Corollary 4.32,

and the right-hand side of this inequality is non-positive, by (4.34). Lemma IB is therefore
applicable, and if )3>s, we obtain a'^l(D)-s~<f>k(e1). But the other case, £<s , cannot
hold. For if j3<s, then j3<#(D) and a '< 1 + \l (D); hence
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which implies that e1=0, 2a' = l +l(D), i.e., that 2j8 = l +l(D), which is a contradiction.

The result just proved can be written in the form s +e1 + <f>k(e1)^oc", and the required
result will follow if

a ' + / x - Afc^S + Sj +</>IC(E1).

This is so because

oc'+^-A* = l(Fk)-l(F
l
k)+fJ.-Xk < {2s + ak)-(ti+s)+IJ.-Xk = S +

The other part of the lemma is easily proved. For fi^Xk - ak and hence - a ^ a " - a'
By symmetry, -a ,<a ' -a" , which is equivalent to the required inequality.

Henceforth we shall assume that liF^^UFt), so that

(4.41)
This involves no loss of generality, but the symmetry of our assumptions is now destroyed.

We wish to study cancellations between Fk. B and Fu that is, between

d1...dsx1...xl,cQc1...cT and ^ ... evzx ... zofp-... e"1.

Let j8 and e be the numbers of cancellations and amalgamations, respectively, and let a = /3 + e,
so that tx = a(Fk. D, Ft).

Lemma 1C is available because 1 +aH</i<A)b; so it is natural to consider the four cases
+ dt-n, (A)
l, (B)

0, - l < T - p < a , - a M - 2 , (C)
afc,-2<T-2> (D)

In case (B), a^.p + 6l + akl -(j>i(e), and in case (C), <X<T + 1 +ockl.

In fact, case (D) cannot occur. For if it did, then from the equation

(p-r) + (s-p) + (T-s) = 0

in conjunction with (D), (4.41) and Lemma 4.4, it would follow that

But Xk -afc</x and akl^(ak + <*,), so that a contradiction would arise.
It will be shown eventually that in cases (A) and (B), the chain G is right-closed. First

we have the following lemma.
LEMMA 4.5. In cases (A) and (B), a JIMS the folloiving bounds :

c^(e), (4.51)
aw + fl,-flt-^,(«)) (4.52)

Proof. First suppose that ?(JFJXZ(J,. . D), that is, that 2p + al^s+fjL+r + l. Then,
by Lemma 4.4,

p-T<£(2-0 t+/ i-ff , ) (4.53)
It is not difficult to show that case (A) cannot hold. Therefore case (B) holds, and (4.51)
follows immediately. (4.52) follows from (4.51) and (4.53).

Now suppose that l(Fk. D)<Z(J!). By Lemma IB,

if jS<y, then <x<l + | ( S + / X + T + 1)

and if j8>p, then a<(s+/x+r + l) -p-^^e) (4.54)
If j3<p, then, since dk -1 JJCT - s, we have
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2 a < 3 + 2 r + j i t - ^ (4.55)

(4.52) now follows because l^aki + 6l-<f>l(e). (4.51) holds in case (B), as we have seen, and
in case (A) it is a consequence of (4.55).

If fi>p, then case (A) cannot hold. For

^ + l<a<(*+/x+T + l) - J ) - ^ , ( E ) < ( (T + 1 -dk) +^t+T + l) -p-(t>i(e)

and on using (A) we obtain an inequality independent of p and T, which contradicts the
assumption that Xk^4a.k +1.

Thus (B) holds, giving (4.51) at once. Combining (4.51) with (4.54), we obtain

2 < X < ( S + / Z + T + 1 ) -2<f>l(e) +9l + ockl.

Now 5 < T +1 - 6k and -0,(eXO, so that (4.52) follows.
This proves the lemma.

COROLLARY 4.56. In cases (A) and (B), C is a right-closed chain.
Proof. It follows from (4.51) and (4.52), respectively, that

and l(Fk.D)

In view of Lemma 4.3,0 will be naturally simple if a >l (E) = l(Fk. D) -l(Fl
k),a.<l {Fk . D)

and <x< I (Ft). But the last two of these inequalities are trivial consequences of the inequalities
just proved, while the first was proved in Corollary 4.33.

Therefore 0 is right-closed.

LEMMA 4.6. In case (C), if n — \k and either 4>k{E) = 0 or a<T + 1 +a.k, then 0 is
left-closed.

