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Introduction. In a paper entitled " Sets of anticommuting matrices "
Eddington1 proved that if Elt E.2> .. . ., Eq form a set of q four-rowed
square matrices satisfying the relations,

(1) EiE^-EjEu E*=-E, i,j = l,2,....,q, i=£j,

where E is the unit matrix, then the maximum value of q is five. Later
Newman2 showed that this result is a particular case of the general
theorem that if E-l} E2, Eu form a set of q t-roived square matrices
satisfying (1), where t = '2P T and T is odd, then the maximum value of q is
2p + 1.

In this paper we consider a generalization of Newman's theorem
and prove the following result.

THEOREM I. If oo is a jwimitive nth root of unity, and if Ex, E2, . . . . , Eq.
form a set of q t-rowed square matrices satisfying the relations

(2) EiEJ = oE)Ei, E? = E, i, j = 1, 2, . . . . , q, i<j,

where E is the unit matrix and t = npr, r r|= 0 mod n, then the maximum
value of q is 2p -f- 1. Moreover, for every value of t, sets of 2p + 1
matrices satisfying (2) exist.

We shall call a set of q matrices satisfying (2) an E-set; or in the
case where q is maximal, a maximal E-set. While Eddington and
Newman proved a theorem on the number of real matrices in a
maximal E-set for the case n = 2, we shall see that no such theorem
is true in the general case. However, if n is even, there does exist a
general theorem on the number of matrices of a special type in a
maximal E-set.

[As a consequence of this it may be shown that, when t=nv, every
matrix of order t can be expressed as a polynomial, with complex
number coefficients, in the matrices of any maximal E-set. I t is

1 Journal London Math. Soc, 7 (1932), 58-68.
2 Ibid, 7 (1932), 94-99.
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also shown that any two maximal E-sets are similar, provided that
p =)= 0. That is, if Fu F2> . . . ., Fq form a set of matrices which satisfy
the equivalent of (2), then there exists a non-singular matrix A such
that AEt A'1 = Fi, i = 1, 2 , q. It is also possible to relate the
.S-sets of matrices of order t with periodic collineations in space of
t — 1 dimensions, and thereby to obtain the different types of such
maximal groups.]

§ 1. For the proof of Theorem I we require two lemmas.

LEMMA 1. / / t = T=}=0 mod n, then the maximal number of matrices
in an E-set is one.

For, if the set contains at least two members Ex and E2 such that
EVE^^= coE2EU by taking the determinants of both sides of this
last matrix equation we obtain

and, since by (2) both E1 and E2 are non-singular, to1 must be equal to
unity. This result contradicts the fact that t is not a multiple of n;
and accordingly the lemma is proved. It is worth noticing that,
since two matrices, which are both nth roots of the unit matrix, are
not necessarily similar, so in the present case, if £ = T=}=0 mod n,
two maximal J£-sets, since each consists of a single member, are not
necessarily similar.

LEMMA 2. If Ex is a member of an E-set, where q> 1 and t — kn, then
there exists a non-singular matrix A such that

(3) where Fj =

e
0

0

0
toe

O

0 .
0 .

0 .

. 0

. 0

. to"-1

and e, cue, . . . ., to"-1 e are all scalar matrices of order k, e being the unit
matrix of order k.

For, since Ex satisfies the characteristic equation E\ — E = 0, the
latent roots of Ex are all powers of a>, and there must also exist a
non-singular matrix B such that

(4) BEXB-1 = Glt

where Gy is a diagonal matrix having these powers of to in the
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diagonal. Let the latent root to', j = 0, 1, . . . . , n
exactly t- times in 0x so that we have the equality

(5)

1, appear

k?i = 2 tj.
j=o

Now, if E2 is a second non-singular matrix such that
7J1 ITT TJT 77T

J2J J Zi/q = CO -&O - " 1 ,

then we have the result
-Eto M>1 Ml2 ^ Ui Mi\.

