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It is well-known that, in any semigroup S, all the left and right
Schutzenberger groups of the $f-classes contained in a fixed 3) -class D of S are
isomorphic to one group. We prove a sharper result: that, up to action-
preserving isomorphisms, all these Schutzenberger groups and their classical
isomorphisms are but one group and its identity isomorphism; thus, one group is
essentially sufficient to describe not only all the Schutzenberger groups of
$f-classes in D, but their action on these d%-classes and classical isomorphisms as
well.

The paper is organized as follows. In Section 1 we recall the construction of
Schutzenberger groups and their classical isomorphisms; this essentially follows
Clifford and Preston (1961), but we find it more convenient to have left
Schutzenberger groups operate on the left rather than on the right, as is now
usually done. The main result is in Section 3. Its proof is rather more complex
than the statement would suggest. Also we need a more precise statement of the
main result; and for this it is helpful to consider a slightly more general situation
which still accounts for all the basic properties of Schutzenberger groups. This
leads us to define Schutzenberger arrays in Section 1; the bulk of the proof of the
main result then yields, with little additional trouble, two necessary and sufficient
conditions that a Schutzenberger array have the property we seek, and will be
found in Section 2 with these conditions.

Our main result can then be construed as giving another basic, hitherto
overlooked property of Schutzenberger groups.

In Section 4 we give some minor applications of the main result, to
congruences contained in %€, to the location of inverses and to orthodox
semigroups.
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130 Pierre Antoine Grillet [2]

1. Schiitzenberger groups and Schiitzenberger arrays
1. Let S be a semigroup and H be any $f-class of 5. Put T(H) =

{xBS';xHQH} (recall that xHHH^0 implies xH = H) and T(H) =
{y e S1; Hy C H}. Each x G T(H) induces a mapping ir(x): HI-> H, which we
denote as a left operator a i-» TT(X) • a ; these mappings form a semigroup G(H)
under composition. The main property of G(H) is that it is a group of
permutations of H and acts simply and transitively on H; G(H) is the left
Schiitzenberger group of H. The right Schiitzenberger group G'(H) of H is
defined dually as the group of all mappings v'(y): av-*a • ir'iy) = ay of H into
itself, where y G T\H); it is also a group of permutations of H and acts on H
(on the right) simply and transitively. Furthermore, associativity in S\ x(ay) =
(xa)y, shows that g (a g') = (g a)g' for all a G H, g G G(H), g'eG'(H).
These are the basic properties of G(H), G\H); they imply that, for any p G H,
an isomorphism 6P: G(H)\-+ G'(H) can be defined by: g • p = p • 0P(g) (it is
clear that 6P is indeed well-defined and bijective; furthermore, g • p = p • g',
hp=ph' imply g • (h • p) = g • (p • h') = (g • p)- h' = (p • g.') -/i ' , which
shows that 0P is a homomorphism); in particular, G(H) and G'(H) are
isomorphic (though not canonically isomorphic since 0P usually depends on p).

2. Let now D be a fixed 3) -class of S. We denote, as usual, by (R,),eJ the
family of all @t -classes of D and by (LA)AeA the family of all if-classes of D; the
typical 9€-class of D is then Hik = R, D LK. Thus we obtain all Schiitzenberger
groups G(HjA), G'(HiX) of D. There are three kinds of classical isomorphisms
between these. The first arise by selecting one element p,A in each HiA; we denote
0PiX by On, (sometimes by 0?A if we wish to emphasize the dependence on
p = (piA),ei.A<EA or o n pjA).

The second kind are canonical isomorphisms between G(HjA) and G(HifL)
within one 01 -class Rt. We note that there exist q,q' E. S1 such that H,Aq = H^,
H^q' = HjA (arising from the usual application of Green's lemma); multiplication
by q,q' then easily shows that r (H i A )= T{Hlpi). We now use the homomorph-
isms niK: T(H,,)^ G(// iA), n^: T(H^)^> G(H^); picking a G HiA, we see that,
for all x, y G T(HiA), jca = ya implies xaq = yaq, and hence 7riA (JC ) = TTJA (y)
implies ir^(x)= nilL(y); the converse implication is proved by using q', so that
the surjective homomorphisms TTIA, TT^ induce the same congruence on T(HjA) =
T(HiM). It follows that there exists an isomorphism <f>%: G(HiA)-» G(HilL)
unique such that <f> £ ° 7riA = TTJM.