Proof. It is sufficient to prove the two inequalities

The first inequality is easily proved, since it can be written in the form

The second inequality can be written in the form

(4.61)

Now, in case (C), <X<T + 1 +akl; so, using (4.41), Lemma 4.4 and the definition of c^e), we
find that the left-hand side of (4.61) is not less than

(frk ~ h<*l) + (/X + 1 - Or* - aj) + ( - 1 - Ctkl) + (|<7( - £ + «,),

which is equal to \ak-Qk-akl-\; so (4.61) follows. This proves the lemma.
To complete the proof of Lemma 4.1, we have to show that 0 is left-closed or right-

closed in case (C) when the conditions of Lemma 4.6 do not apply. Thus we now assume
that

. (i) 0 , - l < T - p < c r , - a M - 2 , -\
and (ii) Either ix<Xk > (C)

or (i = Xk, <f>k(e) = l and <X=T + 1+af c.J

We note that, since (C) implies (C), <X<T + 1 +«kl, and further that, if/x = Afcl then dk = l, so
that /x +1 ̂ .<rk in any case.
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LEMMA 4.7. Under assumption (C), if a.=r + 1 +akl, p^r and e=0, then e1 = e2 = 0
and Fl

k has length s + /*.
Proof. Since fx +1 <<?*., the normal form of Fk contains the component a:M+1. We shall

prove that this component does not belong to the same constituent group as the component
c0 in the normal form of Fk. D. This will imply that e(Fk, D) = 0 and I (Fl

k) = s+n, and hence,
by Lemma 4.2, that s1 = e2=0.

Suppose then that co>~a;(1+1; we shall obtain a contradiction. Since e=0, we have
/ ? = T + 1 +a.ki, so that

. cT. ex. I

where i = /x +1 - a.kl and j = T +1 + a t l - p. ,
Define W[ and W'k by

W[ = z,+1 ...zal.z1...zs,

W'k = ^ . . . . ^ . . . ^ . ^ . . . x ^ .

These are cyclic arrangements of Wt and T-f fc, respectively, because in both expressions there
is at least one component on each side of the dot. (E.g., j + 1<O-J follows from (i) of (C).)
Also a(jyj, JKj^ajti +1 . For c0. zf=I, where/ = r +1 -p, so that if a is the component next
to the right of x^ in the normal form of W'k and b is the component next to the left of zf+1 in
W[, we have a <~ x^+1 and 6 ~ z/. But xM+1 ~ c 0 '~ zf ; hence a ~b, and the result follows,
since ar̂  ... x^ has length <xM.

Therefore If,'. W'k = / . But In (If,') ~ z,+I and Fin (Tfjj) ~ x(_v so that z,+1 ~ x{_lt in
contradiction to the assumption that £ =0.

This proves the lemma.

LEMMA 4.8. Under assumption (C), Fl
k has length s +/x. Thus Fl

k =d1... djcx... x^.

Proof. If /i<Aj., the result follows by the definition of /x. Now let /x=Aj., so that
<f>k(e) = l aiid«=T + l +ak. Since a<T + l +aWl we have akl = ak ; soi fp<r , the result follows
from Lemma 4.7. But if T<J>, we are led to a contradiction as follows :

hence 0t = O and T -j) = - 1 . Therefore <X<T +1 +<xkl^.p +a( and

i (J' l)-a>3» + a , - « , > ! » + b,*(0), •
l(Fk.D)-a. = S+Xk-ak>S + hf{0),

so that <5 has double barriers (5 is simple, even naturally simple, by Corollary 4.33). This
proves the lemma.

COROLLARY 4.81.

(i)
(ii)

(iii)
(iv)
(v) C is a naturally simple chain.

Proof. l(Fl
k) = s + !x ; so, by Corollary 4.33, <X>T +1. But 0t - 1 < T - p , so that
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p + 0, + l < « .
By Corollary 4.32,

l(Fk.D)-l(Fl
k) = « " "HFJ

and (iii) follows at once. Now C2 is right-closed. Thus l(Fi)^p + A( ~al + ij>i(e2) and (iv)
follows, (i) and (iv) imply the remaining inequality in (ii). Finally, (v) folloAVS by the usual
argument (see, e.g., the proof of Corollary 4.56).

LEMMA 4.9.

