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An integral representation for a

generalised variation of a function

A.M. Russell

In this note we present sufficient conditions for the continuity
of the total kth variation of a function defined on a closed
interval [a, b] . We also give an integral representation for
total kth variation, thus obtaining an extension of the

classical result

2
V(f; a, x) = f |F'(e)|dt , a=x=b.
a

The results presented in this note will be a continuation of results
obtained in [2], and unless otherwise stated, all definitions and notation

will be taken from (2].

THEOREM 1. If f ¢ ka[a, bl, k=22, and f has a (k-1)th
Riemann* derivative throughout [a, b] (one-gided, of course, at a and
b ), then Vk(f; a, x) 1is a continuwous function of « .

Proof. Iet € > 0 be arbitrary, and let Vk(x) denote
V,(fs a, £) . Then there exists a w subdivision a = Ygs Yys »=o2 Y, =

of [a, x] with Yy = x' arbitrarily close to x , such that

n-k
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Therefore,

' n-k-1
Vk(x ) = iZo le—l (f; Yps o yi"’k-l)—Qk—l (f; Yigr> v yi.,_k)l
n-k
N izo 19 3 5 v oo Y )Gy U5 vy -oos )|

_ IQk—l(f; Yy k> +=» yn_ll-Qk_l(f; Yy pes1? *°° yn)l
€ € _
>N (E) - - g = R e

Consequently we have Vk(x) z Vk(x') > Vk(x) - €, and so it follows that
Vk(:x:') -> Vk(x) as x' *x - 0 . Similarly it can be shown that

Vk(x') > Vk(x) as x' > x + 0, and this now completes the proof.

We make two observations.

The result of Theorem 1 is an extension of the classical case in which
the total variation V(f; a, ) of a continuous function f is

continuous.

The hypothesis of existence of the (k-1)th Riemann* derivative is
necessary, as shown by the following example. Let f(x) = lxl >
-1 =x =+ . If k=2, then V2(f'; -1, 0) = 0 , whereas

Vo(f3 -1, ) =2 for all x>0 .

We now obtain an integral representation for the total kth wvariation

Vk(f; a, £) . This will be a generalisation of the classical result

X
V(fs a, z) = I Ir(e)lde
a

when [ has an integrable derivative.
We make use of the following

THEOREM 2. If f s a real-valued function whose kth derivative
exists and is bounded on [a, b} , then f ¢ BVk[a, bl .

The proof follows readily from [!, Section 1.2].
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THEOREM 3. Let f be a function whose kth derivative is
continuous in [a, bl . Then f € BVk[a, bl , and

XL
(=117, (f3 a, ) = f 7% (¢)|dt , a<z<b.
a

Proof. It follows immediately from Theorem 2 that f € BVk[a, bl .
Let us denote Vk(f; a, £) by Vk(a, x) . Then, using [Z, Theorem 7], and

noting that f has a (k-1)th Riemann* derivative in [a, b] , we obtain
[ (@s @+h)-V, (a, x)] =%—Vk(x, z+h) when h >0 .

Let Ygr Yq» =2 Yy be a T subdivision of [x, Z+h] such that

T=Yy <Yy <Y, =TS h and all sub-intervals [yi’ Y41 8re Of

equal length ¢ , so that nl = h . Then, using [/, Section 1.21], we

obtain
n-k
Vk(x, x+h) = sup Z (i+k-y )IQ (f Y., . y7,+k)l
T 1=0
n-k
k
2 1 ) 179 R
where y,[’ < 57, y,,:+k s =0, 1, > k s
n-k
> inr [FF(y)] ki, 1 (k1)
x<t<x+h *1=0
.t . (k) . k-1
= 1)1 x;tg;h E (l - ”]

Letting »n tend to infinity gives us the result

inf |f(k)(t)l when h >0 .

(1) V(@ wh) 2 e .
T=t=x+

1)

We now consider any ‘n[ .y xn) subdivision of {x, x+h] and use [I,

O’ )
Section 1.2] again to show that
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ek (k) yy 1 "5
tzo (xi+k-xi)le(f; Tis vevs x?«+k)| = :r:s?';;l_gq-h lf ()] Eizo (xi*'k_x‘l:)
h (k)
S o7 sw £
(=101 i izaen
Consequently,
<_h__ (k)
(2) Vil&, @+h) = o e Fala eI T
Combining inequalities (1) and (2) gives
V, (x,x+h)
(3) inf If(k)(t)I < (k1)1 & % < sup lf(k)(t)| .
r<t<x+h r=<t<x+h

Similar inequalities would be obtained when h < 0 , so we conclude that

% Vk(a, x) exists, and equals —(k_—lﬁT If(k)(:c)l . The required result

now follows.

REMARK. Continuity of f(k) in the preceding theorem is not

necessary. If f(k) is bounded and continuous almost everywhere, then
Vk(f'; a, x) is absolutely continuous by (3), and at a point & of
(k)

continuity of f we can show, as before, that

1)t (55 a, 2 = 15 R @)

Consequently, the integral representation still holds, the integral of

course being Lebesgue.
We conclude with the following
THEOREM 4. Let f be a function whose kth derivative is

(k-s)

continuous, Then §f € BVS[a, p], s=1,2, ..., k, and

(k-s) .

(k—l)!Vk(f'; a, x) = (s—l)!Vs[f‘ ;a, %), asz=<b,
s =1,2, ..., k.
Proof. It follows immediately from Theorem 3 tnat f € BVk[a, bl .

(k-g)

That f € BVs[a, bl , s=1,2, ..., k follows from {2, Theorem 12].
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The required result now follows readily by an application of Theorem 3.
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