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Consider the following sieve process. Let A^l) be the sequence of integers 
greater than 1. Let A^n+1) be obtained from A<n> = {a^n\ a2

{n), . . .} by eliminat
ing one element from each of the intervals Ik(n), where 

hin) = {a^\n + (k - l)an™ <j <n + kan™}, k > 1. 

We let an = an
{n) and A = {an} be the sequence of integers t ha t survive the 

sieve. M. C. Wunderlich (8) has found a necessary and sufficient condition 
for an ~ n log n and, in a more recent paper, M. Wunderlich and W. E. Briggs 
(9) have studied a subclass of the sequences defined above for which 
an~ n log n. In t h a t paper it was shown t h a t if f(n) is any term whose order 
lies between ni}og log n)2 and n log n, then a sieve-generated sequence can be 
constructed for which an — n log n ~fin). However, it was also shown t h a t 
all sequences generated by the above sieve contain a term whose order is 
n(log log n)2, which is unfortunate in view of the fact that , for primes, 
pn — n log n ~ n log log n. I t is natural to ask whether or not a modification of 
the above sieve process could produce a more prime-like sequence. 

In the sieve of Eratosthenes the first element t ha t is actually sieved out a t 
the &th sieving is pk

2. Hence there is an interval beyond pk containing 
ir(pk2) — k integers, where there is no sieving a t all. This property can be 
incorporated in the above sieve by translating all the intervals Ik(n) by an 
amoun t an, where an is a function of an = an

(n\ i.e. 

hin) = {a/»>|» + an+ (k - l)a*<w> < j < n + an + kan™}, k > 1. 

If the "pr ime number theorem" property were to hold for these sequences, 
then the most interesting value of a to s tudy would be 

a* = O O * ) 2 — k) ~ \iak)
2/\og ak. 

In this paper, the authors first prove t ha t an~ n log n for a large class of an, 
incidentally including an ~ \{an)

2/\og an. Although the methods used in this 
paper are not strong enough to prove the existence of a second term, we show 
t h a t for this "prime-l ike" an, if a second term exists, it mus t lie between 
n(log log n)l~* and n(log log n)1+e for any e > 0. 

For the present, an will be considered an arbi t rary non-negative function, 
and, as we proceed in the proof of the main theorem, we shall impose additional 
restrictions on an as needed. Let /W (x) denote the number of elements a/n) < x 
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which are sieved out of A{n) to produce A(w+1), and let Rn(x) denote the number 
of elements of A{n) not exceeding x. We have Rn+i(x) = Rn(x) — fn(x) and 

, / . i \ _ f[(Rk(a>n + 1) - k — 0Lk)/ak] + ek if k + ak < nf 

M*n + 1) - \ Q otherwise, 

where ê  = 0 or 1. Now let q = qn be defined as the largest k such that 
k + ak < n. If k < q, we have a recurrence formula similar to that first used 
by Hawkins and Briggs (6) and later modified (1, 2, 8, 9), 

Rk+i(On + 1) = Rk(On + 1) - [(Rk(an + 1) - k - ak)/ak] - ek. 

The procedure can thus follow similar lines. 
By iteration we obtain 

Rk+i(an + 1) = o-kRi(an + 1) + Ek(an + 1), 

where we have introduced the notations 

<rk = n a - i/o, 
ra=l 

E, / , -.N v^ q-fe I)Rm{an + 1) — m — am\ , ^ + am \ 
Ek(an + 1) = 2^ — U f + — : *m) . 

ra=l "m \ v ^m J ^m / 

Letting k = q and noting that Rq+1(an + 1) = n we get 
(1) » = O-ff On + ^ ( ^ n + 1). 

Since Eq(an + 1) > — g > — w, from (1) we have 

(2) crnan < <TQan = n — EQ(an + 1) < 2«. 

So, summing the above from 1 tow, we obtain 

0"« fc=l Wyfc Ofc-l/ Jc=l &k die k=l *n Z 

hence, 

(3) *n < 2 / ( l o g « ) . 