(i) G is left-closed if

(ii) 0 is right-closed if

Proof. For (i), it is only necessary to prove that l(Ft) -a.^p + Cj(e), i.e., that

This follows from (ii) of Corollary 4.81. ,
For (ii), we need only prove that I(Fk . D) - a^s + cfc(e). The left-hand side is not less

than (s+/i+T + l) - ( T + 1 +<xkl), which, by (4.35), is not less than s + Xk - ak - <xkl, and the
result follows easily.

Proof of Lemma 4.1. In view of the preceding lemmas, we need only consider the case
in which (C) holds and the assumptions of Lemma 4.9 do not apply. Thus we assume that

<f>k(e) (4.91)
and a>p + 9l + al-(j>i(e) (4.92)

We shall obtain a contradiction ; it will be shown that

l(Fk.D)-*>8+\k-2*k+4>t(e) (4.93)
and l(Fl)-x>p + Xl-2al + <f>l{e) (4.94)

From these, making our only use of the fact that

Xt>Qai (i = 1,2, ...,h),

it follows that (c/. Lemma 2.2 (i))

l(Fk.D)-a^s + b*(e) and l(Fl)-a>p + b*{e).

Since C is simple (Corollary 4.81), we have that C has double barriers, in contradiction to
the hypothesis that C is open.

First, we note that p<T and equality implies that <X=T + 1 +akl and 0[£=O. This follows
by combining (4.92) with <X<T +1 +akl and a ^ ^ a j .

Next, we prove (4.93). Since <X<T +1 +akl and ^Xk -ak +<j>k(e1), we have

l(Fk.D)-*>a+Xk-2*k+il>k(el),

where equality implies that a = T +1 + akl. If there is strict inequality, then (4.93) follows at
once. If not, the result is trivial when <f>k(e1)^(j>k(e); but when c/>k(e1)<i<j)k(e), we have
0k = l, e = 0 and ex = 1, in contradiction to Lemma 4.7.

Finally, we prove (4.94), i.e., we prove that <x^p + 0l + 2ixl-<f>t{e). By Corollary 4.81,
-f-2<xj -</>i(e2); we need only consider the case of equality, with 0j = l, e=0 and
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£2 = 1. But equality together with (iv) of the corollary implies that a ^ r + l + a ( . Hence
a = T +1 + akl; so Lemma 4.7 is applicable and we obtain a contradiction.

This completes the proof of Lemma 4.1.

5. Normal form of an open chain. The remainder of the proof of the theorem is
straightforward ; it consists merely of a number of applications of Lemma 1A. This lemma
gives us information about the normal form of a sum of chains in terms of the normal forms
of the summands. In this section we show that any open chain can be built up from left-
closed or right-closed chains in such a way that the lemma can be applied, and in § 6 we
prove that an arbitrary chain can be built up in a similar way from open chains and chains
with double barriers. We shall then, in particular, possess information about the normal
form of the chain Uo, that is, about the normal form of the element Uo.

Let B = (Fi, Fi+1, ..., Fj} be an open chain. I t follows at once from Definition 2.5 that
any subchain of S is open. Thus there exists a decomposition of 8 into a sum of subchains,
where each subchain is either left-closed or right-closed, namely, that in which each sub-
chain has two terms (cf. § 3). Of the decompositions of this type we choose one in which
the number of subchains is minimal. Let this be

8 - 5 1 +5 a + . . .+5 n (5.01)

where S, = <.F*(,-i>> * V - D + I
 FkM> (" = 1. 2, ..., n).

Thus k (0) = i and k (n) =j. Let
$ v = •F*(v-l)Cv"l<Ti(1,),

in the usual notation for simple chains.
If w>l , we can apply Lemma 1A, provided that

l(Fr
kM)+l(Fl

kM)^l(Fk{v)) (v = 1,2, . . . , n - l ) ,

where equality implies that ev = 1 or e,,+1 = 1.
Now, by Lemma 4.1, $„ and Sv+1 cannot be left-closed and right-closed respectively,

since n was chosen minimally. Assume, as we may do without loss of generality, that Sy is
right-closed. Then, whether 8V+1 is left-closed or right-closed, we have (if k = k(v))

By Lemma 2.2 (vii), the right-hand side is not less than 28fc + b* (eM) + ck(ey+l) which, by (2.12),
is not less than 28fc + ok, which is equal to l(Fk), and equality implies that ev = 1 or ey+1 = 1.

Applying Lemma 1A, we have

&> = JliCfJi . . . c n _! </„_!<;„ f

= FlB'F1-, say.

Note that (5.02) is also an expression for the normal form of S when n = 1.

