THE DIVISOR PROBLEM FOR (k, r) - INTEGERS ${ }^{1}$

M. V. SUBBARAO AND D. SURYANARAYANA ${ }^{2}$

(Received 10 June 1971)
Communicated by E. S. Barnes

1. Introduction

Let k and r be fixed integers such that $1<r<k$. It is well-known that a positive integer is called r-free if it is not divisible by the r-th power of any integer >1. We call a positive integer $n, a(k, r)$-integer, if n is of the form $n=a^{k} b$, where a is a positive integer and b is a r-free integer. In the limiting case, when k becomes infinite, a (k, r)-integer becomes a r-free integer and so one might consider the (k, r) integers as generalized r-free integers.

It has been shown by one of the authors and V. Siva Rama Prasad [4] that if $\tau_{(r)}(n)$ denotes the number of r-free divisors of n, then for $x \geqq 3$,

$$
\begin{equation*}
\sum_{n \leq x} \tau_{(r)}(n)=\frac{x}{\zeta(r)}\left(\log x+2 \gamma-1-\frac{r \zeta^{\prime}(r)}{\zeta(r)}\right)+\Delta_{r}(x) \tag{1.1}
\end{equation*}
$$

where $\Delta_{r}(x)=O\left(x^{1 / r} \delta(x)\right)$ or $O\left(x^{\alpha}\right)$, according as $r=2,3$ or $r \geqq 4$; $\delta(x)=\exp \left\{-A \log ^{3 / 5} x(\log \log x)^{-1 / 5}\right\}, A$ being a positive constant and α is the number which appears in the Dirichlet divisor problem

$$
\begin{equation*}
\sum_{n \leqq x} \tau(n)=x(\log x+2 \gamma-1)+O\left(x^{x}\right) \tag{1.2}
\end{equation*}
$$

where $\tau(n)$ is the number of divisors of n.
It is known that $\frac{1}{4}<\alpha<\frac{1}{3}$ (cf. [1], p. 272). The best result yet proved has been obtained recently by Kolesnik [2], who proved that the error term in (1.2) is $O\left(x^{(12 / 37)+\varepsilon}\right)$, for any $\varepsilon>0$. There is a conjecture that $\alpha=\frac{1}{4}+\varepsilon$. In the formula (1.1), $\zeta(s)$, denotes the Riemann Zeta function and $\zeta^{\prime}(s)$ its derivative and γ is Euler's constant.

It has also been shown in [4] on the assumption of the Riemann hypothesis that $\Delta_{2}(x)=O\left(x^{(2-\alpha) /(5-4 \alpha)} \omega(x)\right), \Delta_{3}(x)=O\left(x^{(2-\alpha) /(7-6 \alpha)} \omega(x)\right)$ and $\Delta_{r}(x)=O\left(x^{\alpha}\right)$

[^0]for $r \geqq 4$, where $\omega(x)=\exp \left\{A \log x(\log \log x)^{-1}\right\}, A$ being a positive constant. For earlier (weaker) estimations of $\Delta_{r}(x)$ by various authors, we refer to the bibliography given in [4].

Let us call a divisor d of a positive integer $n, a(k, r)$-divisor of n if d is a (k, r)-integer. Let $\tau_{(k, r)}(n)$ denote the number of (k, r)-divisors of n. The object of this paper is to prove the following:

Theorem 1. For $1<r<k$ and $x \geqq 3$,

$$
\begin{equation*}
\sum_{n \leqq x} \tau_{(k, r)}(n)=\frac{\zeta(k) x}{\zeta(r)}\left(\log x+2 \gamma-1-\frac{r \zeta^{\prime}(r)}{\zeta(r)}+\frac{k \zeta^{\prime}(k)}{\zeta(k)}\right)+\Delta_{k, r}(x) \tag{1.3}
\end{equation*}
$$

where $\Delta_{t, r}(x)=O\left(x^{1 / r} \delta(x)\right)$ or $O\left(x^{x}\right)$, according as $r=2,3$ or $4 \leqq r<k$, the 0 -estimates being uniform in $k ; \delta(x)=\exp \left\{-B \log ^{3 / 5} x(\log \log x)^{-1 / 5}\right\}$, B being a positive constant and α is the number which appears in (1.2).