The isomorphism <£!* is canonical and may be as well defined by any of the
following two properties. First, for any g G G(HiX), g and $ £ g are induced by
the same elements of T(Hix). Next, let g = ir i A(x)£G(Hi A), a G HiA, and t G S'
be such that Hixt = H^; then 4>£g = v^(x) and hence $ £ g • at = xat = (g • a)t,
which proves
(1) 0!*g • af = (g • a)t whenever g G G(/fiA), a G HiA,HjAf = Hj(i.
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[3] Schiitzenberger groups 131

The definition immediately yields the basic property of these isomorphisms;
namely, <£|J is the identity on G(Hix), and <££<><££= <f>* for all i, A, ju., v. These
composition properties essentially tell us that, up to action-preserving isomorph-
isms, all groups G(Hik) (with a fixed i) and their canonical isomorphisms are but
one group with its identity isomorphism. In fact, this is precisely what happens in
the Hunter-Anderson presentation (see, e.g., Hunter and Anderson (1965)),
where G(H) is defined as the quotient of T(H) by the congruence induced by TT;
it is easy to check that all 4>'t can be redefined by (1) and are but the identity.
(We do not use this presentation, despite its obvious advantages, because it
would create confusion in section 2).

The last classical isomorphisms arise by duality. For each A, J, /, there is an
isomorphism i/»£: G'(HjA) —* G'(Hjk), unique such that </f"°7r!A = TTJ» (and
hence canonical); it can be also defined by

(2) ua i/f £g' = u (a • g') whenever a G HiX, g' E G '(HiA), uHik = HM

These have the composition properties: ip* is the identity on G'(HiX) and
< K W M = K for all i,/,fc,A.

The very existence of all classical isomorphisms yields the well-known result
that all G(Hix), G'(HiX) are isomorphic.

3. We now formalize all the basic properties obtained so far, as follows. Let
*# = (CJA)J<=I,A6A be a family of pairwise disjoint non-empty sets, indexed by a
non-empty cartesian product / x A. Let $ = (GjA, G'ik ) i £ U E A be a family, index-
ed by the same set, of pairs of groups and group actions, so that GiA acts simply
and transitively on CiA on the left, G;A acts simply and transitively on CiA on the
right, and g • (a • g') = (g • a ) • g' holds for all g G GiA, a G CiA, g 'G G!A. Let
4> ~ (<££).e/.A,,.eA and \li = («A;i)i,/6/,*6A be families of isomorphisms
<t>t- GiA-*Gi(l, .A;j: G ; A - » G ; A , such that <*>£ is the identity on GiA, <f>t°<t>Z =
<̂ .v, <A" is the identity on G;A and </>'u° i/»jj = iKA

A, for all i,j, k, A, fi, v. We call such
a quadruple % = (% % <f>, </<) a Schiitzenberger array. We have just seen that each
2 -class of any semigroup yields a canonical Schiitzenberger array.

The definition of a Schiitzenberger array includes only two of the three
kinds of classical isomorphisms. The reason is that the 6 isomorphisms are
available on the rest of the data. Namely, let p = (pJA)iej,AeA be a family
consisting of one element piA in each CiA (we call p a basis). As in the 3)-class
case we see that an isomorphism ftA = dp

ix: GjA —* G'u is well-defined for each i, A
ty'- g • PIA = piA • 0iAg for all g G GJA. These isomorphisms have of course no place
in the definition of a Schutzenberger array but are nevertheless an important
part of it: we need them to see that all GiK,G\x are isomorphic and we must
therefore take them into consideration if we wish to replace all GiA, G'jA by just
one group.
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132 Pierre Antoine Grillet [4]

2. Representation of general Schiitzenberger arrays

1. We are now in position to define with precision the idea that a
Schutzenberger array with all its isomorphisms is essentially ( = up to action-
preserving isomorphisms) but one group and its identity isomorphism.

First we define isomorphic Schutzenberger arrays. If 91 = (<#, ^, <£, t/>) and
9t = (<€, % <£, i/») are Schutzenberger arrays (with the same "#), an isomorphism
t: 91 —*• 91 is a family i = (iiA, (.;A)iej,AeA of pairs of isomorphisms tjA: GiA —* GiA,
<•«: G;A—»G!A with the following properties:

i) iiAg a = g a, a • t'ug' = a • g' whenever a G CiA, g £ GlA, g' e G'lx;
ii) i,> °<££= 0£°ii*. I)A °<A/A= <A/i°iiA r°r all i,j,X,fi (in other words, t

preserves all the existing structure). Note that (relative to the same basis p), the
isomorphisms d are also preserved, i.e. i|A ° 0,A = 0iA ° t,A: indeed, for all g e GiA,

p • i'0g [ = piA • i;AftAg] = p • 0g = g • p = ig • p = p • 0ig.

