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The interface between two immiscible fluids can become unstable under the effect of
an imposed tangential electric field along with a stagnation point flow. This canonical
situation, which arises in a wide range of electrohydrodynamic systems including at
the equator of electrified droplets, can result in unstable interface deflections where the
perturbed interface gets drawn along the extensional axis of the flow while experiencing
strong charge build-up. Here, we present analytical and numerical analyses of the stability
of a planar interface separating two immiscible fluid layers subject to a tangential electric
field and a stagnation point flow. The interfacial charge dynamics is captured by a
conservation equation accounting for Ohmic conduction, advection by the flow and finite
charge relaxation. Using this model, we perform a local linear stability analysis in the
vicinity of the stagnation point to study the behaviour of the system in terms of the
relevant dimensionless groups of the problem. The local theory is complemented with a
numerical normal-mode linear stability analysis based on the full system of equations and
boundary conditions using the boundary element method. Our analysis demonstrates the
subtle interplay of charge convection and conduction in the dynamics of the system, which
oppose one another in the dominant unstable eigenmode. Finally, numerical simulations
of the full nonlinear problem demonstrate how the coupling of flow and interfacial charge
dynamics can give rise to nonlinear phenomena such as tip formation and the growth of
charge density shocks.
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1. Introduction

A century ago, Zeleny (1917) photographed instabilities of electrified interfaces, sparking
interest into understanding the phenomenon. The mechanisms of interface destabilization
by electric fields have been studied in the pioneering works of Taylor (1964), Taylor
& McEwan (1965) and Melcher and coworkers (Melcher & Schwarz 1968; Melcher &
Smith 1969), followed by an extensive body of research aimed at gaining more detailed
fundamental understanding and at exploiting electrohydrodynamic (EHD) instabilities in
novel applications (Melcher & Taylor 1969; Saville 1997; Griffing et al. 2006; Barrero &
Loscertales 2007; Fernández de La Mora 2007; Wu & Russel 2009; Basaran, Gao & Bhat
2013; Ganan-Calvo et al. 2018; Papageorgiou 2019; Vlahovska 2019).

Interfaces polarize in applied electric fields. Free charges brought by conduction
accumulate at the boundary between phases and the electric field acting on this induced
charge creates shear stresses that drag the fluids into motion (Melcher & Taylor 1969). In
the case of a drop in a uniform electric field, the classic small-deformation analysis by
Taylor (1966) showed that the resulting EHD flow consists of two toroidal vortices inside
and a stresslet-quadrupole flow outside the drop. Depending on the electric properties
of the fluids, the surface flow is directed either to the poles or to the equator. The latter
case is shown in figure 1(a). In strong fields, however, this flow undergoes a plethora of
instabilities that may result in drop breakup (Taylor 1964; Torza, Cox & Mason 1971;
Sherwood 1988; Lac & Homsy 2007; Karyappa, Deshmukh & Thaokar 2014). Droplet
disintegration can proceed in various patterns depending on fluid properties. In the case
of the pole-convergent flow, the drop can develop conical tips that emit jets, which
subsequently break up into droplets (Collins et al. 2008, 2013; Mohamed et al. 2016;
Sengupta, Walker & Khair 2017). In the case of the equator-converging flow, the drop
either dimples at the poles and breaks into a torus, or deforms into a pancake-like lenticular
shape with a sharp edge emitting rings encircling the drop (Brosseau & Vlahovska 2017;
Wagoner et al. 2020).

While EHD streaming from Taylor cones has been extensively studied (Collins et al.
2008, 2013; Herrada et al. 2012; Ganan-Calvo et al. 2016), the mechanisms underlying
the equatorial streaming remain an open question. Noting the similarity between the
EHD tip streaming and the tip streaming in flow focusing (Barrero & Loscertales 2007;
Ganan-Calvo & Montanero 2009; Anna 2016), Brosseau & Vlahovska (2017) speculated,
in the original paper that reported the phenomenon, that the EHD equatorial streaming
arises from an interfacial instability due to a convergent flow (Pozrikidis & Blyth
2004; Blyth & Pozrikidis 2005; Tseng & Prosperetti 2015). Near a stagnation point, a
perturbation of the interface may get drawn by the flow and grow into a fluid filament
if viscous stresses overcome interfacial tension. Unlike flow focusing, however, EHD
streaming involves both flow and electric field. In EHD tip streaming, the electric field is
initially normal to the interface at the stagnation point, while in EHD equatorial streaming,
the applied field is parallel to the interface at the stagnation line.

