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Abstract

Let Out(RG) be the set of all outer /{-automorphisms of a group ring RG of arbitrary group G over a
commutative ring R with 1. It is proved that there is a bijective correspondence between the set Out (RG)
and a set consisting of R(G x G)-isomorphism classes of i?-free R(G x G)-modules of a certain type. For the
case when G is finite and R is the ring of algebraic integers of an algebraic number field the above result
implies that there are only finitely many conjugacy classes of group bases in RG. A generalization of a
result due to R. Sandling is also provided.

1980 Mathematics subject classification (Amer. Math. Soc.y. primary 20 C 07; secondary 20 C 05.

For R a commutative ring and A an i?-algebra, let PicK04) be the group of
isomorphism classes of invertable (A, A)-bimodules for which the left and the right
/^-module structure coincide. The significance of PicR(,4) in its relation to the
automorphism group AutR(A) of the algebra A was vividly demonstrated in
Frohlich (1973) which contained among other results the existence of a homomor-
phism Q of AutR(^) into PicR(,4) whose kernel is the group of all inner
automorphisms of A.

In the first part of the paper we give an explicit description of Q for the case when A
is a group algebra KG of an arbitrary group G over a commutative ring R with 1.

We shall say that two group bases Gt and G2 of RG are conjugate in RG if
u~1Glu = G2 for some invertible element u in RG. It is a consequence of the above
description that if G is finite and if R is the ring of algebraic integers of an algebraic
number field then there are only finitely many conjugacy classes of group bases in
RG. As another application of the above description we shall establish a criterion for
when two isomorphic group bases in the integral group ring ZG of a finite group G
are conjugate in QG. In the second part of the paper we prove that if G is an arbitrary
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386 G. Karpilovsky [2]

group, K is an arbitrary associative ring with 1,1(G) is the augmentation ideal of KG
and N/M is an abelian section of G then there is a K-module isomorphism

I{N)KG ^K®
I(N)I(G) + I(M)KG~ ^

Moreover, if M/N is a normal abelian section then the above isomorphism is a KG-
isomorphism where the KG-module structure on K ® z N/M is defined by

g(k ®znM) = k ®zgng~lM (keK,neN,geG).

This result was established by R. Sandling in Sandling (1972) for the case K = Z.

1. Automorphisms of RG and R{G x G)-modules

Let RG be a group algebra of an arbitrary group G over a commutative ring R
with 1. Denote by U(RG) the group of units of RG and by Aut (RG) the group of all
R-automorphisms of RG. For each u e U(RG) let iu be the inner automorphism of RG
defined by iu(x) = u" 1 xu, xeRG. The group of inner automorphisms of RG is
defined as In (RG) = {iu | we [/(RG)}. It is clear that In (RG) is a normal subgroup of
Aut (RG). We set Out (RG) = Aut(RG)/In(RG), the outer automorphism group of
RG. We shall also write RG = RH when H is a group basis of RG.

We first need the following.

LEMMA. LetG — GxG and let for anyf e Aut (RG), Mf be the additive group ofRG.
Then Mj is a (left) R-free RG-module under the following action of RG:

n

for each t = X <*>{av bi) e R& and for each x e Mf,

t°x= T^aiXf(brl).
i= 1

PROOF. TO prove that Mf is an RG-module it is enough to check that Mf is a G-
module under the composition (a, b) ° x = axf(b~l), (a, b)eG,xe Mf. It is clear that
for any xl,x2eMf, (a,b)°(xl+x2) = (a,b)ox1+(a,b)°x2 and that (1, l ) ° x = xfor

any x e Mf. Let (c, d) e G. Then for any x e Mf,

[(a,b)(c,d)-] ox = acxf(d- l)f(b~l) = (a,b)° [_cxf(d~')] = (a,b)° [(c,d)o*].

Hence Mf is an RG-module. Since the group algebra RG is an R-free module and
sincer(l, l ) °x = rx for any r e R, x e RG it follows that Mf is also R-free, regarded as
RG-module, proving the lemma.
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Denote by P(RG) the set, consisting of all RG~-isomorphism classes (Mf) of RG-
modules Mf, where / ranges all elements of Aut (RG). Let also Mf = M for
/ = identity automorphism. We are now ready to prove the following.

THEOREM 1. The mapping Q: Out (KG)-> P(RG) defined by Q[ / In (KG)] = (Mf) is a
bijection. In particular, feln (RG) if and only if the RG-modules M and Mf are
isomorphic.