[N.B. Clearly we could consider the more general problem of classifying all
Schutzenberger arrays up to isomorphism. Isomorphisms could also be defined
in the obvious way between Schutzenberger arrays on different underlying
families of sets. Such generalizations, however, would be of no benefit for our
main result.]

Next we define 'essentially-one-group' Schutzenberger arrays. We say that a
Schutzenberger array 91 is simple in case all the groups Gix,G'u are the same
group G, all the <££ and i/»J* are the identity on G, and furthermore there exists a
basis such that all 0iA are also the identity on G. A Schutzenberger array is
coherent in case it is isomorphic to a simple one, and this is the property we wish
to establish for Schutzenberger arrays of 3) -classes.

Coherence can be expressed in terms of bases. A basis p of a
Schutzenberger array 91 will be called coherent in case there exists a simple
Schutzenberger array 91 isomorphic to 91 in which all 6ix are the identity when
calculated relative to p. (Thus 91 is coherent if and only if it has a coherent basis.)
We want to find coherent bases, and if possible describe how they can all be
obtained (in case there is one).

2. The first result is expressed in terms of array isomorphisms, i.e. those
isomorphisms that can be obtained by cpmposing finitely many $£ , t^Ji, ftA and
07A"S (note that (^>^)"' = <£!A, (•/'M)"1 = <MA, by the composition properties).

LEMMA 1. A basis is coherent if and only if every diagram of array
isomorphisms is commutative.

PROOF. First assume that p is a coherent basis of the given Schutzenberger
array 91. Hence, 91 = 91, where all <£>, t/> and fl's (relative to the given p) are the
identity on some group G. We now observe that the isomorphism 91 —>S comes

https://doi.org/10.1017/S1446788700017729 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017729


[5] Schiitzenberger groups 133

with a number of commutative squares whose sides uce <f), t//, 0's and hence any
diagram 3) of array isomorphisms of 91 is isomorphic to a diagram S> of
corresponding array isomorphisms of ft. Now 3> is made up of identity
isomorphisms on G and hence is (trivially) commutative. It follows that 3> is also
commutative.

Conversely, assume that every diagram of array isomorphisms (relative to
the given basis p) is commutative. Let G be any one of the groups GiA, G'ix. Any
two such groups are always connected by at least one array isomorphism and so
there exists an array isomorphism ilA: Gix-± G for each i, A; but the hypothesis
implies that any two such isomorphisms must in fact be equal, and so iiA is
uniquely determined. Similarly, there is for each i, A a unique array isomorphism
iiA: G'ix-* G. We now define a left action of G on each CjA by: g • a = g • a
whenever a G C,A, g £ GlA and g = iiA(g); this is clearly well-defined and makes
each i,A action-preserving. Similarly, there is a well-defined right action of G on
each C,A such that each t',A is action-preserving: it is given by a • g = a • g'
whenever a G CiA, g 'GGIA and g = i!x(g')- Obviously, g (a • h) = (g • a ) - h
for all g, h G G, a E. CiA. Hence we obtain a Schiitzenberger array $ in which
GjA = G;A = G for all i, A, and <££, i/>jA are the identity on G for all i,j, A, /it.
Furthermore the hypothesis also tells us that i'iA ° ftA = t<A; hence, for all g G GjA,
Lg ' Pi = ^ g • piA] = g • p = p • Og = p • i-'Og = p ig, which shows that (relative
to p), On is also the identity on G. It follows that 2t is simple. Finally, we use the
hypothesis one more time to obtain i,v ° $ £ = iiA, i)A ° i/f ji = i'iX; it follows that i is
an isomorphism. Therefore p is a coherent basis.

3. If we are to produce coherent bases, we shall have to build them from
(presumably) other bases, and hence we need the following trivial result on
change of bases.

LEMMA 2. Letp, q be bases. Then dq
ixg = h'~' d"ixgh', where h' G G'ik is such

that qik = piA • h'.

PROOF. For all g G GjA, q • 0*g [ = qix • 0?Ag] = g q = g (p • h') =

(gp)h' = (Pe<'g)h'=qh'-1Orgh'.

This immediately yields necessary conditions for the existence of a coherent
basis. If a is any array isomorphism (relative to p) then the corresponding array
isomorphism, relative to another basis q, can be obtained from a by composing
a with an inner automorphism of its codomain. Hence:

COROLLARY. If there exists a coherent basis, then (relative to any basis) every
diagram of array isomorphisms commutes up to inner automorphisms.