In this work, we analyse the effect of an electric field on the convergent flow instability
in a configuration mimicking the EHD equatorial streaming as depicted in figure 1(b). We
develop a two-dimensional model to study the dynamics of a system of two superimposed
layers of fluids subject to a tangential electric field and a stagnation point flow. The
convergent flow and the electric field are assumed to be independently applied, unlike
the equatorial EHD instability, where the flow is generated by the electric field. Despite
this simplification, the analysis provides valuable insights into mechanisms responsible
for the EHD equatorial streaming such as the evolution of the convergent line instability
and the emergence of charge shocks. We present the governing equations in § 2 and
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Instability of a planar fluid interface
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Figure 1. An oblate drop under a uniform electric field. (a) The quadrupolar EHD flow from the poles to the
equator. (b) Convergent streamlines and tangential electric field in the vicinity of the stagnation line.
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Figure 2. Problem definition. Two immiscible fluid layers are subject to a tangential electric field E0 and to a
planar extensional flow u∞(x), with a stagnation point located at the origin O on the interface.

their non-dimensionalization in § 3. We develop a local linear stability theory in § 4.
To supplement our theory, we employ the boundary element method, outlined in § 5,
to perform numerical simulations as well as a numerical linear stability analysis. We
compare the results from the local theory, numerical linear stability analysis and transient
simulations in § 6. Finally, we conclude and discuss potential extensions of this work in
§ 7.

2. Problem definition and governing equations

We study EHD instabilities that arise at the interface S between two immiscible fluids
under the combined effects of a tangential electric field E0 and of an imposed stagnation
point flow u∞(x), to be specified more precisely later. The two layers are labelled 1 and 2
as depicted in figure 2, with fluid 1 occupying the lower half-space. The applied electric
field is uniform along the x direction, and the stagnation point is located on the interface
at the origin O of the coordinate system. At equilibrium, the interface is uncharged and
flat and coincides with the plane z = 0, and we consider two-dimensional dynamics in the
(x, z) plane. The shape of the deformed interface is parametrized as z = ξ(x, t), and has
unit normal n pointing from fluid 1 into fluid 2.
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Both fluids are leaky dielectrics with electric conductivity σ , electric permittivity ε
and dynamic viscosity μ. While we formulate the governing equations to allow for
distinct viscosities, all the results presented in § 6 are for equiviscous fluids. Under
the Taylor–Melcher leaky dielectric model (Melcher & Taylor 1969), any net charge in
the system occurs at the location of the interface while the bulk of the fluids remains
electroneutral. The Taylor–Melcher leaky dielectric model can be formally derived from
more detailed electrokinetic models based on the Poisson–Nernst–Planck equations in the
limit of strong electric fields and under the assumption of thin Debye layers (Schnitzer
& Yariv 2015; Mori & Young 2018). As an example, these assumptions are valid for
millimetre-sized drops of leaky dielectric liquids subject to electric fields of magnitude
E0 ∼ 103 V cm−1 according to Saville (1997). Under these assumptions, the electric
potential is harmonic in both fluids:

∇2ϕ = 0, x ∈ V1,2. (2.1)

Far from the interface, the electric field E = −∇ϕ tends to the applied uniform field:

E → E0 = E0êx, as z → ±∞. (2.2)

Across the interface, its tangential component is continuous while a jump can arise in the
normal direction due to the mismatch in electrical properties:

n × [[E]] = 0, x ∈ S. (2.3)

We have introduced the notation [[F ]] = F2 − F1 for the jump of any variable F defined
on both sides of the interface. A surface charge density develops at the interface following
Gauss’s law:

q(x, t) = n · [[εE]], x ∈ S. (2.4)