Theorem 2. If the Riemann hypothesis is true, then the error term $\Delta_{k, r}(x)$ in (1.3) has the following improved 0 -estimates:

$$
\Delta_{3,2}(x)=O\left(x^{5 / 11} \omega(x)\right), \Delta_{k, 2}(x)=O\left(x^{(2-\alpha) /(5-4 \alpha)} \omega(x)\right)
$$

for $k \geqq 4, \Delta_{k, 3}(x)=O\left(x^{(2-\alpha) /(7-6 x)} \omega(x)\right)$ for $k \geqq 4$ and $\Delta_{k . r}(x)=O\left(x^{\alpha}\right)$ for $4 \leqq r<k$; where the 0 -estimates are uniform in k and $\omega(x)=\exp \{A \log x$ $\left.(\log \log x)^{-1}\right\}$, A being a positive constant and α is given by (1.2).

It may be noted that in the limiting case when $k \rightarrow \infty$, formula (1.3) coincides with (1.1) and the 0 -estimates of $\Delta_{r}(x)=\Delta_{\infty, r}(x)$ obtained in [4] follow as a particular case.

2. Prerequisites

In this section we prove some lemmas which are needed in the proofs of Theorem 1 and 2 . Throughout the following, x denotes a real variable $\geqq 3$. The following elementary estimates are well-known:

$$
\begin{align*}
& \sum_{n \leqq x} \frac{1}{n^{s}}=O\left(x^{1-s}\right) \text { if } 0 \leqq s<1 \tag{2.1}\\
& \sum_{n>x} \frac{1}{n^{s}}=\zeta(s)-\sum_{n \leqq x} \frac{1}{n^{s}}=0\left(\frac{1}{x^{s-1}}\right) \text { if } s>1 \\
& \sum_{n<x} \frac{\log n}{n^{s}}=-\zeta^{\prime}(s)-\sum_{n \leqq x} \frac{\log n}{n^{s}}=0\left(\frac{\log x}{x^{s-1}}\right) \text { if } s>1 .
\end{align*}
$$

Lemma 2.1 (cf. [6]; Satz 3, p. 191).

$$
\begin{equation*}
M(x)=\sum_{n \leqq x} \mu(n)=O(x \delta(x)) \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta(x)=\exp \left\{-A \log ^{3 / 5} x(\log \log x)^{-1 / 5}\right\} \tag{2.5}
\end{equation*}
$$

A being a positive constant.
Lemma 2.2 (cf. [4] Lemma 2.2). For any $s>1$,

$$
\begin{equation*}
\sum_{n \leqq x} \frac{\mu(n)}{n^{s}}=\frac{1}{\zeta(s)}+O\left(\frac{\delta(x)}{x^{s-1}}\right) \tag{2.6}
\end{equation*}
$$

Lemma 2.3 (cf. [4], Lemma 2.3). For any $s>1$,

$$
\begin{equation*}
\sum_{n \leqq x} \frac{\mu(n) \log n}{n^{s}}=\frac{\zeta^{\prime}(s)}{\zeta^{2}(s)}+O\left(\frac{\delta(x) \log x}{x^{s-1}}\right) \tag{2.7}
\end{equation*}
$$

Lemma 2.4 (cf. [5], Theorem 14-26 (A), p. 316). If the Riemann hypothesis is true, then

$$
\begin{equation*}
M(x)=\sum_{n \leqq x} \mu(n)=O\left(x^{1 / 2} \omega(x)\right) \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega(x)=\exp \left\{A \log x(\log \log x)^{-1}\right\} \tag{2.9}
\end{equation*}
$$

A being a positive constant.
Lemma 2.5 (cf. [4], Lemma 2.5). If the Riemann hypothesis is true, then for any $s>1$,

$$
\begin{equation*}
\sum_{n \leqq x} \frac{\mu(n)}{n^{s}}=\frac{1}{\zeta(s)}+O\left(x^{\frac{1}{2}-s} \omega(x)\right) \tag{2.10}
\end{equation*}
$$

Lemma 2.6 (cf. [4], Lemma 2.6). If the Riemann hypothesis is true, then for any $s>1$,

$$
\begin{equation*}
\sum_{n \leqq x} \frac{\mu(n) \log n}{n^{s}}=\frac{\zeta^{\prime}(s)}{\zeta^{2}(s)}+O\left(x^{\frac{1}{2}-s} \omega(x) \log x\right) \tag{2.11}
\end{equation*}
$$