An upper bound on Eff(aw + 1) will now be established. First we note that 

EMn + 1 ) < I H Z ( H «*)/<**. 
A ; = l k=l 

From this point on only those sieves for which the ratio ak/k is non-decreasing 
and greater than 1 + ei, ei > 0, will be considered. Since a,\ = 2 is the first 
sieving number, ak > (2 — 6)k for any 1 > <5 > 0 and for k large. Hence, 
since qn —> °o, we have for n large: 

Eq{an + 1)< 2 + (2 - «rM Z 1 + E «*/*) 

< g + (2-ô)- 1 (g + g-a5/2) 
< q + »/(2 - 8). 
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Now, since aq/q > 1, one can verify that q < n/(2 + ei). Hence, by choosing 
a sufficiently small 8 above (8 < ei/(l + ei)), one obtains 

(4) Eq(an + 1) < (1 - e)n 

for some 0 < e < 1 and for n large. If we now assume that log an/\og n < r 
for some positive constant r, it can then be shown that 

log n/\og q < ril + 0(1)) 

for large n. The inequalities (3) and (4) produce 

n = Rq{an + 1) = (rqan + Eq{an + 1) 

< 2aJ (log q) + (1 - e)n 

< 2r(l + o(l))an/(logn) + (1 - e)n. 

Hence, for a suitable positive constant Ci, 

(5) an > c\ n log n. 

To get an upper bound for an we estimate crn/<rq as follows: 

(6) 
2 = IÎ (i - L) > fl (i - - r f - t ) 
s k=q\i \ ak/ k±ç+i \ cik log kl 

/ - - l + o(l)\ 
Vs4+i ci ^ log k ) 
( - 1 + 0 ( 1 ) log») 
\ ci * log g/ 
/ - 1 + 0(1) \ 

> exp I -v— log r J 

> exp 

> exp 

> f ( _ 1 + 0 ( 1 ) ) / c l = c 2 > a 

Hence, using (4), we get 

_J__ _ __L_ __!_ < I ( i ) < - !__£ . . 
o-n aw (7W aw an/a- C2 \ti — Eq(an+ 1)/ ec2n n 

We now sum the above from 1 to n in a telescopic series to obtain 

l/an - 1 < cz log n 

and then use (2) to obtain 

an < c\n log n 

for some constant c4 > 0. We have proved the following theorem. 
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THEOREM 1. If an is a sieve-generated sequence for which an/n > 1 + e, 
e > 0, an/n is non-decreasing, and log an/\og n < r, where r > 0, then there 
exist two positive constants c\ and c4 such that 

c\ < aj in log n) < c±. 

We shall now proceed to estimate the constants c\ and £4. To do this we 
restrict our attention to the case where 

an~ c(an)
a(\ogan)

b, 

where a, b, and c are constants such that a > 1 and c > 0. Although an is a 
function of n, it is desirable to regard it as a function of anf since in the sieve of 
Eratosthenes the interval where no sieving takes place has length 

Tr(pn2) - n ~ hPn2(\ogpn)-\ 

One first uses the result that an> C\n log n and, in the same manner that 
(4) was obtained, now produces the improved estimate 

(7) Eq(an + l) =o(n). 

Next (2) becomes {<Jnd^~l > (1 + 0(1)) and hence (3) becomes 

an < (1 +o(l)) log n. 

Since an is of the same order of magnitude as n log n, and an is of the same 
order of magnitude as na(log n)a+b, one can then show that q = qn is of the 
same order of magnitude as n1/a(\og n)~(a+b)/a. Hence, log q ~ a~l log n and 

cr, < (1 + o(l))/logq = (1 + o{l))a/\ogn. 

We can now improve (5) as follows: 

n < Rq(an + 1) = <xq an + o(n) 

< (1 + o(l))aan/\ogn + o(n), 

which gives us for n large 

(8) an > a-l(l + o(l))nlogn. 

Now using (6) and (8) we obtain, successively, 

<rn/crq > a-a+0^ = (1 + o(l))a~\ 

(«•«On)"1 < (1 +o(l))aa/n, 

cxn'1 < (1 + o(l))aalogn, 
and, thus, 

a y 1 < (1 +o(l))aa\ogq = (1 + o(l))aa-1logn. 

Then from (1) and (7) we have <rq an = n + o(n) so that 

an < (1 + o(l))aa~1 n log n. 
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I t is interesting to note t ha t in the "prime-l ike" case where a = 2, b = — 1, 
and c = | we have, a t this point, the "Chebyshev Theorem" 

J - e < an/(n log n) < 2 + e. 