This surface charge density satisfies a conservation equation accounting for finite charge
relaxation, Ohmic conduction from the bulk and charge convection by the flow:

∂tq + n · [[σE]] + ∇s · (qu) = 0, x ∈ S, (2.5)

where ∇s = (I − nn) · ∇ is the surface gradient operator and u is the total fluid velocity.
Neglecting the effects of inertia and gravity, the velocity field and its corresponding

pressure field satisfy the Stokes equations in both fluids:

− ∇p + μ∇2u = 0, ∇ · u = 0, x ∈ V1,2. (2.6a,b)

The velocity vector is continuous across the interface and approaches the applied flow far
from the interface:

[[u]] = 0, x ∈ S, (2.7)

and

u(x) → u∞(x), as z → ±∞. (2.8)

In the absence of Marangoni effects, the jump in hydrodynamic and electric tractions
across the interface is balanced by capillary forces:

[[f H]] + [[f E]] = γ (∇s · n)n, x ∈ S, (2.9)
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Instability of a planar fluid interface

with uniform surface tension γ . Hydrodynamic and electric tractions are expressed in
terms of the Newtonian and Maxwell stress tensors, respectively:

f H = n · T H, T H = −pI + μ(∇u + ∇uT), (2.10)

f E = n · T E, T E = ε(EE − 1
2 E2I). (2.11)

Finally, the interface evolves and deforms under the local velocity field as a material
surface. Defining the function g(x, t) = z − ξ(x, t), the kinematic boundary condition
reads

Dg
Dt

= 0, x ∈ S, (2.12)

leading to the condition

∂tξ = −u∂xξ + v, (2.13)

where u = (u, v) are the velocity components. We also note that the surface normal is
given by n = ∇g/|∇g|.

Our focus is on analysing the stability of the interface near a stagnation point, and to
this end we choose the background flow u∞ = (u∞, v∞) to be extensional along the z
direction, compressional along the x direction and with a stagnation point at the origin. The
strength of the background flow is characterized by the local strain rate at the stagnation
point, which is denoted by A = ∂zv

∞, where A > 0. Three different types of background
flows are used in this study and are illustrated in figure 3. The first type, depicted in
figure 3(a), is simply the linear flow u∞ = (−Ax,Az), which is used in the development of
the local linear theory of § 4. The numerical scheme of § 5, however, requires periodicity
in the x direction, and for this reason we also consider two periodic flow fields. The first
one is the Taylor–Green vortex (Taylor & Green 1937) shown in figure 3(b) and defined as

u∞ = U∞ cos
(

ax − π

2

)
sin
(

bz − π

2

)
, (2.14)

v∞ = V∞ sin
(

ax − π

2

)
cos

(
bz − π

2

)
, (2.15)

where

U∞a + V∞b = 0, a = b = 2π

Lp
. (2.16)

The local strain rate at the stagnation point is then simply given by

A = ∂zv
∞(0, 0) = V∞b. (2.17)

We also consider a second background flow shown in figure 3(c) and induced by a periodic
array of anti-parallel point forces separated by distances Lp and d along the x and z
directions, respectively:

u∞ = 1
4π

[GP(x, xu
0) · m − GP(x, xl

0) · m], (2.18)

where m = mêz is the strength of the point forces, xu
0 and xl

0 are the locations of upper
and lower point forces, respectively, and GP is the singly periodic Green’s function for the
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(b)(a)

0
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x

Figure 3. Streamlines of the various background flows used in this study. (a) Linear planar extensional flow,
(b) periodic Taylor–Green vortex and (c) periodic array of anti-parallel point forces separated by d and Lp along
the z and x directions, respectively. The origin is marked with a ‘+’, the positions of the point forces are marked
with triangles and the interface is located at z = 0.

Stokes equations (Pozrikidis 1992). The local strain rate at the stagnation point is given by

A = ∂zv
∞(0, 0) = 1

8π

(
mk2

pd

cosh (kpd/2)− 1

)
, (2.19)

where kp = 2π/Lp is the wavenumber associated with the unit cell. In obtaining (2.19),
it is assumed that xu

0 = xl
0 = 0 and zu

0 = −zl
0 = d/2. Our numerical calculations produce

identical linear stability results for a given local strain rate under the two periodic flow
fields described by (2.15) and (2.18). In all transient nonlinear simulations, we use the
periodic array of point forces as background flow.

