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1. Introduction

Let k and r be fixed integers such that 1 < r < k. It is well-known that a
positive integer is called r-free if it is not divisible by the r-th power of any integer
> 1. We call a positive integer n, a (k, r)-integer, if n is of the form n = akb,
where a is a positive integer and b is a r-free integer. In the limiting case, when k
becomes infinite, a (k, r)-integer becomes a r-free integer and so one might con-
sider the (fe, r) integers as generalized r-free integers.

It has been shown by one of the authors and V. Siva Rama Prasad [4] that
if x(r)(n) denotes the number of r-free divisors of n, then for x ^ 3,

where Ar(x) = O(x1/rS(x)) or O(xx), according as r = 2, 3 or r H ;
S(x) = exp{— A\og3l5x(loglogx)~1/5}, A being a positive constant and a
is the number which appears in the Dirichlet divisor problem

(1.2) I <n) = x(logx + 2y - 1) + O(x*),

where t(n) is the number of divisors of n.
It is known that \ < <x < $ (cf. [1], p. 272). The best result yet proved

has been obtained recently by Kolesnik [2], who proved that the error term
in (1.2) is OOc(12/37)+£)> for any e > 0. There is a conjecture that a = \ + e.
In the formula (1.1), C(s), denotes the Riemann Zeta function and £'(s) its de-
rivative and y is Euler's constant.

It has also been shown in [4] on the assumption of the Riemann hypothesis
thatA2(x) = 0(x(2-"m5-4x)(0(x))>A3(x) = O(x(2-*)lcl-6a)co(x))and Ar(x) = O(xa)

1 This research is partially supported by an NRC Grant.
2 On leave from Andhra University, Waltair, India.
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for r ^ 4, where co(x) = expf^logx^oglogx)"1}, A being a positive constant.
For earlier (weaker) estimations of Ar(x) by various authors, we refer to the
bibliography given in [4].

Let us call a divisor d of a positive integer n, a (k, r)-divisor of n if d is a
(fc, r)-integer. Let T(Jt,r)(n) denote the number of (&:, r)-divisors of n. The object
of this paper is to prove the following:

THEOREM 1. For 1 < r < k and x 2; 3,

(13) XW-) -
A/;>/x) = O(x1/rd(x)) or O(x"), according as r = 2,3 or 4 ^ r < k, the

O-estimates being uniform in k; d(x) = exp{ — ZJlog3/5x(loglogx)~1/5}, B being
a positive constant and a is the number which appears in (1.2).

THEOREM 2. / / the Riemann hypothesis is true, then the error term Aktr{x)
in (1.3) has the following improved Q-estimates:

A3.2W = O(x5/Uc«(x)), A,,2(x) = O(x(2-a)/(5-4a)c«(x))

/or k ^ 4, Ati3(x) = 0(x(2-a)/(7-6o0<a(x)) /or fc ^ 4 O /
4 ^ r < k; where the O-estimates are uniform in k and co(x) = exp{^4]ogx
(loglogx)"1}, A being a positive constant and a is given by (1.2).

It may be noted that in the limiting case when k-> 00, formula (1.3) co-
incides with (1.1) and the O-estimates of Ar(x) = A^/x) obtained in [4] follow
as a particular case.

2. Prerequisites

In this section we prove some lemmas which are needed in the proofs of
Theorem 1 and 2. Throughout the following, x denotes a real variable ^ 3. The
following elementary estimates are well-known:

(2.1) I -^ = O(x1-S) if 0 ^ s < 1.
nix n

(2-2) 2 1 = « s ) - I l =

(2-3) zi^-rw- z!

LEMMA 2.1 (c/,. [6]; Sa^z 3, p. 191).

(2.4) M{x) = I n(n) =
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where

(2.5) 5(x) = exp{ - ^ log 3 / 5 x ( log logx)- 1 / 5 } ,

A being a positive constant.

LEMMA 2.2 (cf. [4] Lemma 2.2). For any s > 1,

(2.6)
„§* ns COO

LEMMA 2.3 (cf. [4] , Lemma 2.3). f o r any s > 1,

(2.7) I ^ ^ = ̂  +

LEMMA 2.4 (cf. [5], Theorem 14-26 (4) , p. 316). / / the Riemann hypoth-
esis is true, then

(2.8) M(x) = I /i(«) = O(x1/2co(x)),

where

(2.9) co(x) = e x p l ^ l o g x ^ o g l o g x ) - 1 } ,

/4 being? a positive constant.

LEMMA 2.5 (cf. [4], Lemma 2.5). / / fne Riemann hypothesis is true, then
for any s > 1,

(2.10)

LEMMA 2.6 (c/. [4], Lemma 2.6). / / fne Riemann hypothesis is true, then
for any s > 1,
(2.11) I

LEMMA 2.7 (c/. [ 3 ] , Lemma 2.6). / / ^ . / n ) denotes the characteristic
function of the set of(k,r)-integers, that is, qk,r(n) = 1 or 0 according as n is or
is not a (k, r)-integer, then

(2.12) qk.Jn)= S

LEMMA 2.8. T(tr)(n) = Sak,,,c

PROOF. We have T(t.r)(n) = S«=ngfc,,.(t0, so that by (2.12),

I Kb)
dS=n ahbrc=d
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= E m E l = E

= E Kb)«c).
akbrc=n

Hence Lemma 2.8 follows.