The method jus t described of establishing upper and lower bounds on 
an/(n log n) is now iterated to obtain sharper bounds. I t will be shown ulti
mately t h a t these bounds can be made arbitrarily close to 1, proving t h a t 
an ~ n log n. However, a t each iteration terms which are o(l) are introduced 
in the bounds which would cause difficulty when passing to the limit. Therefore 
the proof of the following lemma is presented in detail . 

LEMMA 2.1. Suppose that for every e > 0, there exists an N = N(e) such that 
for every n > N, an < (r + e)n log n for a given constant r. Then for any 
8 > 0, there exists an M = M(5) such that for all m > M 

dm > (ri — b)m log m, 

where 

Proof. Since qn —» oo as n —> oo, one can fix M large enough so t h a t for all 
n > My aq < (r + e)q log q. Then for n > M, 

*» = f[ ( i _ l ) < f[ ( ! I ) 
vq *4+i V On/ A;4+I \ (r + e)w log » / 

< CXP I Jkil0g V1 " (x + eMogJ / • 
(Throughout this proof we shall make use of the symbols e(n) and ei(n) to 
denote functions of n which tend to zero for n large. These functions will be 
modified throughout the proof wi thout changing notat ion.) From the expansion 
of the logarithm we have 

T h e second term is treated separately. Let e(n) be the largest of the e(k) in 
the range (qni n), so t ha t 

V* e(&) < / \ y^ 1 

Using this in (9) above, we get 
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Note that a constant is introduced in the estimate of the sum but we absorb 
it into t(n). By virtue of our definition of a„, (log w)/(log q) = a + e\(n), 
where ei(w) —> 0, so that 

^ < exp 

= e x p { ( - 1
T + f ) ) ( l o g a + e l W ) } , 

by redefining ei(n). We can absorb ei(n) into e(n) by redefining e(n) and we get 

Vn 

<«P\V r + e )l°*af 
_ ^_l/(T+e)^e(rc)/(r+e) 

The second factor, which tends to 1, can be replaced by 1 + e(n) for e(n) 
possibly redefined. Hence 

(10) <rn/<rg < a - ^ + ^ a + €(»)) for?* > N(e). 

Since e is an arbitrary positive constant, we may replace e in (10) by ei(n) to 
make (10) valid for all n. Then 

<rn/<rq < a-^a^^+'^il + e(n)). 

But for a new ei(n) 

0«1(»)/r(r+ei(»))(! + e i ( n ) ) \ 

hence 

(11) crn/aq < a-U'il + e2(n)), 

where e2(n) = (1 + e(n))(\ + ei(n)) — 1. 
Now using (11) we obtain 

vnan = (raan(an/aq) < aqana-1/r(l + e(ri)). 

Since <rq an = n — Eq(an + 1) = n(l + ei(n)), we have, after combining 
ei(n) and e(n), 

(12) (cnan)-i>a^(l + e(n))/n, 

which is true for all n. We now sum (12) from 1 to n to obtain 

Ê (?***YX> Z a1/T(l + e(k))/k 
Jc=l k=l 

= a /T(\ogn + e(n)logn) 

for suitably redefined e(n). However, since this sum telescopes, we get 

l /cr„> (1 + e(n))(a^logn) 
or 

l/et> (l + €((z))(a^logg) f 
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and, since q —» <» as n —> » , e(q) can be replaced by an e(n). Furthermore 
by our choice of an, 

log g = a - 1 l o g ^ ( l + ei(n)) 

and so, for a redefined e(n), we have 

(13) l/aQ > (1 + e(n))a^-\\ogn). 

Now, since n = <rQ an + Eq(an + 1) = aqan — nei(n), we have 

a ^ = w(l + €i(»)). 

Hence, multiplying this with (13) and for a new e(n), we get 

an > al,T~1{n log n){\ + e(n)). 

Since a > 0, this can be rewritten by redefining e(n) by 

#n > (&1/r_1 + e(n))n log w. 

Now, to complete the proof, let 8 > 0 be given. There exists an M such that 
for all n > M, e(n) — 8; hence, 

Un > (ji — 8)n log ^. 

LEMMA 2.2. Suppose that for every e > 0 there exists an N — N(e) such that 
for every n > N, an > (n — e)n log n for a given constant n . Then for any 
8 > 0, there exists an M = M(8) such that for m > M, 

am < (r2 + 8)m log m, 
where 

The proof of this lemma is exactly parallel to the proof of Lemma 2.1. 