3. Non-dimensionalization

For the system presented above, dimensional analysis yields six non-dimensional groups,
three of which characterize the mismatch in physical properties between the two layers:

λ = μ1

μ2
, R = σ2

σ1
, Q = ε1

ε2
. (3.1a–c)

The other three parameters can be obtained as ratios of characteristic time scales in the
problem. First, we note that free charges in the bulk fluids relax on a conduction time scale
defined as

τc = ε

σ
. (3.2)

Note that the product RQ = τc,1/τc,2 is the ratio of the charge relaxation time scales in the
two liquid phases, and characterizes their responses to conduction. For instance, RQ > 1
when the lower layer is less conductive. The time scale for the deformed interface to relax
to its flat configuration under capillary effects can be defined as

τγ = μ2(1 + λ)
kγ

, (3.3)

where k−1 is the characteristic length scale associated with the deformation. In our
periodic simulations and analysis, we use the length scale k−1

p = Lp/2π based on the
periodicity of the base flow, whereas k is the wavenumber of the plane wave in the local
stability theory of § 4. The accumulation of free charges on the interface creates an electric
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Instability of a planar fluid interface

force that can drive the fluid into motion. The time scale for deformations under this EHD
flow is inversely proportional to the magnitude of electric tractions on the interface:

τEHD = μ2(1 + λ)
ε2E2

0
. (3.4)

Finally, the characteristic time scale associated with the background flow is given by the
inverse of the applied strain rate at the stagnation point:

τf = A−1. (3.5)

Taking ratios of these time scales yields the three remaining dimensionless groups, which
we define as

CaE = τγ

τEHD

= ε2E2
0

γ k
, ReE = τc,2

τEHD

= ε2
2E2

0
μ2(1 + λ)σ2

, Â = τc,2

τf
= ε2A

σ2
. (3.6a–c)

The electric capillary number CaE compares electric with capillary forces, while the
electric Reynolds number ReE characterizes the importance of charge convection versus
conduction, the two mechanisms responsible for the evolution of the interfacial charge
distribution. Finally, Â is the dimensionless strain rate of the applied flow.

We scale the governing equations and boundary conditions using time scale τc,2,
length scale k−1, pressure scale ε2E2

0, velocity scale (τEHDk)−1 and characteristic electric
potential E0k−1. The dimensionless Stokes equations read

∇2u − (1 + λ)∇p = 0, x ∈ V2, (3.7)

∇2u − (1 + λ−1)∇p = 0, x ∈ V1. (3.8)

The charge conservation equation (2.5) becomes

∂tq + n · [E2 − R−1E1] + ReE∇s · (qu) = 0, x ∈ S, (3.9)

where

q = n · [E2 − QE1]. (3.10)

The stress balance at the interface is written

n · [−p2I + (1 + λ)−1(∇u2 + ∇uT
2 )+ p1I − (1 + λ−1)−1(∇u1 + ∇uT

1 )]

+ n · [(E2E2 − 1
2 E2

2I)− Q(E1E1 − 1
2 E2

1I)
] = Ca−1

E (∇s · n)n, x ∈ S. (3.11)

Finally, the kinematic boundary condition becomes

∂tξ = ReE(−u∂xξ + v), for x ∈ S. (3.12)

The remaining governing equations and boundary conditions in (2.1)–(2.3), (2.7) and (2.8)
remain unchanged in their non-dimensional form, and hence are not repeated here. In the
remainder of the paper, all equations and variables are presented in non-dimensional form.
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4. Local linear stability theory

We first perform a linear stability analysis in the vicinity of the stagnation point, in the
spirit of Tseng & Prosperetti (2015) who, following an approach previously proposed
by Pozrikidis & Blyth (2004), considered a similar problem with inertia but no electric
field. In the base state (subscript 0), the interface is flat and uncharged: ξ0(x) = 0,
q0(x) = 0. The applied electric field generates a potential ϕ0(x, z) = −x and results in
a pressure jump [[p0]] = (Q − 1)/2 across the interface. The base flow is taken to be
the planar extensional flow u0 = u∞ = (Â/ReE)(−x, z), which we represent in terms of
the streamfunction ψ0(x, z) = −(Â/ReE)xz with the convention (u, v) = (∂zψ,−∂xψ).
The base state variables are perturbed as