Lemma 2.7 (cf. [3], Lemma 2.6). If $q_{k, r}(n)$ denotes the characteristic function of the set of (k, r)-integers, that is, $q_{k, r}(n)=1$ or 0 according as n is or is not a (k, r)-integer, then

$$
\begin{equation*}
q_{k, r}(n)=\sum_{a^{k} b r_{c}=n} \mu(b) \tag{2.12}
\end{equation*}
$$

Lemma 2.8. $\tau_{(k, r)}(n)=\sum_{a^{k} b^{r} c={ }_{n}} \mu(b) \tau(c)$.
Proof. We have $\tau_{(k . r)}(n)=\Sigma_{d \delta=n} q_{k, r}(d)$, so that by (2.12),

$$
\tau_{(k, r)}(n)=\sum_{d \delta=n} \sum_{a^{k} b_{c} r_{c}=d} \mu(b)=\sum_{a^{k} b^{r} c \delta=n} \mu(b)
$$

$$
\begin{aligned}
& =\sum_{a^{k} b^{r} \mid n} \mu(b) \sum_{c \delta=\left(n / a^{k} b^{r}\right)} 1=\sum_{a^{k} b^{r} \mid n} \mu(b) \tau\left(\frac{n}{a^{k} b^{r}}\right) \\
& =\sum_{a^{k} b^{r} c=n} \mu(b) \tau(c)
\end{aligned}
$$

Hence Lemma 2.8 follows.
Lemma 2.9. For $k \geqq 3$,

$$
\begin{equation*}
\sum_{a^{k} c \leqq x} \tau(c)=\zeta(k) x\left(\log x+2 \gamma-1+\frac{k \zeta^{\prime}(k)}{\zeta(k)}\right)+R_{k}(x), \tag{2.13}
\end{equation*}
$$

where
(2.14) $R_{k}(x)=O\left(x^{\frac{2}{3}} \log x\right)$ or $O\left(x^{\alpha}\right)$, according as $k=3$ or $k \geqq 4$, where the second O-estimate is uniform in k

Proof. We have by (1.2), (2.2) and (2.3),

$$
\begin{aligned}
& \sum_{a^{k} c \leqq x} \tau(c)=\sum_{a \leqq} \sum_{a \sqrt{x}} \sum_{c \leqq x / a^{k}} \tau(c) \\
& =\sum_{a \leq \sqrt{x} \sqrt{x}}\left\{\frac{x}{a^{k}}\left(\log \frac{x}{a^{k}}+2 \gamma-1\right)+O\left(\frac{x^{\alpha}}{a^{k^{\alpha}}}\right)\right\} \\
& =x(\log x+2 \gamma-1) \sum_{a \leqq{ }^{\kappa} \sqrt{x}} \frac{1}{a^{k}}-k x \sum_{a \leqq \kappa \sqrt{x}} \frac{\log a}{a^{k}}+O\left(x^{\alpha} \sum_{a \leqq \sqrt{x}} a^{-k \alpha}\right) \\
& =x(\log x+2 \gamma-1)\left\{\zeta(k)+O\left(x^{-1+(1 / k)}\right)\right\}-k x\left\{-\zeta^{\prime}(k)\right. \\
& \left.+O\left(\frac{\log x}{x^{1-1 / k}}\right)\right\}+O\left(x^{\alpha} \sum_{a \leqq^{k} \sqrt{x}} a^{-k \alpha}\right) \\
& =\zeta(k) x\left(\log x+2 \gamma-1+\frac{k \zeta^{\prime}(k)}{\zeta(k)}\right)+O\left(x^{1 / k} \log x\right)+O\left(x^{\alpha} \sum_{a \leqq \sqrt{x} \bar{x}} a^{-k x}\right) .
\end{aligned}
$$

Since $\frac{1}{4}<\alpha<\frac{1}{3}$, we have $k \alpha \lessgtr 1$ according as $k=3$ or $k \geqq 4$. Hence, by (2.1) and (2.2), the last O-term in the above is $O\left(x^{\frac{1}{3}}\right)$ or $O\left(\zeta(k \alpha) x^{\alpha}\right)=O\left(\zeta(4 \alpha) x^{\alpha}\right)$ $=O\left(x^{\alpha}\right)$, uniformly in k, according as $k=3$ or $k \geqq 4$. Hence Lemma 2.9 follows.

