Sets of Semi-Commutative Matrices

By J. Willamson, Johns Hopkins University.
(Received 7th July, 1932. Received in revised form 8th November, 1932. Read 4th November, 1932.)

Introduction. In a paper entitled "Sets of anticommuting matrices" Eddington ${ }^{1}$ proved that if $E_{1}, E_{2}, \ldots, E_{2}$ form a set of q four-rowed square matrices satisfying the relations,

$$
\begin{equation*}
E_{i} E_{j}=-E_{j} E_{i}, \quad E_{i}^{2}=-E, \quad i, j=1,2, \ldots, q, \quad i \neq j \tag{1}
\end{equation*}
$$

where E is the unit matrix, then the maximum value of q is five. Later Newman ${ }^{2}$ showed that this result is a particular case of the general theorem that if $E_{1}, E_{2}, \ldots, E_{q}$ form a set of q t-rowed square matrices satisfying (1), where $t=2^{p} \tau$ and τ is odd, then the maximum value of q is $2 p+1$.

In this paper we consider a generalization of Newman's theorem and prove the following result.

Theorem I. If ω is a primitive nth root of unity, and if $E_{1}, E_{2}, \ldots, E_{q}$. form a set of q t-rowed square matrices satisfying the relations

$$
\begin{equation*}
E_{i} E_{j}=\omega E_{j} E_{i}, \quad E_{i}^{n}=E, \quad i, j=1,2, \ldots, q, \quad i<j, \tag{2}
\end{equation*}
$$

where E is the unit matrix and $t=n^{p} \tau, \tau \neq 0 \bmod n$, then the maximum value of q is $2 p+1$. Moreover, for every value of t, sets of $2 p+1$ matrices sutisfying (2) exist.

We shall call a set of q matrices satisfying (2) an E-set; or in the case where q is maximal, a maximal E-set. While Eddington and Newman proved a theorem on the number of real matrices in a maximal E-set for the case $n=2$, we shall see that no such theorem is true in the general case. However, if n is even, there does exist a general theorem on the number of matrices of a special type in a maximal E-set.
[As a consequence of this it may be shown that, when $t=n^{p}$, every matrix of order t can be expressed as a polynomial, with complex number coefficients, in the matrices of any maximal E-set. It is

[^0]also shown that any two maximal E-sets are similar, provided that $p \neq 0$. That is, if $F_{1}, F_{2}, \ldots, F_{q}$ form a set of matrices which satisfy the equivalent of (2), then there exists a non-singular matrix A such that $A E_{i} A^{-1}=F_{i}, i=1,2, \ldots, q$. It is also possible to relate the E-sets of matrices of order t with periodic collineations in space of $t-1$ dimensions, and thereby to obtain the different types of such maximal groups.]
§1. For the proof of Theorem I we require two lemmas.
Lemma 1. If $t=\tau \neq 0 \bmod n$, then the maximal number of matrices in an E-set is one.

For, if the set contains at least two members E_{1} and E_{2} such that $E_{1} E_{2}=\omega E_{2} E_{1}$, by taking the determinants of both sides of this last matrix equation we obtain

$$
\left|E_{1}\right|\left|E_{2}\right|=\omega^{t}\left|E_{2}\right|\left|E_{1}\right|
$$

and, since by (2) both E_{1} and E_{2} are non-singular, ω^{t} must be equal to unity. This result contradicts the fact that t is not a multiple of n; and accordingly the lemma is proved. It is worth noticing that, since two matrices, which are both nth roots of the unit matrix, are not necessarily similar, so in the present case, if $t=\tau \neq 0 \bmod n$, two maximal E-sets, since each consists of a single member, are not necessarily similar.
Lemma 2. If E_{1} is a member of an E-set, where $q>1$ and $t=k n$, then there exists a non-singular matrix A such that

$$
A^{-1} E_{1} A=F_{1}, \quad \text { where } F_{1}=\left[\begin{array}{cccccc}
e & 0 & 0 & . & . & 0 \tag{3}\\
0 & \omega e & 0 & . & . & 0 \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
0 & 0 & 0 & . & . & \omega^{n-1} e
\end{array}\right]
$$

and $e, \omega e, \ldots, \omega^{n-1} e$ are all scalar matrices of order k, e being the unit matrix of order k.