At the start there was no evidence that the property we try to prove is not
always true (and even trivial to boot). Lemma 1, however, suggests that it might
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134 Pierre Antoine Grillet [6]

not be as trivial as it seems. Furthermore we can now give an example of a
Schiitzenberger array which is not coherent.

Let I = {j,k}, A = {(A, v}, and G be a group possessing an automorphism a
that is not inner (e.g. the Klein group V4). Select four pairwise disjoint sets Cu

with same cardinal as G; they come with bijections /3jA: G —* C .̂ We let
GiA = G!A = G for all i, A, and all <f>, </»'s be the identity on G; the left actions of
G on each CiA are denned by g • /3jA (h) = j3JA (gh), while the right actions are
defined by: ft»(A) • / = p»(hl) if (i, A)^ (k, v), and ft,(fc)• / = ft,(ha"'(/)). It is
immediate that this indeed defines a Schiitzenberger array. A basis is given by
Pa. = /3IA (1); in that basis, one finds 0ik is the identity on G if (i, A) ^ (k, v), while
ft, = a: e.g. g • p t , = g • j8k.(l) = fr,(l) a(g) = pkx, • a(g). Then consider the
two following array isomorphisms Gk>,—» Gkv: 0j" (the identity on G) and

these form a diagram which only commutes up to a, and hence does not
commute up to inner automorphism. Hence this Schiitzenberger array is not
coherent.

4. The main result of this section gives a simple criterion for coherence.

THEOREM 1. A Schiitzenberger array 91 is coherent if and only if (relative to
any given basis) all array isomorphism of the form

(of G1A into itself) are inner automorphisms, for all i, j , A, /u,.

PROOF. The condition is necessary by the corollary of Lemma 2 (since the
diagram formed by the given array isomorphism and the identity (/»£ on G'iK
must commute up to inner automorphism). The proof that the condition is
sufficient will be done in several steps.

The first step is to replace the given basis p by one with the property that all
compositions in the statement, in which j and fj. are fixed indices x and £
actually yield the identity on G1A. (Then we show that the new basis is coherent).
Thus, let x G / and £ £ A be fixed; put

By the composit ion propert ies of (j> and ip, we see that a^ is already the identity

on G;A when / = x and when A = £ We now assume i ̂  x and A / £. Then a u is

by the hypothesis the inner automorphism of G'IA determined by some h' G G'iA:

«i.A(g')= h'g'h1'1 for all g ' £ G ! , . We then replace p,A by qlA = plA • h'; since M x

and A ^ ^, this does not affect pxt, p»A, pit; hence all terms of a,,A remain

unchanged except for 0?A, which is replaced by Six, where 0?A(g) = h'l011,(g)h'

for all g e GlA, by Lemma 2. Then a?A(g') = / i M a J A ( g ' ) / t ' = g ' for all g ' G G;A.
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[7] Schutzenberger groups 135

Now we have only changed one pik and it follows that the operation can be done
simultaneously on all p,* (iV x,A^ £), yielding a new basis qiX with the property
that a u is the identity for all i, A.

We note that qik = p,k whenever i = x or A = £, and this eventually implies
that all pxX, p,( (with x, £ fixed) can be chosen arbitrarily to build a coherent basis,
in case such exists.

5. For the rest of the proof it will be convenient to visualize the groups Gik

as forming an / x A array of groups, and the groups G'iK as forming another
/ x A array of groups lying immediately above the previous one (so that each G'ik
lies above GjA). Then the maps $£ lie along the rows of the lower level, while the
maps tyfx lie along the columns of the upper level; the maps 0iX are one-way
elevators: to go down, one must use a 6~*

From this we see that there are only two simplest ways of going from G!* to
G],,.: these are the compositions

indicated on fig. 1 below. Together, they constitute the diagram in fig. 1, which is
uniquely determined by i,;', A, /A ; we denote this diagram by (i, A ; j , fx). It is
convenient to have a more compact schematic picture of (i, A; /,/x) and this is
given by fig. 2 below. We refer to the first of the two compositions above
(j'A —>j\ -+jfi on fig. 2) as the column-starting side of (i, A ; /,/*); the other one is
the row-starting side.