3. Proof of Theorem 1

By Lemma 2.8, we have

$$
\tau_{(k, r)}(n)=\sum_{a^{k} b^{r} c=n} \mu(b) \tau(c) .
$$

Hence

$$
\begin{equation*}
\sum_{n \leqq x} \tau_{(k, r)}(n)=\sum_{n \leqq x} \sum_{a^{k} b^{r} c=n} \mu(b) \tau(c)=\sum_{a^{k} b^{r} c \leqq x} \mu(b) \tau(c), \tag{3.1}
\end{equation*}
$$

where the summation on the right being taken over all ordered triads (a, b, c) such that $a^{k} b^{r} c \leqq x$.

Let $z=x^{1 / r}$. Further, let $0<\rho=\rho(x)<1$, where the function $\rho(x)$ will be suitably chosen later.

Now, if $a^{k} b^{r} c \leqq x$, then both $b>\rho z$ and $a^{k} c>\rho^{-r}$ can not simultaneously hold good. Hence from (3.1), we have
(3.2) $\sum_{n \leqq x} \tau_{(k, r)}(n)=\sum_{\substack{a^{k} b^{r} c \leq x \\ b \leqq \rho z}} \mu(b) \tau(c)+\sum_{\substack{a^{k} b^{r} c \leq x \\ a^{k} c \leqq \rho^{-r}}} \mu(b) \tau(c)-\sum_{\substack{b \leq \rho z \\ a^{k} c \leqq p^{-r}}} \mu(b) \tau(c)$ $=S_{1}+S_{2}-S_{3}$, say.

By (2.13), we have

$$
\begin{align*}
S_{1}= & \sum_{\substack{a^{k} b^{r} c \leqq x \\
b \leqq \rho z}} \mu(b) \tau(c)=\sum_{b \leqq \rho z} \mu(b) \sum_{a^{k} c \leqq\left(x / b^{r}\right)} \tau(c) \tag{3.3}\\
= & \sum_{b \leqq \rho z} \mu(b)\left\{\zeta(k) \frac{x}{b^{r}}\left(\log \frac{x}{b^{r}}+2 \gamma-1+\frac{k \zeta^{\prime}(k)}{\zeta(k)}\right)+R_{k}\left(\frac{x}{b^{r}}\right)\right\} \\
= & \zeta(k) x\left(\log x+2 \gamma-1+\frac{k \zeta^{\prime}(k)}{\zeta(k)}\right) \sum_{b \leqq \rho z} \frac{\mu(b)}{b^{r}} \\
& \quad-\zeta(k) r x \sum_{b \leqq \rho z} \frac{\mu(b) \log b}{b^{r}}+E_{k r}(x)
\end{align*}
$$

where

$$
\begin{equation*}
E_{k r}(x)=\sum_{b \leqq \rho z} \mu(b) R_{k}\left(\frac{x}{b^{r}}\right) \tag{3.4}
\end{equation*}
$$

Hence by (3.3), (2.6) and (2.7), we have

$$
\begin{align*}
S_{1}=\zeta(k) x(& \left.\log x+2 \gamma-1+\frac{k \zeta^{\prime}(k)}{\zeta(k)}\right)\left\{\frac{1}{\zeta(r)}+O\left(\frac{\delta(\rho z)}{(\rho z)^{r-1}}\right)\right\} \tag{3.5}\\
& -\zeta(k) r x\left\{\frac{\zeta^{\prime}(r)}{\zeta(r)}+O\left(\frac{\delta(\rho z) \log (\rho z)}{(\rho z)^{r-1}}\right)\right\}+E_{k, r}(x) \\
=\frac{\zeta(k) x}{\zeta(r)} & \left(\log x+2 \gamma-1-\frac{r \zeta^{\prime}(r)}{\zeta(r)}+\frac{k \zeta^{\prime}(k)}{\zeta(k)}\right) \\
& +O\left(\zeta(k) \rho^{1-r} z \delta(\rho z) \log z\right)+E_{k r}(x)
\end{align*}
$$