Accordingly the latent roots of Ex are the same as the latent roots
of to Ei; and, as the latent roots of to Ex are to times the latent roots
of Ex, multiplication by to merely permutes the latent roots of Ex

amongst themselves. Now, if to' is the latent root of Eu for which

(6) ts^t^tj, j = 0, 1, 2, . . . . . n - 1,
then tos+1 appears at least t times amongst the latent roots of aEi, and
therefore at least t times amongst the latent roots of Ex. Hence
'.+i ^ t'> a n d so> by (6), tt+1 = t. Similarly we can show that

where the subscripts must be reduced modulo n. From (5) it follows
that k = t and hence that (3) is true. An alternative statement
of this lemma is as follows. The latent roots of any matrix of an
E-set, which consists of more than one member, are the roots of unity
1, to, cu2, . . . . , to""1, each repeated the same number of times.

I t will now be shown by actual examples that matrices of the
type postulated in Theorem I exist. If t = n, it may be verified
without difficulty that the following three matrices satisfy (2):

~0 0 0 . . ~

(7) Q1 =

0 0
0

0 0

o
I

o o

0 0 0
0 0 0

. 0
1 0

, Q8=Afi1-
1Q2,

where A = 1, if n is odd, and A = Vto, if n is even. Further, if
2?!, Eit . . . . , Ef form a set of / matrices of order m satisfying (2),
then the matrices
(8) Ei-d, E.,-0. , ^/_i-O, Ef-Qlt Ef-a2, ErQs,
where • denotes direct product1 and Q is the unit matrix of order n,

1 See L. E. Dickson, Algebras and their Arithmetics, p. 72.
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form a set of / + 2 matrices of order mn satisfying (2). For

(EiQ)n^En
i-Q.- = E, t = l , 2, . . . . , / - 1 ;

(Ef • Q,)» = E?-QJ = E, j = 1, 2, 3;

( ^ • Q) ( ^ • Q) = ^ ^ •Q.2=coEjEi-Q.2 = co (Ej • Q) (E{ • Q),

i<jl i, j = 1. 2, / - I ;
(JET* • Q) (Ef • Qj) = EiE/-QQi = a> E,Et • QjQ,

= co (ErQj)(Ern), » = 1,2, . . . . , / - l ; j = l , 2 , 3 ;

i<j; i, j = 1, 2, 3.
; ) = Ej • Oi O, = o>

= co (ErClj) (Ef •

Thus, if there exists an E-set of matrices of order m containing /
members, there exists an E-set of matrices of order mn containing
/ + 2 members. But, by Lemma T, there exists an .E-set of matrices
of order r=)=0 mod n containing one member; therefore, by induction
there exists an .£7-set of matrices of order t = nvr containing 2p -\- 1
matrices. This proves the last part of Theorem I.

If m = kn, by Lemma 2 there exists a non-singular matrix A
such that A'1 EiA = Fit where Fi is given by (3). The matrices Ft so
defined also form an E-set; and, if we write Fs— (/^), i,j=l,2,....,n,
where each fy is a matrix of order k, then since Fy Fs = co FSFU

we have /# {co1-1 — cJ) = 0, or /,;; = 0, if i ^j + 1 mod n. Accordingly
F. has the form

(9)

0
0

0
0
0

0
0

0 0 . . . Fni 0

where each Fi3 is a matrix of order h, and 0 denotes the zero matrix of
order k. Since F" = E, it follows that

( 1 0 ) FnsFn_1)3 . . . . F2sFu = FltFm . . . . F2B = . . . . = Fn_x>s.. ..FuFm = e ,

and, if s < u, since J7, FK = co Fu F3, that

V / is t — l, u tv. % — 1 , x >

where -FOK = jF,itt. But by (10) Fu is non-singular and so the matrices

(12) O3 = XF{2
1Fll,
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of order k, exist for s = 3, 4, . . . . , / . We now proceed to show
that, if A = 1 when n is odd, and A = Vco when n is even, the
matrices G, form an 22-set containing / — 2 members. For we have

G , G u = A F F X F

= A2 F,.2 Fn.lt t . . . . F i t Fu Fn2 .... Fi2 Flu b y ( 1 0 ) ,

= A2 w Fn2 Fn_li2.... Fa2 F2, FK F a . . . . F22 Flu b y ( 1 1 ) ,

= A*a) .P ,**•„_ , , a . . . . F-i2F2,Flu b y (10).
Similar ly

^u # , = A2 to jFn 2 J^n-1, 2 • • • • -f 32 ^2u Fu 5

and, since F2i Flu = o> J"2M ^ J , , we obtain G, Gu — m Gu Ga.