ϕ = ϕ0 + εϕ̃, ψ = ψ0 + εψ̃, p = p0 + εp̃, q = εq̃, ξ = εξ̃. (4.1a–e)

We substitute these expressions into the governing equations and boundary conditions and
linearize with respect to ε. Following Tseng & Prosperetti (2015), we neglect all terms
in the linearization that have non-constant coefficients, which restricts our analysis to the
neighbourhood of the stagnation point at (0, 0); the consequences of this approximation
are discussed in § 6. The governing equations for the potential and streamfunction in the
two regions are

∇2ϕ̃ = 0, ∇4ψ̃ = 0, (4.2a,b)

with jump conditions [[ϕ̃]] = [[ψ̃]] = [[∂zψ̃]] = 0 at the location of the linearized interface
z = 0. The charge conservation equation and Gauss’s law read

∂tq̃ − Âq̃ = ∂z(ϕ̃2 − R−1ϕ̃1)+ (1 − R−1)∂xξ̃ , (4.3)

q̃ = ∂z(Qϕ̃1 − ϕ̃2)+ (Q − 1)∂xξ̃ , (4.4)

while the kinematic and dynamic boundary conditions yield

∂tξ̃ = ReE∂xψ̃2 + Âξ̃ , (4.5)

Ca−1
E ∂xxξ̃ = p̃2 − p̃1 + (Q − 1)∂xϕ̃2 − 2

(
1 − λ
1 + λ

)
∂xzψ̃2, (4.6)

(1 + λ)q̃ = (1 − λ)[∂xxψ̃2 + 4ÂRe−1
E ∂xξ̃ ] + ∂zz(λψ̃1 − ψ̃2). (4.7)

Equations (4.2a,b)–(4.7) form a system of homogeneous constant-coefficient linear partial
differential equations. Recall from § 3 that in the present non-dimensionalization lengths
have been scaled by k−1, where k is the wavenumber of the perturbation. We therefore seek
normal-mode solutions of the form ϕ̃(x, z, t) = ϕ̂(z) exp(ix + st), with similar expressions
for all the variables. Equation (4.2a,b), along with the decay properties as z → ±∞, leads
to

ϕ̂i = Aie(−1)i−1z, ψ̂i = (Bi + Ciz)e(−1)i−1z for i = 1, 2. (4.8a,b)

Applying the boundary conditions yields an algebraic system for the unknown coefficients.
Setting its determinant to zero provides the dispersion relation for the growth rate s:

s = Â − ReE

[
1

2CaE
− (Q − 1)

2

{
R − 1 − (s − Â)(Q − 1)R

R + 1 + (s − Â)(Q + 1)R

}]
, (4.9)

where the dependence on wavenumber k is implicit via the electric capillary number
defined in (3.6a–c). The first term on the right-hand side of (4.9) shows that the
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Instability of a planar fluid interface

background flow is destabilizing when Â > 0, i.e. when the interface is aligned with the
compressional axis (Tseng & Prosperetti 2015). The second and third terms describe the
effects of capillary and electric stresses, respectively. A more detailed discussion of this
dispersion relation is deferred to § 6.

5. Boundary element method and numerical stability

We complement the local linear analysis of § 4 with numerical simulations and a numerical
stability analysis. We first present in § 5.1 a numerical method for the nonlinear solution of
the system of governing equations (3.7)–(3.11) based on the boundary integral equations
for the Laplace and Stokes equations in a periodic domain of period Lp along the x
direction. These simulations will provide insight into the dynamics of the system far
from its base state. The methodology is similar to that of Firouznia & Saintillan (2021),
and implements adaptive grid refinement to handle large local deformations and charge
gradients in the nonlinear regime of growth. Subsequently in § 5.2, we utilize the same
boundary element method to perform a numerical normal-mode linear stability analysis
by computing the Jacobian of the dynamical system and solving for its eigenspectrum to
identify fundamental modes of instability.