LEMMA 5.1. An open chain S=(Fit Fi+1, ..., F^ has normal form given by (5.02), where

(i) if B' =1, then 8 is simple,

(ii) 1 ( ^ ) ^ 8 , + c,.(£l) and 1(.FJ)>8, +c,(«n),

(iii) £l = 1 if and only if F\ i S£ {Fit 8),

(iv) sn = 1 if and only if F] e & (Fit S),

(v) at least one of the folloioing conditions is satisfied :
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(5.1C) n~^2 and there exists an integer p such that l^p^n - 1 and Jv contains at least

Xk-2«k-8k+<j>k{e1,)+<f>k (eP+1)

elements of the kernel of some Fk, where i< k<j.
Proof, (i), (ii), (iii) and (iv) are trivial consequences of Lemma 1A if n^-2, or of the fact

that 8 is either left-closed or right-closed if n = 1. (Note that n~^2 implies that B' &I.)
To prove (v), we assume that neither (5.1A) nor (5.IB) holds. Then St is right-closed

and 8n is left-closed. But, for v = l, 2, ...,n-l, we have seen that the chains 8y and o,+1

cannot be left-closed and right-closed, respectively. Therefore there is an integer p in the
range 1 < ^ < T O - 1 , such that 8V is right-closed and 8V+1 is left-closed.

Write k = k (p); then

and
Therefore l(JJ =1 (K) +1 (H) - 1 (Fk)

>K~ 2 a* -6k + <f>k (Ev) + <l>k (£j)+i)»

and it is not difficult to see that Jv (and hence B') contains at least this last number of ele-
ments of the kernel of Fk.

This proves the lemma.

An alternative expression for S. Since S^F^B'F^, we may write

S = A{BCi (5.11)

f^i + Ci(O) if Z(j | )^8, + c,(0),
where HAA = < . . . . ,_,, .

l°.- + c»(l) " ^(•^•)<8< + Cj(O),

and Cj is defined similarly. Note that if l(F\)<8,- + c,(0), then, by Lemma 5.1 (ii), ex = 1 and
Z(.F-) = St. + cf(l). Also, FU&iF^S). Thus ^ e j S ? ^ ) and Cje@(Fj), and it follows that
£ = Z 5 ' y . (We may have X = / or Y =/ . )

Thus if B=I, then $ is simple, by Lemma 5.1 (i).

6. Normal form of an arbitrary chain. In the fixed minimal representation

U = F F F* (6 01)

let us insert brackets between each pair of factors Fo Fi+1 for which oc(F{, Fi+1) =0. Thus

U0 = U,.U2 Un, (6.02)

where l^m^h and UQ is a product of, say, mQ factors Fv such that if m a > l , then there is
at least an amalgamation between each adjacent pair of factors.

To discuss the normal form of any Va with m a > l , we use Lemma 2.6, which shows that

VQ = St+Si + .-.+Sf (6.03)

where the subchains $„ are open or have double barriers. Consider a typical subchain
8r = (Fi,Fi+1, ...,.F,->. We write Sv=AiBCi, where if 8V has double barriers the factoriza-
tion is taken as in Definition 2.3, but if 8y is open we take the factorization (5.11). The
following remarks show that Lemma 1A is applicable.
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Assume, as we may do without loss of generality, that Sv has double barriers and 8V+1

is open. Suppose that Sv+1 = (Fj, Fi+1 Fk} and S,+1=AjB1Ck. Now Ct has length
8, + bf (0) or 8, + bf (1), and A, has length 8, + q(0) or 8,- + q(l) . By (2.12), the sum of the
lengths of C, and A} is either greater than l(F}) or else it equals l(Fs) and then Gj i 0t{Fit Sy)
or A, i&(F» 8^).

LEMMA 6.1. Let UQ be a product o / m , ^ 2 consecutive factors of (6.01), say

Uq=Ft.Ft^ Flt

suchthat a.(Fv,Fv+1)^0 (v=i,i + l, ...,j-l). Then

(A) l>Bi + Bj + Xo,wherel=l(Ua)andXo=Min\, {v = l, 2, ..., h),

(B) there exists a factorization Ua = XKZ, where K is part of the kernel of some factor Fy

(i^iv^j) and
either 1{K)>\\,
or I (K) = %\ and at least one of the following conditions (i) and (ii) is satisfied,
or l(K) = -̂(Av -1 ) and both (i) and (ii) are satisfied.