LEMMA 2.9. For k ^ 3,

(2.13) E T(C) = {(*)* (logx + 2y - 1+ & } ) + Rk(x),

w/iere

(2.14) /?k(x) = 0(xJ logx) or 0(xa), according as k = 3 or k ^ 4, w/iere f/ie

second O-estimate is uniform in k

PROOF. We have by (1.2), (2.2) and (2.3),

I T(C) = I _ I t(c)
k S V g / f c

= x(logx + 2 y - l ) S 4 - A : x E ^ + o(x* E

= x(logx + 2y - l){C(fc) + 0(x"1 + (1/*>)} - kx{ - C'(fe)

a"*8).

Since | <a < ^, we have fax ̂  1 according as fc = 3 or fc 2; 4. Hence, by (2.1)
and (2.2), the last O-term in the above is 0(x*) or O(C(fca)xa) = O(C(4a)xa)
= O(x"), uniformly in k, according as k = 3 or k ^ 4. Hence Lemma 2.9 follows.

3. Proof of Theorem 1

By Lemma 2.8, we have

Hence
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(3.1) S T(t>r)(n) = Z Z Kb)r(c)= Z K*Mc),
nix n i l akbrc=n akbrcix

where the summation on the right being taken over all ordered triads (a, b, c) such
that akbrc ^ x.

Let z = x1/ r . Further, let 0 < p = p(x) < 1, where the function p(x) will be
suitably chosen later.

Now, if akbrc ^ x, then both b > pz and akc > p~r can not simultaneously
hold good. Hence from (3.1), we have

(3.2) I T(4>r)(n) = I /<&)T(C) + E /<(fc)T(c) - I
nix akbrcix akbrc£x bgpz

fcgpz akcSp-r akcip'

= Sx + S2 - S3, say.

By (2.13), we have

(3.3) St = S KftMc) = Z /i(b) Z T(C)
akbrcSx bipz o''cg(x/6r)

where

(3.4) Ekr(x) = Z
b&pz

Hence by (3.3), (2.6) and (2.7), we have

(3.5) Si :

z) + £kr(*)-

By (2.14) and (3.4), we have
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according as k = 3 or k ^ 4. Since 1 < r < k, we have r = 2, when fc = 3 and
since £ < a < i , we have by (2.1) and (2.2), the following O-estimates:

•E3.2(x) = Oip1'3 x1'2 log x)

£4r(x) = 0{pl~nz)
Ek,r(x) = Ofj)1-"!) or O^"),

">-according as r = 2,3 or 4 ^ r < fc;

where the O-estimates are uniform in k. We have

S2 = E /i(fc)t(c) = Z T(C) S

(3.6)

l
by (2.4). Since <5(x) is monotonic decreasing and . —r- ^ Sz, we have

. Also, by (2.1), (2.2) and (1.2),

2 T(c)a-*/rc-1/r = 2r/4«-*/p 2 T(c)c"1/r

= 0 ( 2 ^ - ^ ( p - ' a - * ) 1 - ' 1 " 1

l ) 2
P)

= 0

Hence

(3.7) S2 =

Further, we have by (2.4) and (2.13),

(3.8) S3 = 2 KbMc) = 2

= M(pz) I T(C)

T(C)
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Hence by (3.2), (3.5), (3.7) and (3.8)

(3.9) +0(C(k)pi-z5(pz)\ogz)

+ 01 CCOp1 ~rz8(pz) log I — | ) + Ekr{x).

Now, we choose,

(3.10) p --

and write

(3.11) f(x) = log
3 / 5(x1 / 2 r){loglog(x1 / 2 ')}-1 / 5

where U = logx and V = log log x.

(3.12) For V ̂  21og2r, that is, U jS 4r2, x ^ exp(4r2), we have

-1 /5

and therefore

(3.13) i r

(3.14) We assume without loss of generality that the constant A in (2.5) is less
than 1.

By (3.10), (2.5) and (3.11), we have

5)

By (3.12), we have

Hence, by (3.13), (3.14), (3.15) and the above,

(3.15) p = exp - ~f(x)}.

r-8/5(/3/5F-l/5

U
-

so that p ^ x~(1/2r\
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(3.16) log (—\ ^ log(y/z) = O(logx) and pz ^ x1/(2r).

Since 5(x) is monotonic decreasing, we have S(pz) ^ 6(x1/(2r)) = pr, by (3.10),
so that by (3.13) and (3.15), we have

(3.17) pl-'8(pz) ^ p g exp {- ^r-
8/5U3/5V-ll5\.