For, since E_{1} satisfies the characteristic equation $E_{1}^{n}-E=0$, the latent roots of E_{1} are all powers of ω, and there must also exist a non-singular matrix B such that

$$
\begin{equation*}
B E_{1} B^{-1}=G_{1} \tag{4}
\end{equation*}
$$

where G_{1} is a diagonal matrix having these powers of ω in the
diagonal. Let the latent root $\omega^{i}, j=0,1, \ldots, n-1$, appear exactly t_{j} times in G_{1} so that we have the equality

$$
\begin{equation*}
k n=\sum_{j=0}^{n-1} t_{j} \tag{5}
\end{equation*}
$$

Now, if E_{2} is a second non-singular matrix such that

$$
E_{1} E_{2}=\omega E_{2} E_{1}
$$

then we have the result

$$
E_{2}^{-1} E_{1} E_{2}=\omega E_{1}
$$

Accordingly the latent roots of E_{1} are the same as the latent roots of ωE_{1}; and, as the latent roots of ωE_{1} are ω times the latent roots of E_{1}, multiplication by ω merely permutes the latent roots of E_{1} amongst themselves. Now, if ω^{8} is the latent root of E_{1}, for which

$$
\begin{equation*}
t_{s}=t \geqq t_{j}, \quad j=0,1,2, \ldots, n-1, \tag{6}
\end{equation*}
$$

then ω^{s+1} appears at least t times amongst the latent roots of ωE_{1}, and therefore at least t times amongst the latent roots of E_{1}. Hence $t_{s+1} \geqq t$; and so, by (6), $t_{s+1}=t$. Similarly we can show that

$$
t_{s}=t_{s+1}=\cdots=t_{s+n-1}=t
$$

where the subscripts must be reduced modulo n. From (5) it follows that $k=t$ and hence that (3) is true. An alternative statement of this lemma is as follows. The latent roots of any matrix of an E-set, which consists of more than one member, are the roots of unity $1, \omega, \omega^{2}, \ldots, \omega^{n-1}$, each repeated the same number of times.

It will now be shown by actual examples that matrices of the type postulated in Theorem I exist. If $t=n$, it may be verified without difficulty that the following three matrices satisfy (2):
(7) $\Omega_{1}=\left[\begin{array}{ccccc}1 & 0 & . & . & 0 \\ 0 & \omega & . & . & 0 \\ . & . & . & . & . \\ . & . & . & . & . \\ 0 & 0 & . & . & \omega^{n-1}\end{array}\right], \Omega_{2}=\left[\begin{array}{cccccc}0 & 0 & 0 & . & . & 1 \\ 1 & 0 & 0 & . & . & 0 \\ . & 1 & . & . & . & . \\ . & . & . & . & . & . \\ 0 & 0 & 0 & . & . & 0 \\ 0 & 0 & 0 & . & 1 & 0\end{array}\right], \Omega_{3}=\lambda \Omega_{1}^{-1} \Omega_{2}$,
where $\lambda=1$, if n is odd, and $\lambda=\sqrt{\omega}$, if n is even. Further, if $E_{1}, E_{2}, \ldots, E_{f}$ form a set of f matrices of order m satisfying (2), then the matrices

$$
\begin{equation*}
E_{1} \cdot \Omega, \quad E_{2} \cdot \Omega, \ldots, E_{f-1} \cdot \Omega, \quad E_{f} \cdot \Omega_{1}, \quad E_{f} \cdot \Omega_{2}, \quad E_{f} \cdot \Omega_{3} \tag{8}
\end{equation*}
$$ where \cdot denotes direct product ${ }^{1}$ and Ω is the unit matrix of order n,