The conditions (i) and (ii) are :

(i) The kernel of Fv does not start with the component In {K), X^I and the component of
Fv next to the left of In (K) is in the same constituent group as Fin (X).

(ii) The kernel of F, does not end with Fin (K), Z^I and the component of Fv next to the
right of Fin (K) is in the same constituent group as In (Z).

Further,
(C) l(K)^\, -3a,, - 1 and equality implies that both (i) and (ii) hold.
Note 6.2. If \,^6av +1, then (C) implies (B); if \ ,<6av +1 , then (B) implies (C).
Proof of the lemma. The following inequalities are trivial; II, I I I and IV are conse-

quences of the inequality A4^4a4 + 1 (i = l, 2, ..., h).

II . Xi-
III . A,.-
IV. c,.
V. If N is an integer, then [±N]^(N -3).

1°. We first consider the case in which/= 1 hi (6.03). Thus Ua = S1 =AiBCi.
If S1 has double barriers, then, by I,

Now the part of the kernel of F{ appearing in A{ has length l(A() - 8< - 0 j > b * (1) -
Finally, if A,, > 6a, +1 , we have

by Lemma 2.2 (i). By Note 6.2, we have proved (A), (B) and (C).
Now assume that §1 is open. Then Sx can be expressed hi the form (5.02), so that

if n = 1,

if 7i ^=3,
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We first prove (A). If (5.1 A) holds, it is sufficient to prove that

(A4 -a,) +ex + c,(e1)>Ao if n = 1
and (A,-a <)+l +q(en)>A0 if n > 1.

These are consequences of II, IV and V. There is a similar argument when (5.IB) holds.
Now assume that (5.1C) holds. Here w>2 ; hence, by (5.02),

(6.21)

But ci(e1)+(Xk-2ak) + c,(en)>X0 -f, by III, IV and V, so that (A) will follow if

i.e., if « , U - 0 * ) + W l - » * ) + » * > ! •

If this is not the case, then £„ = ep+1 = 0^=0. We have seen that, if w^3, then (6.21) remains
true if we replace «j, + «B+1 by 1, so that we need only consider n = 2 in the case we are dis-
cussing. Since l<p<m - 1 , we have p = l, e1=e2 = 0 and hence «„ =0. Therefore

ZXS, + c,(0)) +(Aft -2a*) +(S, + c,(0))
>Si + Sj + X0+^, by III, IV and V.

Finally, we prove (B) and (C). If (5.1A) holds, there appear in the normal form of UQ

at least (8,- + Xt - a,- + <£,• (e)) - (S,• + 0̂ ) components of the kernel of Ft. This number is strictly
greater than X{ - 3a{ - 1 and is also, by II, strictly greater than |At. Case (5.IB) is similar.
If (5.1C) holds, then the normal form of Ua contains at least

Xk - 2<xk -6k + 4>k (ev) + <f>k (ep+1)

components of the kernel of Fk. This number is not less than -J (Afc — 1), by III, and if it
equals ^(Afc-1), then ev=ev+1 = l. If it is greater than ^(Xk-l), it is, obviously, not less
than £Aj. and if it equals $Xk, then again Cj, = £j,+1 = 1. This proves (B). The proof of (C) is
trivial.

2°. Now we consider the case in which/^2 in (6.03). We have seen that Lemma 1A
is applicable ; so writing

S, = i ^ C , 8, = AJBfi,,

we obtain Uq=AiBlEBfCj, say.
3°. To prove (A), it is sufficient to show that AiB1 and BtGt have lengths strictly

greater than 8,- +£A0 and 83- + |A0, respectively. We shall only prove that l(AiB1)>Si + £A0;
the other case is similar.

If $j has double barriers, then

HAiBjTzliAtteSi + b? (1)>8< + |A0, by I.

If £x is open, we have, by (5.02), AtBx =F\cllY, say. If (5.1A) holds, there is no diffi

culty, since l(AiB1)^l(Fl)>Si + iX0.
Now suppose that (5.IB) is satisfied. Then

so that, by definition, Z(Cm) = Sm + cm(O). Further, from (5.02) (with an appropriate change

of notation) it follows that l{S1)^l(Fl)+en+l(Fli). Therefore
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+en + (l (Fr
m) -1 (Cm)

n + (\m-*m+<t>m(en)-Cm(O))