Because of the composition properties of <f>, the-juxtaposition of (/', A ; /, /i)
and (i,fj.;j, v), as depicted below:

iA —» ifi —*• i v

I 1 1
/A-*;>-»/V

yields a "square" which is but (i, A; /, v). Similarly, juxtaposing (i, A; /, (JL) and
(/, A; k, n ) yields (j, A; k, /x).
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6. We can now resume the proof of Theorem 1. We stopped after showing
that there exists a basis such that

is the identity on G'IA for all i, A (where x, £ are fixed). This means that (x, £ i, A)
commutes for all i, A. The theorem follows from the following

LEMMA 3. A basis is coherent if and only if there exist x £ /, f £ A such that
(x, £; i, A) commutes for all if^ x, A7̂  £.

PROOF. The condition is necessary by lemma 1, since (x, £; i, A) is a diagram
of array isomorphisms. We now assume that (x, £; i, A) commutes for all iV x,
A ^ £, relative to a given basis p, and prove that p is coherent. Note that
(x, £; i, A ) commutes (trivially) if i = x, or if A = £, and hence commutes in fact
for all i, A.

We now show that every ( j ,A;/ , /A) commutes. For this, observe that
(x, | ; / , /A) can be obtained by juxtaposition, as follows:

xf —» xA —» x/x

I I I
i f —» iA —* i/x

I 1 I
/£ -» /A —> y'/u.

Now all maps in this diagram are (in particular) surjective. Since (x, f; i, A) and
(x, f; j , /*) commute, it follows that (x, A ; i, fi) commutes. Since (x, f; ;, /j.) and
(x, f; /, A ) commute, it follows that (x, A; j , /A ) commute. Now (x, A; j , /JL ) and
(x, A; i, t i) commute, and therefore (i, A; /, ti) also commutes.

7. We now let i, A, /, /A be arbitrary and consider any array isomorphism
a : G!A—»G;>. Thus a arises by composing a sequence of finitely many
4>, &, 0, 0~"s. We may from the start, owing to the composition properties of $
and tfi, assume that this sequence is irredundant; in other words, we may assume
that it does not contain any two consecutive <t>'s, nor any consecutive i^'s, and
furthermore that we never consecutively ride up and down the same &,„. This
leaves little freedom: in fact we see that, from any GL (such as G!A) we can only
follow one of the two sides of some (k, v; m,a) until we encounter G l , and
proceed again. Thus a can be described as follows: there is a sequence (m,,cr,)
(t = 1,2, • • •, r + 1) with (nil, o-:) = (i, A), (mr+l, o-r+1) = (j, fj.) such that a is the
composition of a 1, ••- ,«„ when a, is the composition of the maps on one of the
two sides of D, = (m,, <T, ; m,+u <T,+1). In fact, we may not even change sides from
one D, to the next: if we use, say, the row-starting side of D,, then we reach
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[9] Schiitzenberger groups 137

Gm,+,<,,,, by means of some ip, and since we have assumed we never use
consecutive if/'s we can only leave G'm,^,,^ by means of a 0~l and hence follow
the row-starting side of D,+, (cf. fig. 1). It follows that we are only using either
row-starting sides throughout, or column-starting sides throughout. A schematic
illustration of a may then be as follows (in the row-starting case):

-*• lcr2

Figure 3

We now prove, by induction on r, that we would obtain the same a in just
one step, by following one side of (i, A ; /, fi). This is trivial if r = 1. Assume that
r > 1 and a is obtained by using, say, row-starting sides only. Write a = ar°a',
where a ' = a,_i°- ••»a,: G'jA—»G,^,,. By the induction hypothesis, a ' is the
composition of the maps on the row-starting side of (i,A; mr,a,). When we
compose a' and a, we then see on fig. 4 that we use the column-starting side of
(i, ov; mr, /JL). Since (/, <rr; mn ft) commutes, we shall obtain the same map a by
travelling along its row-starting side instead, and then the composition proper-
ties of <t> and t/» show that a can also be obtained by composing along the
row-starting side of (/, A ; /, fi).

Since (i,\;j,ft) commutes, this part of the proof shows that there exists
only one array isomorphism G\K—* G'jlt.

8. This immediately implies that, if a, j8 are array isomorphisms G'ik —* G^,
then 0/M °a - 0;> °/3 since these are array isomorphisms G!A —> G'jm and hence
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a = p. In a similar manner we see that there is only one array isomorphism
GiA —* G'jn and only one array isomorphism G,A —» GM (when i,j, A, fi are given).

Therefore, every diagram of array isomorphisms has to commute. By
Lemma 1, this says that the given basis is coherent, which completes the proof.