[^1]form a set of $f+2$ matrices of order $m n$ satisfying (2). For
\[

$$
\begin{aligned}
&\left(E_{i} \Omega\right)^{n}=E_{i}^{n} \cdot \Omega^{n}=E, \quad i=1,2, \ldots, f-1 ; \\
&\left(E_{f} \cdot \Omega_{j}\right)^{n}=E_{f}^{n} \cdot \Omega_{j}^{n}=E, \quad j=1,2,3 ; \\
&\left(E_{i} \cdot \Omega\right)\left(E_{j} \cdot \Omega\right)=E_{i} E_{j} \cdot \Omega^{2}=\omega E_{j} E_{i} \cdot \Omega^{2}=\omega\left(E_{j} \cdot \Omega\right)\left(E_{i} \cdot \Omega\right), \\
& \quad i<j ; i, j=1,2, \ldots, f-1 ; \\
&\left(E_{i} \cdot \Omega\right)\left(E_{f} \cdot \Omega_{j}\right)=E_{i} E_{f} \cdot \Omega \Omega_{j}=\omega E_{f} E_{i} \cdot \Omega_{j} \Omega, \\
&=\omega\left(E_{f} \cdot \Omega_{j}\right)\left(E_{i} \cdot \Omega\right), \quad i=1,2, \ldots, f-1 ; j=1,2,3 ; \\
&\left(E_{f} \cdot \Omega_{i}\right)\left(E_{f} \cdot \Omega_{j}\right)=E_{f}^{2} \cdot \Omega_{i} \Omega_{j}=\omega E_{f}^{2} \cdot \Omega_{j} \Omega_{i} \\
&=\omega\left(E_{f} \cdot \Omega_{j}\right)\left(E_{f} \cdot \Omega_{i}\right), \quad i<j ; i, j=1,2,3 .
\end{aligned}
$$
\]

Thus, if there exists an E-set of matrices of order m containing f members, there exists an E-set of matrices of order $m n$ containing $f+2$ members. But, by Lemma I , there exists an E-set of matrices of order $r \neq 0 \bmod n$ containing one member; therefore, by induction there exists an E-set of matrices of order $t=n^{\eta} r$ containing $2 p+1$ matrices. This proves the last part of Theorem I.

If $m=k n$, by Lemma 2 there exists a non-singular matrix A such that $A^{-1} E_{i} A=F_{i}$, where F_{1} is given by (3). The matrices F_{i} so defined also form an E-set; and, if we write $F_{s}=\left(f_{i j}\right), i, j=1,2, \ldots, n$, where each $f_{i j}$ is a matrix of order k, then since $F_{1} F_{s}=\omega F_{s} F_{1}$, we have $f_{i j}\left(\omega^{i-1}-\omega^{j}\right)=0$, or $f_{i j}=0$, if $i \neq j+1 \bmod n$. Accordingly F_{s} has the form

$$
\left[\begin{array}{lllllll}
0 & 0 & . & . & . & 0 & F_{1 s} \tag{9}\\
F_{2 s} & 0 & . & . & . & 0 & 0 \\
0 & F_{3 s} & . & . & . & 0 & 0 \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
0 & 0 & . & . & . & F_{n s} & 0
\end{array}\right],
$$

where each $F_{i s}$ is a matrix of order k, and 0 denotes the zero matrix of order k. Since $F_{s}^{n}=E$, it follows that

$$
\begin{equation*}
F_{n s} F_{n-1, s} \ldots F_{2 s} F_{1 s}=F_{1 s} F_{n s} \ldots F_{2 s}=\ldots=F_{n-1, s} \ldots F_{1 s} F_{n s}=e \tag{10}
\end{equation*}
$$

and, if $s<u$, since $F_{s} F_{u}=\omega F_{u} F_{s}$, that

$$
\begin{equation*}
F_{i s} F_{i-1, u}=\omega F_{i u} F_{i-1, s}, \tag{11}
\end{equation*}
$$

where $F_{0 u}=F_{1 u}$. But by (10) F_{12} is non-singular and so the matrices

$$
\begin{equation*}
G_{s}=\lambda F_{12}^{-1} F_{13}, \tag{12}
\end{equation*}
$$

of order k, exist for $s=3,4, \ldots, f$. We now proceed to show that, if $\lambda=1$ when n is odd, and $\lambda=\sqrt{\bar{\omega}}$ when n is even, the matrices G_{n} form an E-set containing $f-2$ members. For we have

$$
\begin{aligned}
G_{1} G_{u} & =\lambda F_{12}^{-1} F_{1 s} \lambda F_{12}^{-1} F_{1 u}, \\
& =\lambda^{2} F_{n 2} F_{n-1,2} \ldots F_{22} F_{1 s} F_{n 2} \ldots F_{22}^{\prime} F_{1 u} \quad \text { by }(10), \\
& =\lambda^{2} \omega F_{n 2} F_{n-1,2} \ldots F_{32} F_{2 s} F_{12} F_{n 2} \ldots F_{22} F_{1 u} \quad \text { by (11), } \\
& =\lambda^{2} \omega F_{n 2} F_{n-1,2} \ldots F_{32} F_{2,} F_{1 u} \quad \text { by (10). }
\end{aligned}
$$