By (2.14) and (3.4), we have

$$
E_{k . r}(x)=O\left(\sum_{b \leqq \rho z} \frac{x^{\frac{1}{s}}}{b^{r / 3}} \log \left(\frac{x}{b^{r}}\right) \text { or } O\left(\sum_{b \leqq \rho z} \frac{x^{\alpha}}{b^{r / \alpha}}\right),\right.
$$

according as $k=3$ or $k \geqq 4$. Since $1<r<k$, we have $r=2$, when $k=3$ and since $\frac{1}{4}<\alpha<\frac{1}{3}$, we have by (2.1) and (2.2), the following 0 -estimates:

$$
\left\{\begin{array}{l}
E_{3,2}(x)=O\left(\rho^{1 / 3} x^{1 / 2} \log x\right) \tag{3.6}\\
E_{4, r}(x)=O\left(\rho^{1-r \alpha} z\right) \\
E_{k, r}(x)=O\left(\rho^{1-r \alpha} z\right) \text { or } O\left(x^{\alpha}\right) \\
\text { according as } r=2,3 \text { or } 4 \leqq r<k
\end{array}\right.
$$

where the 0 -estimates are uniform in k. We have

$$
\begin{aligned}
S_{2} & =\sum_{\substack{a^{k} k r c \leqq x \\
a^{k} c \leqq \rho^{-r}}} \mu(b) \tau(c)=\sum_{a^{k} c \leqq \rho^{-r}} \tau(c) \sum_{b \leqq \sqrt[r]{\left(x / a^{k} c\right)}} \mu(b) \\
& =\sum_{a^{k} c \leqq 0^{-r}} \tau(c) M\left(\sqrt{\frac{x}{a^{k} c}}\right) \\
& =0\left(x^{1 / r} \sum_{a^{k} c \leqq \rho^{-r}} \tau(c) a^{-k / r} c^{-1 / r} \delta\left(\sqrt[r]{\frac{x}{a^{k} c}}\right)\right),
\end{aligned}
$$

by (2.4). Since $\delta(x)$ is monotonic decreasing and $\sqrt[r]{\frac{x}{a^{k} c}} \geqq \delta z$, we have $\delta\left(\sqrt[r]{\frac{\bar{x}}{a^{k}}}\right) \leqq \delta(\rho z)$. Also, by (2.1), (2.2) and (1.2),

$$
\begin{aligned}
\sum_{a^{k} c \leqq \rho^{-r}} \tau(c) a^{-k / r} c^{-1 / r} & =\sum_{a \leqq \rho^{-r / k}} a^{-k / r} \sum_{c \leqq \rho^{-r} a^{-k}} \tau(c) c^{-1 / r} \\
& =O\left(\sum_{a \leqq \rho^{-r / k}} a^{-k / r}\left(\rho^{-r} a^{-k}\right)^{1-(1 / r)} \log \left(\rho^{-r} a^{-k}\right)\right) \\
& =O\left(\rho^{1-r} \log \left(\frac{1}{\rho}\right) \sum_{a \leqq \rho^{-r} /^{k}} a^{-k}\right) \\
& =O\left(\zeta(k) \rho^{1-r} \log \left(\frac{1}{\rho}\right)\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
S_{2}=O\left(\zeta (k) \rho ^ { 1 - r _ { z } } z \left(\rho z\left(\log \left(\frac{1}{\rho}\right)\right)\right.\right. \tag{3.7}
\end{equation*}
$$

Further, we have by (2.4) and (2.13),

$$
\begin{align*}
S_{3} & =\sum_{\substack{b \leqq \rho z \\
a^{k} c \leqq p-r}} \mu(b) \tau(c)=\sum_{b \leqq \rho z} \mu(b) \sum_{a^{k} c \leqq \rho^{-r}} \tau(c) \tag{3.8}\\
& =M(\rho z) \sum_{a^{k} c \leqq \rho^{-r}} \tau(c) \\
& =O\left(\rho z \delta(\rho z) \zeta(k) \rho^{-r} \log \left(\rho^{-r}\right)\right)
\end{align*}
$$

$$
=O\left(\zeta(k) \rho^{1-r} z \delta(\rho z) \log \left(\frac{1}{\rho}\right)\right) .
$$

Hence by (3.2), (3.5), (3.7) and (3.8)

$$
\begin{align*}
\sum_{n \leqq x} \tau_{(k, r)}(n)= & \frac{\zeta(k) x}{\zeta(r)}\left(\log x+2 \gamma-1-\frac{r \zeta^{\prime}(r)}{\zeta(r)}+\frac{k \zeta^{\prime}(k)}{\zeta(k)}\right) \\
& +0\left(\zeta(k) \rho^{1-r} z \delta(\rho z) \log z\right) \tag{3.9}\\
& +0\left(\zeta(k) \rho^{1-r} z \delta(\rho z) \log \left(\frac{1}{p}\right)\right)+E_{k, r}(x)
\end{align*}
$$