Moreover
G» = A"Fn2 ....F22Fu(F^1 Fu)

n-» b y (10),

= A" co"-1 Fm Fn.lt a . . . . F2i Fl2 (Frf Fu)»-* by (11) ,

= X" £0«-1+"-2 FnsFn.liSFn_2i s . . . . JP« JPK (JTB1 F,,)"-2.

By repeating this process n — 1 times we finally arrive at the result
that

G1: = A" co'1 Fn3 Fn.lt,.... F2t Fu - A" u>d e,

where d = n — 1 +n — 2 + + 2 + 1 = TO(TC — l)/2. If n is odd,
tod = 1, while if % is even, a/e = w71'2. In either case A" cod = 1. Hence,
if there exists an E-set of matrices of order kn containing f members, there
also exists an E-set of matrices of order k containing /— 2 members.
Thus, if there existed an E-&et containing more than 2^ + 1 matrices
of order t = 2i'r, r ={= 0 mod n, there would exist more than one
member of an i?-set of matrices of order r. But by Lemma I this
last result is impossible and so Theorem I is proved.

Now let R (to) denote the field obtained by adjoining <o to the
field of all rational numbers. Then, if n is even, s/co does not belong
to the field1 R {w) and so there exist at least two distinct types of

1 If w is a primitive nth root of unity, vw is a primitive 2nth root of unity. A
primitive nth root of unity satisfies an equation of degree </> (?i), irreducible in the field
of rational numbers, where (p(n) is the Euler ^-function. If n = 2'k, where fc is odd,
0(n) = 2'"l0(fc) and <p(2n) = 2'<f>(k). Thus the degrees of the irreducible equations
satisfied by w and >'w are different. Hence the fields i?(u) and _R( N'W) cannot coincide.
This is no longer true if n is odd, since, if n = 2 / + 1, N'W = «f+1.
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matrices, /2-matrices and /-matrices, which are defined in the following
manner. A matrix is said to be an It-matrix, when each element of the
matrix lies in the field R (o>); a matrix is said to be an I-matrix, when
each element of the matrix is a product of a number of R (u>) and \/a>.
We shall now consider E-sets, whose members are either .R-matrices
or else /-matrices, and shall accordingly assume n to be even. That
this restriction does not lead to a triviality is apparent from the
consideration of the matrices (7), of which two are /2-matrices and
one is an /-matrix. Further, if the number of .R-matrices and the
number of /-matrices in one -B-set are equal respectively to the
number of /2-matrices and the number of /-matrices in a second
E-set, we shall call the two E-sets R-congruenl. Similarly if a matrix
A is an /?-matrix or an /-matrix, according as a matrix B is an
_R-matrix or an /-matrix, we shall call the two matrices R-congruent.

In order to determine the number of .R-matrices and /-matrices,
which may occur in a maximal E-set, we require two Lemmas.

LEMMA 3. / / the matrices Eu i = 1, 2, . . . . , / , form an E-set, (E), all
of whose members are either R-matrices or else I-matrices, and if
rs, r2, . • .., rt are t integers such that 1 :£S rx < r2 < . . . . <rt^f, then
there exists an E-set R-congruent to (E), whose first t members are the
matrices Eri, Er Er.

It is easily verified that the set of matrices (T), where

or j - 1 , Tj_1 = Ej, Tj = Ef_\E],

form an E-set. But, since the matrices .Ej^and T} are .R-congruent,
the sets (E) and (T) are also .R-congruent. In the same manner, if j
is replaced by j — 1, from (T) a set (8) can be formed such that

Sj_2 = Tj_i = Ej,

and such that the sets (E) and (S) are .R-congruent. By repeating
this process j — 1 times we finally arrive at a set (K), .R-congruent to
(E), and such that its first member is Ej and its hth. member is Ek, if
k > j . If j = ru the set (K) has for its first member ETi and for its
?Yh member EH, i>\. By applying the same process, with j = r.,,
r-i — 2 times to the set {K), we obtain a set (P), -R-congruent to (E),
which has for its first two members Er% and ETn. Finally in
rx — 1 + r2 — 2 -f . . . . + rt — t steps we arrive at an i?-set .R-con-
gruent to (E), whose first t members are the matrices Eri, i=l, 2, .. .. t,
and so the lemma is proved.
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LEMMA 4. / / in an E-set consisting of f matrices of order t = kn, g of
the members are R-matrices and h = / — g are I-matrices and both g and
h are different from zero, then there exists an E-set of matrices of order k,
of which g — 1 are R-matrices and h — 1 are I-matrices.