5.1. Boundary element method
We formulate the electric problem using the boundary integral equation for Laplace’s
equation (Sherwood 1988; Baygents, Rivette & Stone 1998; Lac & Homsy 2007):

ϕ1,2(x0) = −x0 · E0 −
∫

S
n(x) · [[∇ϕ(x)]]GP(x0; x)dl(x), for x0 ∈ V, S, (5.1)

where the evaluation point x0 can be anywhere in space whereas x denotes the integration
point on the interface. The periodic Green’s function for Laplace’s equation, GP(x0; x),
represents the potential due to a periodic array of point sources with period Lp along the
x axis (Pozrikidis 2002). Taking the gradient of (5.1) with respect to x0 and using Gauss’s
law (3.10), we can derive an integral equation for the jump in the normal electric field
across the interface:

−
∫

S
[[En(x)]][n(x0) · ∇0GP] dl(x)− 1 + Q

2(1 − Q)
[[En(x0)]] = En

0(x0)− q(x0)

1 − Q
, for x0 ∈ S.

(5.2)
Given the charge distribution q, (5.2) can be used to solve for [[En]], from which we obtain
En

1 and En
2 as

En
1 = q − [[En]]

1 − Q
, En

2 = q − Q[[En]]
1 − Q

. (5.3a,b)

The tangential electric field Et = −∇sϕ can then also be obtained by differentiating the
electric potential in (5.1) in the direction tangential to the interface.

Similarly, the flow problem can be formulated in boundary integral form as (Rallison &
Acrivos 1978; Pozrikidis 1992)

u(x0) = 2
1 + λu∞(x0)− 1

2π

∫
S
[[f H(x)]] · GP(x; x0) dl(x)

+ 1 − λ
2π(1 + λ)−

∫
S

u(x) · T P(x; x0) · n(x) dl(x), for x0 ∈ S, (5.4)

931 A25-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

96
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.967


M. Firouznia, M.J. Miksis, P.M. Vlahovska and D. Saintillan

where the hydrodynamic traction jump [[ f H]] is obtained from the dynamic boundary
condition (2.9). Here, GP is the singly periodic Green’s function capturing the flow due
to a periodic array of point forces separated by the distance Lp along the x direction, and
T P is the corresponding stress tensor (Pozrikidis 1992). Note that, in the results shown
below, we choose λ = 1 and therefore the double-layer potential vanishes in (5.4). The
single-layer potential exhibits a logarithmic singularity when x approaches x0, which we
isolate and treat separately with a quadrature designed for singular integrands (Stroud &
Secrest 1966). Gauss–Legendre quadrature with six base points is used for non-singular
elements.

The numerical algorithm for transient nonlinear simulations follows Firouznia &
Saintillan (2021) and Das & Saintillan (2017b) and can be summarized as follows. At
t = 0, the periodic flat interface is discretized into N elements using N grid points
with locations xi(t) that move with the normal component of the interfacial velocity to
satisfy the kinematic boundary condition. The interface shape is reconstructed using cubic
splines based on the grid point locations, which allows for an accurate and convenient
determination of geometric properties such as the normal and tangential vectors and
surface curvature, and for the accurate evaluation of surface integrals. Considering the
high order of accuracy of cubic spline interpolations with a reasonable grid resolution,
the most challenging errors are those incurred in the numerical integration, especially in
the treatment of the singular terms. The asymptotic rate of convergence of our method is
found to be between 1.5 and 2. More details on error analysis are presented in § 6.1.

At every time iteration, we perform the following steps:

(i) Given the current charge distribution q(x) and shape of the interface, compute
[[En(x)]] by numerically inverting (5.2) using a GMRES solver (Saad & Schultz
1986; Frayssé et al. 2005). From [[En(x)]], obtain En

1 and En
2 via (5.3a,b).