3. The semigroup case

1. We have seen in Section 1 that any 3) -class D of a semigroup gives rise,
canonically, to a Schiitzenberger array. Our main result states:

THEOREM 2. The canonical Schiitzenberger array of a 3) -class is always
coherent.

Figure 4

PROOF. We use the notation in Section 1. Pick 1 G/, 1GA, and elements
qx, r , 6 S ' ( A G A . i e J ) such that Hnqk = HiA, r,H,A = HiA for all i,A. [For
instance, we could pick aA G H1A; then there exist qk, q'kG S1 such that ak = aiqA,
ai = akq'x, and Green's lemma says that qA serves; r, can be chosen dually. This
really says that the elements pn,pu>p,\ below can be chosen arbitrarily.] Now
select p u G Hu and define p u = Pn<?A, Pn = r,pn and piA = ripnqk for all i/ 1,
A 7̂  1. Note that piA G HjA for all i, A and hence this defines a basis.

For every g 'G GJi, iV 1, A?^ 1, we calculate, using formulae (1) and (2) in
Section 1:

• pn)qx)= rt (p n • g')qx,
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• Pu =

= (pn • *l>ng')q* = (npn • <P"g')qi

= r,(pn • g')qk.

This proves that « ^ ° 0lk*>$\\° 0n = 0(*° <^!i° 0 n ° "A", i.e. (1,1; i, A ) commutes,
for all iV 1, A ^ 1. Then it follows from Lemma 3 that p is a coherent basis, q.e.d.

2. We conclude by some further remarks on coherent bases. We note that
the proofs of Theorem 1 (for the general case) and Theorem 2 (for the semigroup
case) actually produce coherent bases (when such exist), along with the
information that one row and one column can always be chosen arbitrarily. This
leaves the problem of finding all coherent bases when we know one of them.
Since isomorphic Schutzenberger arrays have the same coherent basis, it will
suffice to consider the case of a simple Schutzenberger array. In that case, we
may as well assume that the given basis has the property that all 0's are the
identity.

PROPOSITION 2. Let 21 be a simple Schutzenberger array with group G andp
be a basis of 21 such that all 0iA are the identity on G. Let (uik )IEMEA be a family of
elements of G. Then q = (wjA • pjA)ie/,*eA is a coherent basis if and only if, for some
fixed 1 £ /, 1 G A, UiAMuM,, MM1 G Z(G) (the center of G) for all iV 1, A^ 1.

PROOF. By Lemma 3, q is a coherent basis if and only if

i.e. 61, (01t)-
lg = 61, («7i)"'g for all g G G, for all i/ 1, A^ 1. By Lemma 2,

61,g = u~,' Oixgu* = M '̂gMiA for all g, /', A. Hence, for each J V 1,
61,(61,)'^ = 0?A(0?i)~'g for all g is successively equivalent to:

W = M '

for all g; uitu^u^UngUnUtiU^'un = g for all g;

Wn'WiAMuWiiG Z ( G ) ; M,A G

The result follows.

Since 1 G /, 1 G A were arbitrary, the result tells us that when q is a coherent
basis then uixu~,'ullxu^ G Z(G) for all i,j, A, /u.. The result also tells us that when
all qiU <?u are known then the remaining ^A'S are uniquely determined modulo
the center of G.
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4. Some applications

1. The applications of the main theorem come from the following remark.
Given a ®-class D of any semigroup S and a coherent basis p = (piA)jej,AeA of D,
we may let G be the one group G in any simple Schutzenberger array
isomorphic to the canonical array of D; then every element x of D can be
written uniquely as x = g • piA (= piA • g), with i £ I, A £ A, g G G; this defines a
mapping xt-»g(x)= g of D into G (which of course depends on the chosen
coherent basis). This mapping g can be used to make more precise some classical
results on the location of products and inverses of elements of D, and this in turn
has some applications.

This will use the following rules of calculation: g • pjA = piA • g always (since
0a is the identity on G in our simple array); g • xy = (g • x)y whenever x,
xy G D and x5?xy (since all $£ are the identity in our simple array); dually,
xy • g = x(y • g) whenever y, j tyGD and yifxy.

2. First we give the basic results on location of products and inverses.

PROPOSITION 2. Let a,bGDbe such that Rb n La contains an idempotent e
(so that ab G Ra n Lb); take a = e if aXe and b = e if b3€e. Then there exists a
coherent basis p of D which contains a, b, e and ab. For any such basis,
g(xy) = g(x)g(y) for all x£Ha,y<E Hb.