PROOF. Let <pe Aut(RG), ueU(RG) and let \j/ = <p.iu. Consider the mapping :

H : Mv —> M^ defined by /x(x) = x(p(u)

for any x e Mv. It is clear that // is an /^-isomorphism of RG-modules Mv and M^. On
the other hand, for any (a, b) e G and for any x e Mv we have

H({a,b)°x) = n(ax(p(b~1)) = ax(p(b'l)q>(u) = ax(p(u)(p(u~lb~l u) = af

= (a,b)ofj{x).

Hence \i is an RG-isomorphism and therefore the map Q is well defined. Now let

0 : Mv -» Ms be an RG-isomorphism and let u =

Then for any [a,b)eG and for any xeM^, the equality 6\_(a,b)°x] = (a,b)°0(x)
implies

(1) 6(ax<p{b-l)) = ae(x)f{b-i).

Taking x — b = 1 in (1) we obtain 9(a) = au for any aeG and since 6 is necessarily an
R-isomorphism of RG-modules Mv and Mf it follows that

(2) 9{x) = xu for any x e Mv.

Next choose a = x = 1 in (1), whence

for any beG and it follows from (2) that <p{g)u = uf(g) for any geG. Hence

(3) <p(x) u = u/(x) for any x e Mv

Therefore RGu = uRG and it follows from (2) that RG = RGM and RG = uRG
whence u e U(RG). It follows from (3) that for any x e Mv,

f(x) = u~1 (p(x) u, that is, / = iu (p.

This shows that the map Cl is one-to-one and since Q is obviously surjective, the
proof is complete.
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Until now G could have been any group. The assumption that G is finite will now
be brought into play. Let ZG = ZH where G is a finite group, G ^ H and let H be a
normalized group basis of ZG, that is H is a basis consisting of units having
augumentation 1. It is natural to ask whether there is a unit u in ZG such that
H = u~l Gu. That this is not always the case was first proved in 1966 by S. D.
Berman and A. R. Rossa (Berman and Rossa (1966)). Therefore we are led to ask
whether for an arbitrary finite group G the number of conjugacy classes of group
bases in ZG is finite. For the case R = Z the following corollary gives a positive
answer to this question.

COROLLARY 1. There are only finitely many conjugacy classes of group bases in RG
where R is the ring of algebraic integers of an algebraic number field and G is a finite
group.

PROOF. The application of Zassenhau's Theorem (Curtis and Reiner (1962)) and of
the above Theorem implies that the group Aut (RG)/ln (RG) is finite. Let

Aut (RG) = In (RG) + In (RG) <p2 +... + In (RG) <p,

be the coset decomposition of Aut (RG) with respect to In (RG). Suppose that H is an
arbitrary group basis of RG. Since | H | = | G | there exists only a finite number of
nonisomorphic group bases in RG, say, G1,G2,.-,Gn. Hence H = Gt for some
ie{l,2,...,n} and therefore there exists fe Aut (RG) such that f(Gt) = H. Since
/ = 6<pj for some Oeln(RG) and some ; e { 1,2,...,t} then/(Gf) = u~l (p,(G,)u for
some ueU(RG), that is H is conjugate to <p,(Gj), proving the result.

Another consequence of Theorem 1 is the following.

COROLLARY 2. Let ZG = ZH where G is finite, H ^ G and let f be the automorphism
of the rational group algebra QG which is the extension of the isomorphism H -+Gby
Q-linearity. Denote by M (respectively Mf) the Q(G x G) module QG defined by
(a,b)°x = axb~\(a,b)eGx G,xeQG (respectively the Q(Gx G)-module QG defined
by (a, b)ox = axf(b ~l)). Then H is conjugate to G in QG if and only ifx = Xf where x
(respectively Xf) is the character ofGxG afforded by M (respectively Mf).

PROOF. All we have to do is to notice that Q(G x G)-modules M and Mf are
isomorphic if and only if x = X/ a n d aPPly Theorem 1.

We now digress for a moment to make a few remarks. Note that the character
table of a finite group G is determined by ZG (Saksonov (1966)). Since Sn is
determined by its character table (Nagao (1957)) it follows that Sn is determined up
to isomorphism by ZSn. Hence the application of a result due to G. Peterson
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(Peterson (1976)) implies that in QSn, Sn is conjugate to any normalized group basis
in ZSn. It is not however known whether any normalized group basis in ZSn is
conjugate in ZSn to Sn. That any normalized group basis of ZS3 is conjugate in ZS3

to S3 is a result due to Hughes and Pearson (Hughes and Pearson (1972)). Finally,
note that there is an intimate connection between the conjugacy of group bases and
isomorphism problem. Indeed as it was pointed out in Whitcomb (1968) that if G is a
p-group of class 2 and if every normalised group bases in ZG is conjugate in Op G to
G where 0p the ring of p-adic integers, then any p-group of class ^ 5 is determined by
its integral group ring.

