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1. Introduction. Let X be a Banach space, and denote byL(X) the Banach algebra
of all bounded linear operators on X. An operator T ∈ L(X) is called a Riesz operator
if the coset T + K(X) is quasinilpotent in the quotient algebra L(X)/K(X), where
K(X) is the closed ideal of compact operators in L(X). We refer the reader to Dowson
[[4], Part 2] for some basic properties of Riesz operators. For T ∈ L(X), denote the
null space of T by N(T) and the range of T by R(T). The smallest integer n such that
N(Tn) = N(Tn+1) is called the ascent of T and it is denoted by α(T). The descent of
T is the smallest integer n such that R(Tn) = R(Tn+1) and it is denoted by δ(T). If M
is a closed subspace of X invariant under T (i.e. T(M) ⊆ M), then the operator TM

defined in L(X/M) by TM(x + M) = Tx + M is called the induced operator of T by
M. The restriction of T to M is denoted by T |M . If A is a C∗-algebra then the operator
T ∈ L(A) is said to be a homomorphism whenever T(xy) = TxTy for all x, y ∈ A.

2. Riesz operators. It is well known that a compact operator on a Banach space
is a finite rank operator if it has a closed range [1, Theorem 2.2.5]. We illustrate with
an example that this is not necessarily true for Riesz operators.

EXAMPLE 2.1. Let X be an infinite dimensional Banach space and Y = X × X .
Define an operator T : Y → Y by T(x1, x2) = (x2, 0) for all (x1, x2) ∈ Y . Then T is a
Riesz operator which is not of finite rank.

Since T2 = 0, it follows from the definition of a Riesz operator that T is a Riesz
operator. Note that T has a closed range, but T is not a finite rank operator.

We are now going to provide conditions under which a Riesz operator is a finite
rank operator.

THEOREM 2.2. Let X be a Banach space and T ∈ L(X) a Riesz operator with
α(T) = p. If R(Tp) + N(Tp) is closed in X, then Tp is a finite rank operator.

Proof. If N = N(Tp) then ˜X = X/N is a Banach space. Note that the operator
˜T : ˜X → X defined by ˜T(x + N) = Tpx (x ∈ X) is well defined and that Tp = ˜T ◦ π ,
where π : X → ˜X is the canonical quotient map. Since N is a closed invariant subspace
of X under Tp, (Tp)N defined on ˜X by Tp

N(x + N) = Tpx + N is a well-defined operator
too. Also, note that (Tp)N is Riesz operator [4, Theorem 3.23]. It is not difficult to see
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that (Tp)N is one-to-one and deduce that its inverse (T−p)N exists as a linear operator
defined on R((Tp)N). Since R(Tp) + N(Tp) is closed in X , it follows from [8, Theorem
II.5.2] that π (R(Tp)) is closed in ˜X . This together with R((Tp)N) = π (R(Tp)) gives
that (Tp)N has a closed range. Therefore, the identity IN = T−p

N ◦ Tp
N is also a Riesz

operator on ˜X and this implies that ˜X is finite dimensional. Since R(Tp) = R(˜T) is
finite dimensional, we are done. �

COROLLARY 2.3. Let T be a Riesz operator on a Banach space X with α(T) = δ(T) =
p. Then Tp is a finite rank operator.

Proof. Note that X = R(Tp) ⊕ N(Tp) whenever α(T) = δ(T) = p [4, Proposition
1.51]. Since R(Tp) ⊕ N(Tp) is closed in X , it follows from Theorem 2.2 that Tp is a
finite rank operator. �

One can provide an alternative proof for the above corollary by using the restriction
operator instead of the induced operator. Indeed, if α(T) = δ(T) = p then one can
again decompose X as a direct sum X = M ⊕ N, where M = R(Tp) and N = N(Tp). In
view of [2, Lemma 3.4.2], M and N are closed invariant subspaces under T. Hence, T |M
and T |N are Riesz operators [4, Theorem 3.21]. Define projections PM : X → M and
PN : X → N by PM(x1 + x2) = x1 and PN(x1 + x2) = x2, for all x1 + x2 ∈ M ⊕ N. If
TM = (T |M)PM and TN = (T |N)PN, then T = TM + TN and Tp = (TM)p since TN is
nilpotent and TMTN = TNTM = 0. Hence, by [2, Lemma 3.4.2] Tp is a bijective Riesz
operator and consequently Tp is a finite rank operator.