We now define a sequence of real numbers {xn\ as follows. For a > 1 we let 
Xi = a~* and we let xn+i = a17*»-1, n = 2, 3, . . . , 

LEMMA 2.3. 7w 0 < a < e, l in^œ xn = 1. 

Proof. Let % = (axn)~
l, aa = e13, so that the iteration takes the form 

yn+1 = exp( — Pyn). I t can be shown that 3>i = 1, y2n+i < ytn-i', J2 = e~& < 1, 
3 ^ > y2n-2', and 3̂ 2̂ +1 > 3̂2m for all m, w > 1. Since the limit must satisfy the 
equation L = exp( — fie~PL), which has a unique solution for 0 < ($ < e, we 
find that yn —* a - 1 ; hence xw —> 1. 

LEMMA 2.4. Ze/ e > 0. If n is odd, there exists an N = N(e, n) such that for 
all k > N, 

ctjc > (xn — e)k log k. 
If n is even, 

0* < (Xn + 0 * lug k. 
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Proof. This is by induction on n. I t follows from (8) that the lemma is true 
for n = 1. Suppose it is true for n, where n is odd. This satisfies the hypothesis 
of Lemma 2.2 where n = xn. Then the conclusion of Lemma 2.2 proves 
Lemma 2.4 for n + 1 since r2 = a1/Tl_1 = xn+i. For even n the conclusion 
follows from Lemma 2.1. 

From the above lemmas we now have the following theorem. 

THEOREM 2. / / {an} is a sieve-generated sequence where 

oin = c(an)
a(logan)

b - n 

with a, by and c constants such that 1 < a < e and c > 0, then an~ n log n. 

Proof. Suppose that a n^ n log n. Then there exists an e > 0 such that either 
(a) for infinitely many n, an > (1 + e)n log n, or 
(b) for infinitely many n, an < (1 — e)n log n. 

We shall show that (a) cannot hold, and that a similar proof works for (b). 
Since xn —> 1, there exists N(e) such that for all n > N, xn < 1 + e/2. By 
Lemma 2.4 there exists an M(e, N) such that, for all k > M and for some 
n > N, 

a* < (xn + e/2)k log k < (1 + e)k log k, 

which contradicts (a). 

In another paper (2) we have considered sieving intervals of length y.n 

(a function of an
{n)) ; that is, one element is eliminated from each of the intervals 

Ik(n) = {a<n)\n + (k — 1)/^ <j<n + kfxn}} k > 1. 

For these untranslated intervals and ixn = Xaw
(w), for some constant X, we 

obtained an ~ \~ln log n. The case of translated intervals can also be handled 
in a manner similar to that developed in this paper. 

We shall now turn our attention to the investigation of the second term. 
Throughout the discussion we continue with the assumption that 

an = (c + o(l))(an)
a(logan)

b. 

Using this in the relationship 

q + aq<n<q + l+ aQ+u 

we obtain 

(14) n = {c + o(l))qa(log q)a+b, 

and solving for q yields 

(15) q = {(1 + o(l))aa+»c-ln{\og n)-a~b}1/a. 

The iterative procedure produces the result 

cr, = ( 1 + 0 ( 1 ) ) / ( l o g » ) 
and, hence, 

cr» = (1 +o{l))/(a\ogn). 
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From this we prove the following lemma. 

LEMMA 3.1. Eq{an + 1) = (1 + o(l))n/(logn). 

Proof. If the values for an, an, and <rq are substituted into the definition of 
Eq(an + 1 ), then we have 

E^a" + X> = i L ? ( É U + o(l))log k 
lOg 7Z \ k=ko 

+ T, (c + o(l))aka-1(logk)a+i) 
k=ko / 

from (14). 
= (i + 0(i))»/aog«) 

In order to obtain a second term for an we need a second term for <rn/crq 

and this, in turn, relies on a second term for an. Therefore we cannot obtain 
a second term using these methods. However, this relationship between the 
second terms of an and an/(rq suggests that if certain assumptions are made 
concerning the existence of a second term, we can obtain results concerning 
its value. 

LEMMA 3.2. If 

an — n log n = A(l + o{\))n (log log n)B, 

where A and B are constants, then 

«J** = a-*[l + (1 + o(l)){A(a - 1) (log log n)B 

— (a + b)log log n}/(log n)]. 
Proof. 