Now, we choose,

$$
\begin{equation*}
\rho=\rho(x)=\left\{\delta\left(x^{1 / 2 r}\right)\right\}^{1 / r} \tag{3.10}
\end{equation*}
$$

and write

$$
\begin{align*}
f(x) & =\log ^{3 / 5}\left(x^{1 / 2 r}\right)\left\{\log \log \left(x^{1 / 2 r}\right)\right\}^{-1 / 5} \tag{3.11}\\
= & \left(\frac{1}{2 r}\right)^{3 / 5} U^{3 / 5}(V-\log 2)^{-1 / 5}
\end{align*}
$$

where $U=\log x$ and $V=\log \log x$.
(3.12) For $V \geqq 2 \log 2 r$, that is, $U \geqq 4 r^{2}, x \geqq \exp \left(4 r^{2}\right)$, we have

$$
V^{-1 / 5} \leqq(V-\log 2 r)^{-1 / 5} \leqq\left(\frac{V}{2}\right)^{-1 / 5}
$$

and therefore

$$
\begin{equation*}
\frac{1}{2} r^{-3 / 5} U^{3 / 5} V^{-1 / 5} \leqq f(x) \leqq r^{-3 / 5} U^{3 / 5} V^{-1 / 5} \tag{3.13}
\end{equation*}
$$

(3.14) We assume without loss of generality that the constant A in (2.5) is less than 1.

By (3.10), (2.5) and (3.11), we have

$$
\begin{equation*}
\left.\rho=\exp -\frac{A}{r} f(x)\right\} \tag{3.15}
\end{equation*}
$$

By (3.12), we have

$$
r^{-8 / 5} U^{3 / 5} V^{-1 / 5} \leqq \frac{U}{2 r}
$$

Hence, by (3.13), (3.14), (3.15) and the above,

$$
\begin{aligned}
\rho & \geqq \exp \left(-A r^{-8 / 5} U^{3 / 5} V^{-1 / 5}\right) \geqq \exp \left(-r^{-8 / 5} U^{3 / 5} V^{-1 / 5}\right) \\
& \geqq \exp \left(-\frac{U}{2 r}\right)=\exp \left(-\frac{\log x}{2 r}\right)
\end{aligned}
$$

so that $\quad \rho \geqq x^{-(1 / 2 r)}$.
(3.16) $\log \left(\frac{1}{\rho}\right) \leqq \log (\sqrt{z})=0(\log x)$ and $\rho z \geqq x^{1 /(2 r)}$.

Since $\delta(x)$ is monotonic decreasing, we have $\delta(\rho z) \leqq \delta\left(x^{1 /(2 r)}\right)=\rho^{r}$, by (3.10), so that by (3.13) and (3.15), we have

$$
\begin{equation*}
\rho^{1-r} \delta(\rho z) \leqq \rho \leqq \exp \left\{-\frac{A}{2} r^{-8 / 5} U^{3 / 5} V^{-1 / 5}\right\} . \tag{3.17}
\end{equation*}
$$

Hence, by (3.16) and (3.17), the first and second 0 -terms of (3.9) are

$$
\begin{aligned}
& O\left(\zeta(k) x^{1 / r} \exp \left\{-\frac{A}{2} r^{-8 / 5} U^{3 / 5} V^{-1 / 5}\right\} \log x\right) \\
& \quad=O\left(\zeta(r+1) x^{1 / r} \exp \left\{-\frac{A}{2} r^{-8 / 5} U^{3 / 5} V^{-1 / 5}\right\} \log x\right), \text { since } k \geqq r+1 \\
& \quad=O\left(x^{1 / r} \exp \left\{-\frac{A}{2} r^{-8 / 5} U^{3 / 5} V^{-1 / 5}\right\} \log x, \text { uniformly in } k .\right.
\end{aligned}
$$