PROOF. The hypothesis that we take a = e if a"Xe and b = e if b%€e insures
that if two of the elements a, b, e, ab lie in the same Sif-class then they are equal
(this is clearly necessary for the conclusion). In what follows we assume that
a, b, e, ab lie in different Sif-classes and leave the degenerate cases to the reader.
Put Ha = H/A, Hb = HilM, so that He = HjA, Hab = H/(i. We now follow the proof of
Theorem 2. We can build a coherent basis from arbitrary choices of pi(, pxK;
choose pu = e, p,x — a, p^ = b. We now have e!£a, with a = ae since e is
idempotent, and b9le with b = eb; therefore we may choose p,v = a piA b =
aefc = aft. Then a, ft, e, ab are all part of the coherent basis p.

Now take any x G Ha, y G Hfc; put g(x) = g, g(y) = h, so that JC = g • a,
y = h • b. Since Ry D L, = Rb D La contains an idempotent, we still have xy G
Hab( = Rx n Ly) [proposition 2 then pinpoints xy in Hab in terms of the mapping
g]; similarly, ay E.Hab, so that ay0la. Therefore

x y = ( g - a ) y = g - a y = g ( a ( h - b ) ) = g - ( a ( b h ) ) = g a b h

= g • ( h • a b ) = g h • a b

since b, ab are part of the coherent basis and ab££b. Thus g(xy) = g/i =

https://doi.org/10.1017/S1446788700017729 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700017729


[13] Schiitzenberger groups 141

COROLLARY. Let b be an inverse of a ED. There exists a coherent basis of D
containing a, b, ab, ba. For any such basis, the inverse y E Hb of any x EHa

satisfies g(y) = g(x)~\

PROOF. One has g(xy) = 1 since xy = ab is part of the coherent basis.

3. Applications to congruences contained in 5if come from the following
result, which in essence is a restatement of Leech's description of these
congruences by normal subfunctors in Leech (1975).

PROPOSITION 3. Let % be a congruence on S contained in 3€. Relative to any
coherent basis of D, there exists a normal subgroup K of G such that, for all
x,yED, x<€y if and only if xWy and g(x) E g(y)K.

PROOF. Let p be any coherent basis of D. Pick any i E /, A £ A and define
K = {g £ G; g = g(x) for some x £ Hix with x<€p«}. Note that 1 £ K. First we
show that, for any y £ D, say y £ H^, then y^/v if and only if g(y) £ K (i.e. K
does not depend on i, A). First take y £ H,v, say y = g • p^. Since pJA5?PiM there
exist t, t'ES1 such that pik = p^t, pty. = pixt'. Now y^p,> implies yt^pu,, and
yt = (g • pttc)t = g • p^t = g • pix; hence y^piv. implies g £ K. If conversely g £ K,
then yt^pa, which implies yttl(€p^; but pytt' = p((t implies ytt' = y for all y £ Hipi.
Thus, g • pi^€pipL if and only if g £ K, i.e. g • p^pix; a dual argument shows that
g • Pi^Pfr if and only if g • p^p^.

Next we show that X is a subgroup of G. We have 1 £ K. Let g, li £ K;
there exist s, t £ S1 such that g • x = sx, h • x = tx for all x £ //,A. Now let
x = pik; from g G K w e know that sx^x; similarly tx^x; since ^ is a congruence,
it follows that stx^x and so gh E K Similarly let s' £ S1 be such that g~l • x = s'x
for all x £ ffjA; with x = piA, we now have x<€sx, which implies s'xVZs'sx = x and

Finally, take x, y £ D with jĉ fy, say JC = g • p;/i, y = h • p/(1; let s, f, f' £ S1 be
such that g • 2 = sz, h • z = tz, h1 • z = t'z for all z £ H^. Now assume x^y.
Taking z = p/V we have sz^tz, whence t'sz^t'tz = z and h'lg E K by the first
part of the proof. Conversely, h~*g £ K implies t'sz^z and x = sz = tt'sz^tz =
y. Thus x^y if and only if g £ hK, i.e. g(x) £ g(y)/C. But we also have x = z • g,
y = z • h and there exist u, v, v' £ S' such that a • g = au, a • h = av, a • h "' =
av' for all a £ Hj/j.; hence we can argue as above, i.e. x^y if and only if: zu^zv,
zuvl(€z and gh~l EK (as ZMD' = z • gh~l = gh~l • z). In particular g £ hK if and
only if g £ K/t and the proof is now complete.

This proof is quite similar to Leech's argument; what coherence has
contributed is merely a neater description.