But l(Ai)>St + Ci(l)^S( + l, so that l(AiB1)>8i + lX0.
Finally, let (5.1C) hold. Then there exists an integer k such that l(B1)^Xk-2ock -6k

and, by III, we obtain l(Bj)^(X0 -1), and hence l(AiB1)>Si +|A0.
4°. We now prove (B) and (C). If S± has double barriers, we use the same argument

as in 1°. We assume, then, that St is open. Again the case (5.1A) presents no difficulties.
Now let (5.1B) hold. We write

8-L = AiBjGm, S2 = AmB2Cr,
so that, by Lemma 1A,

UQ = A{B1XB2T,

say, where Xm = Cm. F^1. Am. Since 81 is open, o2 has double barriers and hence Am has
length 8m + b*(0) or Sm + b*(l). Define the symbol e by

(0 i£l(Am) = Sm + b*(O),
otherwise.

Then I(Am) = Sm + b* (e). Also, e = 1 imphes that Am i S£ (Fm, S2). By (5.02), we may write

81=AiB1Cm-AtY(£tFm,auy. By (5.1B), l(Fr
m)>Sm+Xm-ocm+<f,m(en). Now

TJ A T> fi I?""! A R T
U q — ^l^XJjO^ . J? m . ^lmXJ2J

Zm.B2T, (6.22)

where Zm=Fr
m . F^1. Am. We proceed to show that the number I (FT

m) +1 (Am) -1 (Fm) is
strictly positive, which will imply both that this number equals l(Zm) and that in (6.22) the
dots can be removed. The number in question is not less than N, where

= b*(e)-am+<f>m(en)-Om.
First, if Am^6am +1 , then, by Lemma 2.2 (i),

where equality imphes that e = en = l. Thus certainly N>0. Second, if Am<6<xm + 1, then
b*(«) = I'n,(s). Hence N = [^Xm+x], where x = 6m(\-en)+\-\e. Clearly x^O and x=0
implies that e=en = l. If a;>0, then x~£z\ and moreover x = \ implies that e = l or en = l.
In any case, we have N>0, as required.

Now write Fm=MLKJ, where MLK =Am, LKJ = F*m and I {KJ) = 8m + Am - am + <f>m (en).
Then 1{K) =N and K is part of the kernel of Fm. Further, Zm =LK and, since the dots can
be removed from (6.22),

Uq = XKZ,

where X=AfYcn L and Z=B2T. We wish to prove (B) and (C) for this factorization of UQ.
Let us first show that conditions (i) and (ii) of the lemma are implied by en = l and e = l,
respectively.

G CM.A.
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If en = 1, we need only prove that Fin (ML) ~ Fin (X), i.e., that Fin (ML) ~ Fin (cnL).

This is easily verified ; if L =1 we use the fact that Fr
m i @£(Fm, SJ, i.e., that Fin (M) ~ cn.

If e = 1, it is sufficient to prove that B2^I and In (J) ~ I n (Z). But if B2 were equal
to / , then *S2 would be simple and S2 would be equal to AmGT, in contradiction to

Also, Am eSC(Fm, S2) implies that In (J) ~ In (B2Cr) and hence that In (J) ~ In (Z).
The above discussion of the number N now shows that (C) is true when Am^6am + 1,

and that (B) is true when Am<6am + 1. By Note 6.2, this completes the proof of (B) and (C)
for the case under discussion.

The remaining case is that in which Sx is open and satisfies (5.1C). Thus, since

S1=AiYc1?Fr
m—VFr

m> say, we have that V contains a factor cv
vJvcv

v^. But the normal
form of Ua starts with 7, since the dots can be removed from (6.22). (B) and (C) now follow
as in 1°.

This completes the proof of Lemma 6.1.

7. Proof of the theorem. In the decomposition (6.02) of Uo, consider any particular
UQ. If ma ¥= 1, we have seen that UQ satisfies the conditions (A), (B) and (C) of Lemma 6.1.
But if ma = l, these conditions are trivially satisfied, except that equality may occur in (A).
Further, if UQ=Ft. Fi+1 J1,, then In (UQ) =In (FJ and Fin (UQ) =Fin (F,), so that

Thus ^ ( C / o ^ ^ o ^ ^ o ^ o ) m ^n e notation of the theorem.
Now suppose that l(U0)=l0. Then m = l, i.e., U = UV and m1 = l, for m{>l implies

that l(U1)>X0, by Lemma 6.1. Therefore Uo = Fv Comparing lengths, we have

so that Sj = d1 = 0 and F1 e Q*.
This proves (i) and (ii). But (iii) follows from (C) of Lemma 6.1.
This completes the proof of the theorem.
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