3. C∗-algebras. Ghahramani in [6, Theorem 1] proved that a compact
homomorphisms on a C∗-algebra is a finite rank operator. Mathieu in [7] generalized
this result by proving that a weakly compact homomorphism defined on a C∗-algebra
with range in a normed algebra is a finite rank operator. For an analytical proof of this
fact, we refer the reader to Galé and Ransford in [5, Theorem 3.1]. In this section we are
going to investigate to what extent the result of Ghahramani [6] can be generalized to
Riesz operators on C∗-algebras that are also homomorphisms. Note that, in general,
Riesz operators need not be weakly compact and weakly compact operators need
not be Riesz operators. Firstly, we illustrate with an example that a Riesz operator
defined on a C∗-algebra that is also a homomorphism need not be a finite rank
operator.

EXAMPLE 3.1. Let A be a non-unital C∗-algebra and B be the C∗-algebra defined
by B = A × A. The operator S : B → B defined by S(x, y) = (y, 0) for all (x, y) ∈ B is
a Riesz operator and also a homomorphism. But S is not a finite rank operator.

By Example 2.1, S is a Riesz operator that is not a finite rank operator. However,
it is easy to verify that S is also a homomorphism. By adjoining an identity to B in the
above example, one can construct an unital C∗-algebra denoted by �1 ⊕ B and prove
that S can be extended to a Riesz operator S defined by S(λ, (x, y)) = (λ, S(x, y)) for
all (λ, x) ∈ �1 ⊕ B. Again, it is straightforward to show that S is a homomorphism.
To prove that S is a Riesz operator, it suffices to define a projection P on �1 ⊕ B
by P(λ, x) = (λ, 0) for all (λ, x) ∈ �1 ⊕ B and to consider two operators S1 and S2

defined by S1 = SP and S2 = S(I − P), respectively. Note that S and P commute and
S = S1 + S2. Also, note that S1 is a rank one operator and S2

2 = 0. Then using the
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definition of a Riesz operator, it follows that S is a Riesz operator but S is not a finite
rank operator.

In our next results, we are going to provide conditions under which a
homomorphism that is also a Riesz operator defined on a C∗-algebra is a finite rank
operator.

PROPOSITION 3.2. Let A be a C∗-algebra and T : A → A a Riesz operator. If T is a
monomorphism then T is a finite rank operator.

Proof. It follows from [3, Theorem 5.4] that T has a closed range. Hence, its inverse
T−1 is bounded and the identity I = T−1 ◦ T : A → A is a Riesz operator too. So A is
finite dimensional and consequently T is a finite rank operator. �

THEOREM 3.3. Let A be a C∗-algebra and T : A → A a Riesz operator. If T is a
homomorphism with α(T) = p, then Tp is a finite rank operator.

Proof. Let T be a Riesz operator with α(T) = p. So Tp is a Riesz operator
too. If N = N(Tp) then ˜A = A/N is a C∗-Algebra because N is a closed ideal of A.
Consider the factorization Tp = ˜Tp ◦ π, where π : A → ˜A is the canonical mapping
and ˜Tp : ˜A → A is defined by ˜Tp(x + N) = Tpx for all x ∈ A. If (Tp)N : ˜A → ˜A
is the induced map, then (Tp)N is a one-to-one Riesz operator and it is also a
homomorphism. Therefore, (Tp)N has a closed range [3, Theorem 5.4]. Hence, the
identity I = [(Tp)N ]−1 ◦ [(Tp)N)] is a Riesz operator. Thus, ˜A is finite dimensional and
consequently Tp is a finite rank operator. �

COROLLARY 3.4. Let A be a C∗-algebra and T : A → A a Riesz operator. If T is
a homomorphism with α(T) = p and N = N(Tp), then the induced operators (Tr)N are
finite rank operators for r = 1, 2, . . .

Proof. Since (Tr)N = (TN)r and the collection of finite rank operator is an ideal, it
suffices to prove the statement for r = 1. If N = N(Tp) then A/N is a C∗-algebra and TN

is a well-defined Riesz operator [4, Theorem 3.23]. Note that TN is a monomorphism.
Thus, our proof is complete using Proposition 3.2. �
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