Hence, if $\Delta_{k, r}(x)$ denotes the error term in the asymptotic formula (3.9), then we have

$$
\begin{equation*}
\Delta_{k, r}(x)=O\left(x^{1 / r} \exp \left\{-\frac{A}{2} r^{-8 / 5} U^{3 / 5} V^{-1 / 5}\right\} \log x\right)+E_{k, r}(x) \tag{3.18}
\end{equation*}
$$

where the 0 -estimate is uniform in k.
Case $k=3$. In this case r must be $=2$. By (3.6) and (3.17), we have

$$
E_{3.2}(x)=O\left(x^{1 / 2} \exp \left\{-\frac{A}{6}(2)^{-8 / 5} U^{3 / 5} V^{-1 / 5}\right\} \log x\right),
$$

so that by (3.18),

$$
\begin{equation*}
\Delta_{3,2}(x)=O\left(x^{1 / 2} \exp \left\{-B \log ^{3 / 5} x(\log \log x)^{-1 / 5}\right\}\right), \tag{3.19}
\end{equation*}
$$

where B is a positive constant $\left(0<B<\frac{A}{6}(2)^{-8 / 5}.\right)$
Case $k=4$. In this case $r=2$ or 3 . Since $\frac{1}{4}<\alpha<\frac{1}{3}$, we have $0<1-r \alpha<1$. By (3.6) and (3.17), we have

$$
E_{4 . r}(x)=O\left(x^{1 / r} \exp \left\{-\frac{A(1-r \alpha)}{2} r^{-8 / 5} U^{3 / 5} V^{-1 / 5}\right\}\right) .
$$

Again, since $0<1-r \alpha<1$, the first 0 -term in (3.18) is also of the above order of $E_{4, r}(x)$. Hence

$$
\begin{equation*}
\Delta_{4, r}(x)=O\left(x^{1 / r} \exp \left\{-B \log ^{3 / 5} x(\log \log x)^{-1 / 5}\right\}\right), \tag{3.20}
\end{equation*}
$$

where B is a positive constant.

Case $k \geqq 5$. In this case $r=2,3$ or $4 \leqq r<k$. When $r=2$ or 3 , by (3.6) and (3.17), we have

$$
E_{k . r}(x)=O\left(x^{1 / r} \exp \left\{-\frac{A(1-r \alpha)}{2} r^{-8 / 5} U^{3 / 5} V^{-1 / 5}\right\}\right)
$$

so that by (3.18),

$$
\begin{equation*}
\Delta_{k, r}(x)=O\left(x^{1 / r} \exp \left\{-B \log ^{3 / 5} x(\log \log x)^{-1 / 5}\right\}\right) \tag{3.21}
\end{equation*}
$$

where B is a positive constant and the 0-estimate is uniform in k.
When $4 \leqq r<k$, by (3.6), $E_{k, r}(x)=O\left(x^{\alpha}\right)$ and the first O-term in (3.18) is $O\left(x^{1 / r}\right)$, so that we have

$$
\begin{equation*}
\Delta_{k r}(x)=O\left(x^{\alpha}\right) \tag{3.22}
\end{equation*}
$$

where the 0 -estimate is uniform in k.
Hence, by (3.9), (3.18)-(3.22), Theorem 1 follows.

4. Proof of theorem 2

Following the same procedure adopted in the proof of theorem 1 and making use of (2.10) and (2.11) instead of (2.6) and (2.7) we get that

$$
\begin{align*}
& +E_{k r}(x), \tag{4.1}
\end{align*}
$$

where the 0 -estimates are uniform in k and $E_{k r}(x)$ is given by (3.6).
Case $k=3$. In this case r must be $=2$. Choosing $\rho=z^{-3 / 11}$, we see that $0<\rho<1, \frac{1}{\rho}<z$, so that $\log \left(\frac{1}{\rho}\right)<\log z$, and

$$
\rho^{1 / 2-2} z^{1 / 2}=\rho^{1 / 3} z=x^{5 / 11}
$$

Since $\omega(x)$ is monotonic increasing, $\omega(\rho z)<\omega(z)$. Hence, by (4.1), (3.6) and the above, we have

$$
\begin{align*}
\Delta_{3,2}(x) & =O\left(x^{5 / 11} \omega\left(x^{1 / 2}\right) \log x\right)+O\left(x^{5 / 11} \log x\right) \tag{4.2}\\
& =O\left(x^{5 / 11} \omega(x)\right)
\end{align*}
$$

Case $k=4$. In this case $r=2$ or 3 . Choosing $\rho=z^{-1 /(1+2 r(1-a))}$, we see that $0<\rho<1, \frac{1}{\rho}<z$, so that $\log \left(\frac{1}{\rho}\right)<\log z$, and

$$
\rho^{1 / 2-r} z^{1 / 2}=\rho^{1-r \alpha} z=x^{2-\alpha /(1+2 r(1-\alpha))}
$$