Our first application which does not outwardly involve coherence is the
following:
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COROLLARY. Let ^ be a congruence contained in W. Assume xffly and let
x', y' be inverses of x, y such that x"3€y'. Then x%y implies xl(€y'.

PROOF. First note that any a E.HX then has an inverse b ELHX. If
x, x', xx', x 'x do not lie in four different S€-classes, then we see that Hx, Hx are
maximal subgroups of S and that if a is the identity of Hx then b is the identity
of Hx (since in this case x*3lx' or x^£x'). Otherwise we may take a = x, b = x'.
Pick a coherent basis of Da as in the corollary to Prop. 1. The result then follows
at once from the rest of the corollary and from Proposition 3.

An interesting fact about this result is that we lack a direct proof of it (=
one that does not use coherence in an obvious way).

3. We now give some applications to orthodox semigroups (as defined in
Hall (1969)). The basic fact here is:

PROPOSITION 4. Any 3)-class D of an orthodox semigroup has a coherent
basis which contains all the idempotents.

PROOF. Assume that S is orthodox; let D be a 3-class of S and E-
Es fl D be the set of idempotents of D. The 3) relation of the band Es is
contained in that of S and therefore E is a union of 3-classes (Ea)aeA of the
band Es; each Ea is a rectangular band.

Select one ea in each Ea; also select 0 £ A, so that we have e0 G Eo. For each
a G A, pick ra G Rea D L^ and let qa be the inverse of ra in R^ D Lta. When
a = 0 we let ro = qo= e0.

For each a G Ea, let ra = ara. Since R,a f~l La = Rta ("1 La contains the
idempotent eaa, we have r . G R . d L^. Furthermore a'Stb G E implies b G Ea

and, in the rectangular band Ea, aea = bea; hence also

ara = araqara = aeara = beara = bra.

As a result, the elements ra (a E.E) yield but one element in every %(-class in
L^. Also note that rw = e0. Dually, the elements qa = qaa (a G E) yield just one
element of each ffl-class in R^, with q^ = e0. As a consequence, a coherent basis
for D can be constructed as in Theorem 2 from these elements: we have O?ra,
with ra = /•„/•«„ (since rn = e0) and qcjftqb, with qb = q^qb, and hence the coherent
basis element in Ra D Lb may for all a, b be chosen to be r^q,, = raqb (this
depends only on Ra D Lb). This coherent basis contains all ra,qh.

Now, for each a G E, say a G Ea, the coherent basis element in Ha =
Ra D La is raqa = araqaa = aeaa = a (as a3)ea in Es), i.e. our coherent basis
contains all the idempotents of D.

We express this result by saying that the idempotents of an orthodox
semigroup are coherent. Coherence of idempotents is not characteristic of
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orthodox semigroups: for example, one can build a completely 0-simple semig-
roup from a sandwich matrix that has ones in a full row and a full column and
zeroes everywhere else; it is fairly clear that the idempotents of this semigroup
are coherent, yet (if /, A are not trivial) it is not an orthodox semigroup.

The coherent basis in Prop. 4. has another valuable property: the basis
elements raqb, rbqa in Ra n Lb, Rb n La are always mutually inverse. To see this,
first note that qja £ H , (since R,a flL,, contains the idempotent a); since
q,raq<,ra = qaara = qja, it follows that qara = e0. Hence raqbrbqaraqb = raeoqb = raqb,

and rbqaraqbrbqa = rbqa. In other words, when x, y G D are mutually inverse, the
basis elements in Hx, Hy are mutually inverse too. Then it follows from the
corollary to Proposition 2 that (in this coherent basis), x and y are mutually
inverse if and only if x has an inverse in Hy and g(y) = g(x)'1.

We can use this, and the fact that the idempotents of an orthodox semigroup
S form a rectangular pattern (i.e. when Hlk, H^ and Hjk all contain idempotents,
then Hifl. also contains an idempotent—namely the inverse in Hjtl of the
idempotent in Hik), to give an alternate proof that Yamada's relation (x'S/y if and
only if x and y have a common inverse) is the least inverse congruence on S. The
difficult part of the proof is to show that ^ is transitive (cf. Hall (1969), Schein
(1965) and Yamada (1970)); equivalently, if s and y, y and t, t and z are mutually
inverse, then so are s and z. We first note that Rs D Ly, R, (1 Ly, R, fl Lz all
contain idempotents, so that Rs n Lz contains an idempotent; similarly, Rz D Ls

contains an idempotent. Therefore s has an inverse in Rz; also g(z)= g(r)"' =
g(y)=g(s)~\ and thus s and z are mutually inverse.
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