Similarly

$$
G_{u} G_{z}=\lambda^{2} \omega F_{n 2} F_{n-1,2} \ldots F_{32} F_{2 u} F_{1 s}
$$

and, since $\quad F_{2 s} F_{1 u}=\omega F_{2 u} F_{1 s}$, we obtain $G_{s} G_{u}=\omega G_{u} G_{s}$.
Moreover

$$
\begin{aligned}
G_{s}^{n} & =\lambda^{n} F_{n 2} \ldots F_{22} F_{1 s}\left(F_{12}^{-1} F_{1 s}\right)^{n-1} \quad \text { by }(10), \\
& =\lambda^{n} \omega^{n-1} F_{n s} F_{n-1,2} \ldots F_{02} F_{12}\left(F_{12}^{-1} F_{1 s}\right)^{n-2} \quad \text { by }(\mathbf{1} 1) \\
& =\lambda^{n} \omega^{n-1} F_{n s} F_{n-1,2} \ldots F_{22} F_{1 s}\left(F_{12}^{-1} F_{1 s}\right)^{n-2} \\
& =\lambda^{n} \omega^{n-1+n-2} F_{n s} F_{n-1, s} F_{n-2,2} \ldots F_{22} F_{12}\left(F_{12}^{-1} F_{1 s}\right)^{n-2} .
\end{aligned}
$$

By repeating this process $n-1$ times we finally arrive at the result that

$$
G_{s}^{n}=\lambda^{n} \omega^{a} F_{n s} F_{n-1, s} \ldots F_{2 s} F_{18}=\lambda^{n} \omega^{d} e,
$$

where $d=n-1+n-2+\ldots+2+1=n(n-1) / 2$. If n is odd, $\omega^{d}=1$, while if n is even, $\omega^{d}=\omega^{n / 2}$. In either case $\lambda^{n} \omega^{d}=1$. Hence, if there exists an E-set of matrices of order kn containing f members, there also exists an E-set of matrices of order k containing $f-2$ members. Thus, if there existed an E-set containing more than $2 p+1$ matrices of order $t=2^{2} r, r \neq 0 \bmod n$, there would exist more than one member of an E-set of matrices of order r. But by Lemma I this last result is impossible and so Theorem I is proved.

Now let $R(\omega)$ denote the field obtained by adjoining ω to the field of all rational numbers. Then, if n is even, $\sqrt{ } \omega$ does not belong to the field ${ }^{1} R(\omega)$ and so there exist at least two distinct types of

[^2]matrices, R-matrices and I-matrices, which are defined in the following manner. A matrix is said to be an R-matrix, when each element of the matrix lies in the field $R(\omega)$; a matrix is said to be an I-matrix, when each element of the matrix is a product of a number of $R(\omega)$ and $\sqrt{ } \omega$. We shall now consider E-sets, whose members are either R-matrices or else I-matrices, and shall accordingly assume n to be even. That this restriction does not lead to a triviality is apparent from the consideration of the matrices (7), of which two are R-matrices and one is an I-matrix. Further, if the number of R-matrices and the number of I-matrices in one E-set are equal respectively to the number of R-matrices and the number of I-matrices in a second E-set, we shall call the two E-sets R-congruent. Similarly if a matrix A is an R-matrix or an I-matrix, according as a matrix B is an R-matrix or an I-matrix, we shall call the two matrices R-congruent.

In order to determine the number of R-matrices and I-matrices, which may occur in a maximal E-set, we require two Lemmas.
Lemma 3. If the matrices $E_{i}, i=1,2, \ldots, f$, form an E-set, (E), all of whose members are either R-matrices or else I-matrices, and if $r_{1}, r_{2}, \ldots, r_{t}$ are t integers such that $1 \leqq r_{1}<r_{2}<\ldots<r_{t} \leqq f$, then there exists an E-set R-congruent to (E), whose first t members are the matrices $E_{r_{1}}, E_{r_{2}}, \ldots E_{r_{t}}$.