Since in an .E-set, satisfying the above hypotheses, at least one
matrix is an .R-matrix and at least one an /-matrix, there exists, by
Lemma 3, an .E-set, E{, i — 1, 2, . . . . / , which is .B-congruent to the
original set, and such that Ex is an .fi-matrix and E2 an /-matrix.
Now, if A is an .R-matrix, the set F{ — A~l E{A, i = 1, 2, . . . . / , and
the set E{ are .R-congruent. But, since Ex is an .R-matrix, the matrix
A in (3) must be an .R-matrix, so that the set F,- = A~1EiA, where Fx is
defined by (3) and F{, i > 1, by (9), is .B-congruent to the set E{.
As E2 is an /-matrix, so is F2, and accordingly F12, being a sub-matrix
of F2, is also an /-matrix. Hence the set of matrices G,, s=3 , 4, . . . . / ,
defined by (11), since A now has the value Vu>, and the set
Fs, s = 3, 4, . . . . / , are .R-congruent. But the set F, and the set
Es, s = 3, 4, . . . . / , are .B-congruent and so the set G, and the set
Es are .R-congruent. Since the set Es, s — 3, 4, . . . . , / contains
exactly (g — 1) .R-matrices and exactly (h — 1) /-matrices, the lemma
is proved.

We have already proved in Theorem I that maximal E-sets of
matrices of order t = vPr, where r is not divisible by n, exist and
that the number of matrices in such a set is 2p + 1. We now suppose
that the number of .R-matrices in such a maximal .E-set has one of
the values

(i) J P - 1 ;

(") V\
(iii) p + 1;
(iv) p + 2;

and proceed to show that in some cases we are led to a contradiction.
By repeated applications of Lemma 4 we deduce the existence

of JE?-sets consisting respectively of the following matrices:

(i) three /-matrices of order nr;
(ii) one /-matrix of order r;

(iii) one R-matrix of order r;
(iv) three /^-matrices of order nr.

But an Eset of matrices of order nr contains the three members
Ei, E2, E3, where as in (7), since n is even, Es = VwE^E*, so that
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EI, E2, E3 cannot all be jR-matrices or all /-matrices. Moreover when
r is odd, an /-matrix of order r cannot be a member of an E-eet, for
the determinant of an /-matrix of order r is of the form Vcu k, where
k is a number of R (OJ), while the determinant of a member of an
E-set, being the product of nth roots of unity, must lie in R(w).
If, however, r is even, a matrix of order r which is a member of an
E-set may be an /-matrix; for the matrix

# = V « ( f y , ) , i,j = 1,2, . . . . r,

where hy = O, if j =f= i + 1 mod n;

hiti+l = oj-\ i= 1, 2, . . . . , r / 2 ; hi:i+1 = l, i = r/2 + 1, . . . . , r,

is an /-matrix and, since W = E, it is a member of an l?-set. As the
unit matrix of order r is an /^-matrix and at the same time a member
of an E-set, whether r is even or odd, we have shown that of the four
possibilities (i), (ii), (iii), (iv) only (ii) and (iii) may occur, when r is
even, and (iii) alone, when r is odd. Further by repeated applica-
tions of (8) we see that maximal E-sets of matrices, of order t = npr,
r not divisible by n, exist, in which the number of /2-matrices is p
or p -\- 1 when r is even, and p + 1 when r is odd.

We are now in a position to prove the following theorem.

THEOBEM 2. / / in a maximal E-set of matrices, of order t=npr, r=|=0
mod n, the members are restricted to be either R-matrices or else I-matrices,
then the number of R-matrices in the set is u, where u satisfies

(13) 0 ^ u ^ 2p + 1, « = } ) + l m o d 4 ,
or

(14) 0^u^2p+l, u=p+l or p mod 4,

according as r is odd or even. Sets exist for every admissible value
of u.