<Tn/vq = exp ( X) log (1 - l/ak)) 
\k=q+l / 

--p U,^0-»ai+a + . a ) ) ^ ^ 
- « p ( - i i 7 L t + ( i + O ( D M r <l0*,'og,?)'). 

\ k^q+1 kiOgk k±£l kl0gk / 
The second sum can be estimated as follows, using (15): 

£ (loglogfe)B_ r (log log x)B
dx 0((loglogq)*\ 

*4+i * '°g2& J« * i°g2^ V e log2? / 
, ( d o g l o g g ) ' _ dog l o g » ) ' ) / / l \ \ 

\ log q log » / \ Mog log nl / 
= (1 + 0(1))(a - l)( loglogW)7(k>g»). 
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The first sum is readily evaluated so that if we use the expression for 
(log g)/(log ») and estimate the remainder of the exponential with 

exp u = 1 + u(\ + 0(1)), 
we have 

= ^ { 1 - (a + b)(l + 0(I)) (log log n)/(log n)} 

X{1 + A(a - l)(l + o(l))(loglogn)B/(logn)} 

= a-\l + (1 + o(l)){A(a - l ) ( log log») 5 - (a + b) log log»}/(log»)]. 

One can now use Lemma 3.2 to compute (an crw)_1, where 

an<Tq = » — (1 + o(l))n/(log ») 

from Lemma 3.1. Then 0V1, erf1, and an can be successively computed and 
the result compared with the original assumption about an. The pattern of 
computations is the same as in the proof of Theorem 2 so that only the following 
expressions will be given: 

~ - = I [1 - (1 + o(l)){A(a - 1) (log log»)* 

- ( a + 6)(log log») - l}/(log»)], 

^ = a log n - a(\ + 0 ( i ) ) ( ^ = i i (log log n)B+1 

(16) - ~r~ Gog log »)2 - log log » ) , 
2 

1 _ i _ _ ./1 _i_ „ / - m M ( g - D O(1)\-BTT 
\B+1 = log» - a ( l + o(l))^ ^ _,_ , (log log») 

- ^ — (log log »)2 + - log log »y , 

a, = » log » - a»(l + 0 ( l ) ) ( ~ | q ~ - (log log »)*+1 

- ° 2 (log log »)2 + - log log » ) . 

We shall now examine three cases. 

Case 1. B = 1. The resulting form becomes 

an = nlogn - \an(\ + o(l))(A(a - 1) - (a + b)) (log log »)2, 

where the second term is of too high an order of magnitude unless 

A = (a + i ) / ( a - 1). 
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The case a = 2, b = — 1 yields A = 1 so that the prime-like case is not ruled 
out. 

Case 2. B > 1. The form for an which results is 

an = nlogn - (1 + o(l))(A(a - l ) / ( 5 + 1)) (log log»)1*1 , 

where the second term is now always of too high an order of magnitude. 

Case 3. B < 1. The resulting form for an is 

an = nlogn + \a{a + 6)(1 + 0(1))» (log log n)2 

which is also too large if a + b ^ 0. If a + b = 0, we have a contradiction 
unless i? = 0 in which case A = (a — l ) - 1 must hold. 

Further possible forms for the second term of an can be eliminated by 
repeating the above arguments with inequalities. 

LEMMA 3.3. If B > 1 and an — n log n > (log log n)B for n sufficiently large, 
then 

0-,/er, > a -^ l + (1 + 0 ( l ) ) { 4 ( a - 1) Gog log»)* 
— (a + b) log log »}/(log »)]. 

Proof. Repeat the proof of Lemma 3.2, substituting > for = throughout. 

We can now repeat the arguments in (16) substituting the appropriate 
inequality for the equality and obtain 

an- nlogn < -A(a - \)a{B + l ) " 1 ^ + o(l))n(log log n)B+\ 

Comparing this with the hypothesis of Lemma 3.3 we arrive at a contradiction; 
thus, we may eliminate all second terms whose order of magnitude is 
> »(log log »)1 + e . In a completely analogous way, one can eliminate terms 
whose order of magnitude is <»(log log »)1 _ e , except for the exceptional cases 
already noted concerning B = 0. 

Although the results here cited are negative and fragmentary, there is ample 
evidence to support the conjecture that if a second term exists, it must be of 
the form 

a + b 
n log log n, 

which is the prime-like case for a = 2, b = —1 . 

Added in proof: The authors would like to thank Martin Bates for cor
recting an error in the proof of Lemma 2.3. 
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