It is easily verified that the set of matrices (T), where

$$
T_{i}=E_{i}, \quad i \neq j \text { or } j-1, \quad T_{j-1}=E_{j}, \quad T_{j}=E_{j-1}^{-1} E_{j}^{2}
$$

form an E-set. But, since the matrices E_{j-1} and T_{j} are R-congruent, the sets (E) and (T) are also R-congruent. In the same manner, if j is replaced by $j-1$, from (T) a set (S) can be formed such that

$$
S_{j-2}=T_{j-1}=E_{j}
$$

and such that the sets (E) and (S) are R-congruent. By repeating this process $j-1$ times we finally arrive at a set $(K), R$-congruent to (E), and such that its first member is E_{j} and its k th member is E_{k}, if $k>j$. If $j=r_{1}$, the set (K) has for its first member $E_{r_{1}}$ and for its $r_{i}^{\text {'h }}$ member $E_{r_{i}}, i>1$. By applying the same process, with $j=r_{2}$, $r_{2}-2$ times to the set (K), we obtain a set $(P), R$-congruent to (E), which has for its first two members $E_{r_{1}}$ and $E_{r_{2}}$. Finally in $r_{1}-1+r_{2}-2+\ldots+r_{t}-t$ steps we arrive at an E-set R-congruent to (E), whose first t members are the matrices $E_{r i}, i=1,2, \ldots t$, and so the lemma is proved.

Lemma 4. If in an E-set consisting of f matrices of order $t=k n, g$ of the members are R-matrices and $h=f-g$ are I-matrices and both g and h are different from zero, then there exists an E-set of matrices of order k, of which $g-1$ are R-matrices and $h-1$ are I-matrices.

Since in an E-set, satisfying the above hypotheses, at least one matrix is an R-matrix and at least one an I-matrix, there exists, by Lemma 3, an E-set, $E_{i}, i=1,2, \ldots f$, which is R-congruent to the original set, and such that E_{1} is an R-matrix and E_{2} an I-matrix. Now, if A is an R-matrix, the set $F_{i}=A^{-1} E_{i} A, i=1,2, \ldots f$, and the set E_{i} are R-congruent. But, since E_{1} is an R-matrix, the matrix A in (3) must be an R-matrix, so that the set $F_{i}=A^{-1} E_{i} A$, where F_{1} is defined by (3) and $F_{i}, i>1$, by (9), is R-congruent to the set E_{i}. As E_{2} is an I-matrix, so is F_{2}, and accordingly F_{12}, being a sub-matrix of F_{2}, is also an I-matrix. Hence the set of matrices $G_{s}, s=3,4, \ldots f$, defined by (11), since λ now has the value $\sqrt{\omega}$, and the set $F_{g}, s=3,4, \ldots f$, are R-congruent. But the set F_{s} and the set $E_{g}, s=3,4, \ldots f$, are R-congruent and so the set G_{s} and the set E_{s} are R-congruent. Since the set $E_{s}, s=3,4, \ldots, f$ contains exactly ($g-1$) R-matrices and exactly ($h-1$) I-matrices, the lemma is proved.

We have already proved in Theorem I that maximal E-sets of matrices of order $t=n^{p} r$, where r is not divisible by n, exist and that the number of matrices in such a set is $2 p+1$. We now suppose that the number of R-matrices in such a maximal E-set has one of the values
(i) $p-1$;
(ii) p;
(iii) $p+1$;
(iv) $p+2$;
and proceed to show that in some cases we are led to a contradiction.
By repeated applications of Lemma 4 we deduce the existence of E-sets consisting respectively of the following matrices:
(i) three I-matrices of order $n r$;
(ii) one I-matrix of order r;
(iii) one R-matrix of order r;
(iv) three R-matrices of order $n r$.

But an E-set of matrices of order $n r$ contains the three members E_{1}, E_{2}, E_{3}, where as in (7), since n is even, $E_{3}=\sqrt{\omega} E_{1}^{-1} E_{2}$, so that
E_{1}, E_{2}, E_{3} cannot all be R-matrices or all I-matrices. Moreover when r is odd, an I-matrix of order r cannot be a member of an E-set, for the determinant of an I-matrix of order r is of the form $\sqrt{\omega} k$, where k is a number of $R(\omega)$, while the determinant of a member of an E-set, being the product of nth roots of unity, must lie in $R(\omega)$. If, however, r is even, a matrix of order r which is a member of an E-set may be an I-matrix; for the matrix