Let Elt E2, Es , Eq = E2p+i be a set (E) of matrices of order
t satisfying the hypotheses of the theorem, .and let g of the matrices
be /^-matrices, and h = 2p + 1 — g be /-matrices. Then the matrices
in the set (F), defined by

(Ft=Et, l^i<2k,
(l0> \Fi= p E^ E2 E;1 E,.... E ^ Et = 8t Eu 2k^i^q,

where /* = 1, if k is even, and /x = Vco, if k is odd, form an i?-set for
all values of k, where 1 ̂  k <; p. For it is easily verified that
Et Sk = Sk Eh iii< 2k, and that Et Sk = coSk Eu if i > 2k.
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Accordingly

FiFj = EiEJ = a>EjEi = a>FiFi, i<j; i, j = 1,2, . . . . , 2 f t - 1 ;

FiFj = EiSkEi = SkEiEj= a)8kEiEi = w FjFi, i<2k,j^ 2k;

Fi Ft = 8k Ei Sk B} = co S\ Ei Bj = w2 <8| Et Ei = wSk E-, Sk E{;
= wFjFi, i,j^2k, i<j;

and
F? = E? = E, i<2k;

F» = (SkEif = f {E;1 E2)»(EpEt)« . . . . {E^Etf,

= /A" aid E, d= — kn(n— l)/2, i ^ 2A,

if jx = 1, when k is even, and Vw, when & is odd. But if k is odd and
the matrices Eu E2, , E.lk_v are all i2-matrices. then the matrix
Sk, defined by (15), is an /-matrix and the number of /-matrices in
the set Ft is

v = g — (2k — 1) = g — 1, mod 4.

If 1 ̂  2k — 1 5S g we may assume that the matrices i?i, E2 Bik_i
are /^-matrices, since otherwise, by Lemma (3), we can find a set (E'),
iJ-congruent to the set (E), of which the first 2k — 1 members are
J?-matrices and so we can use the set (E1) instead of the set (E) to
define the set (F). Thus JS-sets exist, in which the number of
/-matrices is v for all values of v satisfying

(16) v = g— 1, mod 4, 0 ̂  v ^ g — 1.

On the other hand, if k is odd, and Eu E2, . . . . , Eii_-i are all
/-matrices, Sk is still an /-matrix so that the number of /-matrices
in the set (F) is now

v = 2k — 1 + g sg — 1, mod 4.

Once again, by Lemma 3, for every value of k, 3 5S 2k — 1 5g A, we
can find a set (/£'), Z?-congruent to (E), such that its first 2k — 1
members are /-matrices, and so there exist i?-sets in which the
number of /-matrices is v, for all values of v satisfying

(17) v = g- 1, mod 4, 0 + 3 < » < 2 # + l.

Accordingly by (16) and (17), if an .E-set of 2p + 1 members exists,
in which </ of the matrices are /2-matrices, and 2p — g-\- 1 are
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/-matrices, then there exists an 2?-set, in which the number of
/-matrices is v, where v satisfies

(18) v = g — 1, mod 4, 0 O < 2p + 1.

But, if r is odd, E-sets exist in which g=pJ
rl> while, if r is

even, E-sets exist in which g is either p or p + 1. Accordingly
E-sets do exist in which the number of J?-matrices is u, for every
value of u satisfying (13) if r is odd, and (14) if r is even. If there
existed an i?-set in which the number u of /2-matrices did not satisfy
(13) or (14), there would exist an E-set in which u had the value p,
p — 1, or p -+- 2, in the one case, and p + 2 or p — 1 in the other. As
it has already been shown that such E-sets cannot exist, Theorem 2
is proved.

No such theorem is true when n is odd, for, as already remarked,
there is then no distinction between /-matrices and /^-matrices. If
n = 2, we have a> = — 1 and Va> = i, so that -R-matrices are real
rational matrices, while /-matrices are pure imaginary matrices. R (w)
is now the field of all rational numbers, but in this particular case
the argument would remain unaltered if the field of all real numbers
were used instead. Since, if n = 2, r must be odd, in Theorem 2
only formula (13) is required.1

1 As both Bddington and Newman consider matrices whose squares are — E, the
number of imaginary matrices in a set of such matrices is the same as the number of
real matrices in an JS-set, satisfying (2) with n = 2.
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