2. Module Isomorphisms

In this section G always denotes an arbitrary group and K denotes an associative
ring with 1. The augmentation ideal I(G) of the group ring KG is the kernel of the
homomorphism from the group ring KG to K induced by collapsing G to the unit
group. If C and D are subsets of KG, define the Lie bracket (C, D) as the subgroup of
the additive group of KG generated by all (c, d) = cd - dc, c in C, d in D. Let N and M
be subgroups of G. Then the identity ( a - \,b-\) = ba{a~l b~l ab-l), a,beG
implies KG.I([N,M~\)^KG(I(N),I(M)) and in particular

(4) KG. /([N, G])< KG(I(N), /(G)).

The homomorphism G -»K(g)z G/G' determined by # - > l ® g G ' is called the
universal homomorphism of G into the additive group of a K-module. We shall
denote the kernel of this homomorphism by G(K>.

In this section we shall prove the following result.

THEOREM 2. Let N/M be an abelian section of G. Then there is a K-module
isomorphism

I(N)KG
I(N)I(G) + I(M)KG- ^

Moreover if M/N is a normal abelian section then the above isomorphism is a KG-
isomorphism, where the KG-module structure on K (x)z N/M is defined by
g(k (x) nM) = k <S> gng ~i M (geG,ke K,ne N).

PROOF. Let J = I(N)I(G) + I(M) KG, L= I(N) KG and let T be a right transversal
of G relative to N containing 1. We first observe that L is a free K-module on the
basis {(n -1) 111 e T, 1 # n e N} and that

*¥: L/J ->K<g)zN/M

where *F[(n — l ) t + J ] = 1 ® nM is a K-module epimorphism.
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The mapping

<p: K®ZN/M->L/J
denned by <p(l ® nM) = (n — l) + J is a K-module homomorphism. It is easy to see
that q> is the inverse of ij/, proving the first part of the theorem. Suppose that N/M is a
normal abelian section. Since the set X = {(n - 1) + J | n e JV} is a generating set of a
X-module L/J the second part of the theorem will be established once we verify that
for any g e G and any n e JV, *¥[g(n — 1) + J ] = g^TJn— 1) + J ] . Since the last equality
is a consequence of the identity g{n— 1) = {gng~l — Y)g and the congruence
(gng~l — 1) g = gng~* — 1 (mod J), the result follows.

The following corollaries are well known for the case K = Z (see Sehgal (1978)).

COROLLARY 1. Let N be a subgroup ofG. Then there is a K-module isomorphism

I(N)KG ^ ^

Moreover, ifN < G then the above isomorphism is a KG-isomorphism where the KG-
module structure on K (x)z N/N' is defined by g(k ® nN') = k ® gng ~' JV'
{geG,keK,neN).

PROOF. Since I(N') KG s I(N)2 KG ^ I(N).I{G) the application of Theorem 2 for
the case M = N' implies the desired isomorphism.

COROLLARY 2. Let N be a normal subgroup ofG. Then there is a KG-isomorphism

where the KG-module structure on K ®ZJV/[JV, G] is defined by

g(k<8>n[N,G]) = k®(gng-l)[N,G] (keK,neN,geG)

PROOF. If M = [JV, G] then N/M is a normal abelian section of G and all we have
to do is to prove that

(5)

It follows from (4) that

I(M) KG c KG (/(JV), /(G)) s /(JV)/(G) + I(G). /(JV),

whence

/(JV). /(G) + I(M) KGc l(N). /(G) + /(G) I{N).
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On the other hand, the identity

+ (g-l)(g-1 n~l gn-^ + ig'1n"1 gn-l)

+ (n-l)(g-ln-lgn-l)

implies

I(G). I(N) £ I(N). I(G) + I(M) KG.

Hence

proving (5) and thus completing the proof.

The next corollary is known for the case when K is a commutative ring with 1 (see
Bergman and Dicks (1975)).

COROLLARY 3. Gn (1 +/(G)2) = G<K\

PROOF. Let 6 : G -> K <g) G/G' where 8(g) = 1 <g) gG'. Then 8 determines a K-
module homomorphism fi: I(G)-> K<g)zG/G' where ii(g — \) = 1 ®gG'. Since
8{g) = n(g— 1), so3eG< x >ifand only if ̂  — leKer/ i . By taking the case N = Gand
M = G' in the proof of Theorem 2, we see that Ker n = /(G)2, as desired.
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