$$
H=\sqrt{\omega}\left(h_{i j}\right), \quad i, j=1,2, \ldots \tau
$$

where

$$
h_{i j}=0, \text { if } j \neq i+1 \bmod n
$$

$$
h_{i, i+1}=\omega^{-1}, i=1,2, \ldots, r / 2 ; h_{i, i+1}=1, i=r / 2+1, \ldots, r
$$

is an I-matrix and, since $H^{*}=E$, it is a member of an E-set. As the unit matrix of order r is an R-matrix and at the same time a member of an E-set, whether r is even or odd, we have shown that of the four possibilities (i), (ii), (iii), (iv) only (ii) and (iii) may occur, when r is even, and (iii) alone, when r is odd. Further by repeated applications of (8) we see that maximal E-sets of matrices, of order $t=n^{p} r$, r not divisible by n, exist, in which the number of R-matrices is p or $p+1$ when r is even, and $p+1$ when r is odd.

We are now in a position to prove the following theorem.
Theorem 2. If in a maximal E-set of matrices, of order $t=n^{p} r, r \neq 0$ mod n, the members are restricted to be either R-matrices or else I-matrices, then the number of R-matrices in the set is u, where u satisfies

$$
\begin{equation*}
0 \leqq u \leqq 2 p+1, \quad u \equiv p+1 \bmod 4 \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
0 \leqq u \leqq 2 p+1, \quad u \equiv p+1 \text { or } p \bmod 4 \tag{14}
\end{equation*}
$$

according as r is odd or even. Sets exist for every admissible value of u.

Let $E_{1}, E_{2}, E_{3}, \ldots, E_{q}=E_{2 p_{+1}}$ be a set (E) of matrices of order t satisfying the hypotheses of the theorem, and let g of the matrices be R-matrices, and $h=2 p+1-g$ be I-matrices. Then the matrices in the set (F), defined by

$$
\left\{\begin{array}{l}
F_{i}=E_{i}, \quad 1 \leqq i<2 k \tag{15}\\
F_{i}=\mu E_{1}^{-1} E_{2} E_{3}^{-1} E_{4} \ldots E_{2 k-1}^{-1} E_{i}=S_{k} E_{i}, \quad 2 k \leqq i \leqq q
\end{array}\right.
$$

where $\mu=1$, if k is even, and $\mu=\sqrt{\omega}$, if k is odd, form an E-set for all values of k, where $1 \leqq k \leqq p$. For it is easily verified that $E_{i} S_{k}=S_{k} E_{i}$, if $i<2 k$, and that $E_{i} S_{k}=\omega S_{k} E_{i}$, if $i>2 k$.

Accordingly

$$
\begin{aligned}
F_{i} F_{j} & =E_{i} E_{j}=\omega E_{j} E_{i}=\omega F_{;} F_{i}, \quad i<j ; i, j=1,2, \ldots, 2 k-1 ; \\
F_{i} F_{j} & =E_{\mathrm{i}} S_{k} E_{j}=S_{k} E_{i} E_{j}=\omega S_{k} E_{j} E_{i}=\omega F_{j} F_{i}, \quad i<2 k, j \geqq 2 k ; \\
F_{i} F_{j} & =S_{k} E_{i} S_{k} E_{j}=\omega S_{k}^{2} E_{i} E_{j}=\omega^{2} S_{k}^{2} E_{;} E_{i}=\omega S_{k} E_{;} S_{k} E_{i} ; \\
& =\omega F_{j} F_{i}, \quad i, j \geqq 2 k, i<j ;
\end{aligned}
$$

and

$$
\begin{aligned}
F_{i}^{n} & =E_{i}^{n}=E, \quad i<2 k \\
F_{i}^{n} & =\left(S_{k} E_{i}\right)^{n}=\mu^{n}\left(E_{1}^{-1} E_{2}\right)^{n}\left(E_{3}^{-1} E_{4}\right)^{n} \ldots\left(E_{2 k-1}^{-1} E_{i}\right)^{n}, \\
& =\mu^{n} \omega^{d} E, \quad d=-k n(n-1) / 2, i \geqq 2 k, \\
& =E,
\end{aligned}
$$

if $\mu=1$, when k is even, and $\sqrt{\omega}$, when k is odd. But if k is odd and the matrices $E_{1}, E_{2}, \ldots, E_{\nu \bar{k}-1}$ are all R-matrices, then the matrix S_{k}, defined by (15), is an I-matrix and the number of I-matrices in the set F_{i} is