Since $\omega(x)$ is monotonic increasing, $\omega(\rho z)<\omega(z)$. Hence by (4.1), (3.6) and the
above, we have

$$
\begin{align*}
\Delta_{4 r}(x) & =O\left(x^{2-\alpha /(1+2 r(1-\alpha)} \omega\left(x^{1 / 2}\right) \log x\right) \tag{4.3}\\
& =O\left(x^{2-\alpha /(1+2 r(1-\alpha)} \omega(x)\right)
\end{align*}
$$

Case $k \geqq 5$. In this case $r=2,3$ or $4 \leqq r<k$. When $r=2$ or 3 , we have by (3.6), $E_{k, r}(x)=O\left(\rho^{1-r z} z\right)$. Choosing $\rho=z^{-(1 /(1+2 r(1-\alpha))}$, as in the case $k=4$, we get that

$$
\begin{equation*}
\Delta_{k, r}(x)=O\left(x^{(2-\alpha) /(1+\{2 r(1-\alpha))} \omega(x)\right) \tag{4.4}
\end{equation*}
$$

where the O-estimate is uniform in k. When $4 \leqq r<k$, by (3.6), we have $E_{k, r}(x)=O\left(x^{\varepsilon}\right)$. We have $\omega(x)=O\left(x^{\varepsilon}\right)$ and $\log z=O\left(x^{\varepsilon}\right)$ for every $\varepsilon>0$. We assume that $0<\in<1$. Hence, by (4.1), we have

$$
\begin{align*}
\Delta_{k r}(x)= & O\left(\rho^{1 / 2-r+\varepsilon} z^{1 / 2+2 \varepsilon}\right) \tag{4.5}\\
& +O\left(\rho^{1 / 2-r+\varepsilon} z^{1 / 2+\varepsilon} \log \left(\frac{1}{\rho}\right)\right)+O\left(x^{\alpha}\right)
\end{align*}
$$

Now, choosing $\rho=z^{-(2 \gamma \alpha-1+4 \varepsilon) /(2 r-1-2 \varepsilon)}$, we see that $0<\rho<1, \frac{1}{\rho}<z$, so that $\log \left(\frac{1}{\rho}\right)<\log z=O\left(z^{\varepsilon}\right)$ and

$$
\rho^{1 / 2-r+\varepsilon} z^{1 / 2+2 \varepsilon}=x^{\alpha} .
$$

Hence, by (4.5), we have

$$
\begin{equation*}
\Delta_{k, r}(x)=O\left(x^{\alpha}\right) \tag{4.6}
\end{equation*}
$$

where the O-estimate is uniform in k. Hence, by (4.2), (4.3), (4.4) and (4.6), Theorem 2 follows.

Remark. In the case $4 \leqq r<k$, we may choose the function $\rho=\rho(x)$, which tends to zero as $x \rightarrow \infty$ to be a function which tends to zero more rapidly than that chosen above. In such a case, although the first and second O-terms in (4.5) are $O\left(x^{\beta}\right)$, where $\beta<\alpha$, but because of the third 0 -term in (4.5), we again get $\Delta_{k, r}(x)=O\left(x^{\alpha}\right)$. Hence we can not improve the result that $\Delta_{k, r}(x)=O\left(x^{\alpha}\right)$ for $4 \leqq r<k$, even on the assumption of the Riemann hypothesis.

References

[1] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers Fourth edition, (Oxford, 1965).
[2] G. A. Kolesnik, 'An improvement of the remainder term in the divisor problem,' Mat. Zametki 6 (1969), 545-554 = Mathematical Notes of Sciences of the USSR 6 (1969), 784-791.
[3] M. V. Subbarao and D. Suryanarayana, 'On the order of the error function of the (k, r)integers', J. Number theory (to appear).
[4] D. Suryanarayana and V. Siva Rama Prasad, 'The number of k-free divisors of an integer', Acta Arithmetica, 17 (1971), 345-354.
[5] E. C. Titchmarsh, The Theory of the Riemann Zeta function (Oxford, 1951.)
[6] A. Walfisz, Weylsche Exponentialsummen in der neueran Zahlentheorie (Berlin, 1963).

Department of Mathematics
University of Alberta
Edmonton, Canada

[^0]: ${ }^{1}$ This research is partially supported by an NRC Grant.
 2 On leave from Andhra University, Waltair, India.