Hence, by (3.16) and (3.17), the first and second 0-terms of (3.9) are

= O(C(r+ l)x1 / fexp{-yr-8 / 5C/3 / 5F-1 / 5}logx), since A; ^ r + 1

= O(x1 / rexp{-^r-8 / 5 t / 3 / 5F-1 / 5} logx, uniformly in k.

Hence, if Akr(x) denotes the error term in the asymptotic formula (3.9), then
we have

(3.18) At>r(x) = O(x1/rexp{ - yr-8 / 5 t / 3 / 5F-1 / 5} logx) + Ek/x),

where the 0-estimate is uniform in k.

Case k = 3. In this case r must be = 2. By (3.6) and (3.17), we have

E32(x) = 0(x1/2exp{ - ~(2)-8'5U3/5V-1/5}logx),

so that by (3.18),

(3.19) A3i2(x) = O(x1/2exp{ - -Blog3/5x(loglogx)-1/5}),

where B is a positive constant (0 < B < —(2)"8/5.1

Case k = 4. In this case r = 2 or 3. Since \ < a < •£, we have 0 < 1 — ra < 1.
By (3.6) and (3.17), we have

Again, since 0 < 1 — m < 1, the first 0-term in (3.18) is also of the above order
of E^ir{x). Hence

(3.20) A4>r(x) = O(x1/rexp{ - Blog3/5x(loglogx)-1/5}),

where B is a positive constant.
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Case k ̂  5. In this case r = 2,3 or 4 g r < k. When r = 2 or 3, by (3.6)
and (3.17), we have

A(l ~ r K )
 r -8/5[/3/5F- i /5J \

so that by (3.18),

(3.21) At,r(x) = O(x1/ rexp{ - Blog3 / 5x(loglogx)-1 / 5}) ,

where B is a positive constant and the O-estimate is uniform in k.
When 4 ̂  r < k, by (3.6), £t,r(x) = O(xa) and the first O-term in (3.18) is

O(xl/r), so that we have

(3.22) A,r(x) = O(x«),

where the O-estimate is uniform in k.
Hence, by (3.9), (3.18)-(3.22), Theorem 1 follows.

4. Proof of theorem 2

Following the same procedure adopted in the proof of theorem 1 and making
use of (2.10) and (2.11) instead of (2.6) and (2.7) we get that

(4.1) A4r(x) =

+ Ekr(x),

wh;re the O-estimates are uniform in k and Ekr(x) is given by (3.6).

Case k = 3. In this case r must be = 2. Choosing p = z ~ 3 / u , we see that

0 < p < 1, — < z, so that logl — I < log z, and
P \PJ

pU2-2zl/2 = p l / 3 z = X5/11_

Since co(x) is monotonic increasing, co(pz) < co(z). Hence, by (4.1), (3.6) and the
above, we have

(4.2) A3>2(x) = O(x5/11o)(x1/2)logx) + O(x 5 / u l ogx )

= O(x5/I1co(x)).

Case k = 4. In this case r = 2 or 3. Choosing p = z-ua+2ni-a)) ^ w e

see that 0 < p < l , — < z, so that log I — I < log z, and

pUl-rzm = pl-r«z = x2-a/(l+2r(l-.»

Since co(x) is monotonic increasing, co(pz) < a>(z). Hence by (4.1), (3.6) and the
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above, we have

(4.3) A4r(x) = O(x2-*ni+2r(1-*)co(x1/2)\ogx)

= O(x2-°/(1+2r(1~a)co(x)).

Case k ^ 5. In this case r = 2,3 or 4 ^ r < k. When r = 2 or 3, we have
by (3.6), EKr(x) = O(j>l~n z). Choosing p = 2-(1/<1+2'-u-«»j as in the case
k = 4, we get that

(4.4) At/x) = O(x(2

where the 0-estimate is uniform in k. When 4 g r < k, by (3.6), we have
Ek,r(x) = OC^4)- W e h a y e co(x) = O(xE) and logz = O(xe) for every s > 0. We
assume that 0 < e < 1. Hence, by (4.1), we have

(4.5) A t r (* )= O(p1/2-r+e z1/2+2c)
/2 + log ( 1

NOW, Choosing p = z-(2r<z-l + 4.e)/(2r-l-2e)^ w g s e e t f l a t Q < p < 1, — < 2, SO that

log I—j < log 2 = O(zc) and

Hence, by (4.5), we have

(4.6) AKr(x) =

where the O-estimate is uniform in k. Hence, by (4.2), (4.3), (4.4) and (4.6),
Theorem 2 follows.

REMARK. In the case 4 ^ r < k, we may choose the function p = p(x),
which tends to zero as x -» oo to be a function which tends to zero more rapidly
than that chosen above. In such a case, although the first and second O-terms
in (4.5) are O^c"), where f} < a, but because of the third 0-term in (4.5), we again
get At>r(x) = O(xT). Hence we can not improve the result that AtiP(x) = O(x") for
4 ^ r < fe, even on the assumption of the Riemann hypothesis.
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