$$
v=g-(2 k-1) \equiv g-1, \bmod 4
$$

If $1 \leqq 2 k-1 \leqq g$ we may assume that the matrices $E_{1}, E_{2}, \ldots E_{2 k_{-1}}$ are R-matrices, since otherwise, by Lemma (3), we can find a set (E^{\prime}), R-congruent to the set (E), of which the first $2 k-1$ members are R-matrices and so we can use the set (E^{\prime}) instead of the set (E) to define the set (F). Thus E-sets exist, in which the number of I-matrices is v for all values of v satisfying

$$
\begin{equation*}
v \equiv g-1, \bmod 4, \quad 0 \leqq v \leqq g-1 \tag{16}
\end{equation*}
$$

On the other hand, if k is odd, and $E_{1}, E_{2}, \ldots, E_{2 k_{-1}}$ are all I-matrices, S_{k} is still an I-matrix so that the number of I-matrices in the set (F) is now

$$
v=2 k-1+g \equiv g-1, \bmod 4
$$

Once again, by Lemma 3 , for every value of $k, 3 \leqq 2 k-1 \leqq h$, we can find a set (E^{\prime}), R-congruent to (E), such that its first $2 k-1$ members are I-matrices, and so there exist E-sets in which the number of I-matrices is v, for all values of v satisfying

$$
\begin{equation*}
v \equiv g-1, \bmod 4, \quad g+3 \leqslant v \leqslant 2 p+1 \tag{17}
\end{equation*}
$$

Accordingly by (16) and (17), if an E-set of $2 p+1$ members exists, in which g of the matrices are R-matrices, and $2 p-g+1$ are
I-matrices, then there exists an E-set, in which the number of I-matrices is v, where v satisfies

$$
\begin{equation*}
v \equiv g-1, \bmod 4, \quad 0 \leqslant v \leqslant 2 p+1 \tag{18}
\end{equation*}
$$

But, if r is odd, E-sets exist in which $g=p+1$, while, if r is even, E-sets exist in which g is either p or $p+1$. Accordingly E-sets do exist in which the number of R-matrices is u, for every value of u satisfying (13) if r is odd, and (14) if r is even. If there existed an E-set in which the number u of R-matrices did not satisfy (13) or (14), there would exist an E-set in which u had the value p, $p-1$, or $p+2$, in the one case, and $p+2$ or $p-1$ in the other. As it has already been shown that such E-sets cannot exist, Theorem 2 is proved.

No such theorem is true when n is odd, for, as already remarked, there is then no distinction between I-matrices and R-matrices. If $n=2$, we have $\omega=-1$ and $\sqrt{-} \omega=i$, so that R-matrices are real rational matrices, while I-matrices are pure imaginary matrices. $R(\omega)$ is now the field of all rational numbers, but in this particular case the argument would remain unaltered if the field of all real numbers were used instead. Since, if $n=2, r$ must be odd, in Theorem 2 only formula (13) is required. ${ }^{1}$

[^3]
[^0]: ${ }^{1}$ Journal London Math. Soc., 7 (1932), 58-68.
 ${ }^{2}$ Ibid, 7 (1932), 94-99.

[^1]: ${ }^{1}$ See L. E. Dickson, Algebras and their Arithmetics, p. 72.

[^2]: ${ }^{1}$ If ω is a primitive nth root of unity, $\sqrt{\bar{\omega}}$ is a prinitive $2 n$th root of unity. A primitive nth root of unity satisfies an equation of degree $\phi(n)$, irreducible in the field of rational numbers, where $\phi(n)$ is the Euler ϕ-function. If $n=2^{s} k$, where k is odd, $\phi(n)=2^{r-1} \phi(k)$ and $\phi(2 n)=2^{s} \phi(k)$. Thus the degrees of the irreducible equations satisfied by ω and $\sqrt{\omega} \omega$ are different. Hence the fields $R(\omega)$ and $R(\sqrt{\omega})$ cannot coincide. This is no longer true if n is odd, since, if $n=2 f+1, \sqrt{\omega}=\omega^{f+1}$.

[^3]: ${ }^{1}$ As both Eddington and Newman consider matrices whose squares are $-E$, the number of imaginary matrices in a set of such matrices is the same as the number of real matrices in an E-set, satisfying (2) with $n=\boldsymbol{\Omega}$.