(ii) Determine the potential ϕ along the interface by evaluating (5.1).
(iii) Differentiate the surface potential numerically along the interface in order to obtain

the tangential electric field Et = −∇sϕ.
(iv) Knowing both components of the electric field, determine the jump in the electric

traction [[ f E]] and use it to obtain [[ f H]] using (2.9).
(v) Solve for the interfacial velocity using the Stokes boundary integral equation (5.4).

(vi) Compute ∂tq via (2.5) and update the charge distribution using a second-order
Runge–Kutta scheme.

(vii) Update the position of the interface by advecting the grid with the normal component
of the interfacial velocity: ẋi(t) = (u · n)n. Refine the grid locally if either the
curvature of the interface, magnitude of charge gradient, or length of the element
exceeds a certain threshold. Typical grids used in the simulations have N ∼ 1000
elements.

5.2. Numerical linear stability analysis
We also perform a numerical normal-mode linear stability analysis based on the full
system of equations and boundary conditions, following a method proposed by Pozrikidis
(2012) for the stability of pendant drops. We analyse the stability of the base state of a flat
interface with zero charge, which allows us to parametrize the interface as z = ξ(x, t). The
system of governing equations can be viewed as a dynamical system for the surface charge
density q(x, t) and interface deflection ξ(x, t), which evolve according to (3.9) and (3.12),
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or

∂t

[
q(x, t)
ξ(x, t)

]
=
[−n · [E2 − R−1E1] − ReE∇s · (qu)

ReE(−u∂xξ + v)

]
=
[Q(q, ξ)
Z(q, ξ)

]
, (5.5)

where the electric field E and velocity u are solutions of the boundary integral equations
(5.2) and (5.4). The right-hand side in (5.5) is evaluated on the interface. It can be viewed
as a nonlinear functional of the two variables (q, ξ) and can be calculated numerically
using the algorithm of § 5.1. The flat configuration with zero charge, given by q(x, t) =
ξ(x, t) = 0, is an equilibrium solution.

The numerical linear stability analysis is performed in a periodic domain of period Lp.
After spatial discretization of the unit period using N grid points, the dynamical system
(5.5) yields a system of coupled ordinary differential equations of the form

∂tY = J (Y ), (5.6)

where Y and J are vectors of length 2N containing the values of the variables at the grid
points:

Y = (q1, q2, . . . , qN, ξ1, ξ2, . . . , ξN) (5.7)

and
J = (Q1,Q2, . . . ,QN,Z1,Z2, . . . ,ZN). (5.8)

The linear stability of the equilibrium solution Y = 0 is studied by perturbing the system
as Y (t) = εŶ est. At linear order in ε � 1, we obtain a linear eigenvalue problem

J · Ŷ = sŶ , (5.9)

where

Jik = ∂Jk

∂Yi
(Y = 0) (5.10)

is the Jacobian of the system. The components of the Jacobian are calculated numerically
using a second-order central finite difference scheme:

Jik ≈ Jk(+δYi)− Jk(−δYi)

2δYi
, (5.11)

where each variable Yi is successively perturbed by a small amount ±δYi (corresponding
to a small perturbation of charge ±δq for i = 1, . . . ,N or of shape ±δξ for i = N +
1, . . . , 2N), and where Jk(±δYi) at the numerator is obtained using the boundary integral
method. Once J is known, its eigenvalues s provide the growth rates of the perturbation,
while its eigenvectors Ŷ capture the corresponding eigenmodes of charge and shape.

6. Results and discussion

We present results on the stability of the system by comparing predictions from the local
linear theory (LT) of § 4 and from the numerical linear stability analysis (Num-LSA)
of § 5.2. Nonlinear dynamics is also explored in transient simulations (TS) using the
boundary element method of § 5.1. We discuss our results in the following order. First,
we analyse the behaviour of the system subject to a tangential electric field in the absence
of any background flow in § 6.1. Next, in § 6.2, we study the effect of an extensional
background flow when there is no electric field. Finally, we characterize in § 6.3 the
interplay between the electric field and the flow when both are applied to the system
simultaneously.
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6.1. Effect of tangential electric field
We first consider the case where a tangential electric field is applied to the interface in
the absence of any background flow. In this case, results from the LT and Num-LSA are
expected to match, as the approximations of the LT only affect terms involving the applied
flow. Since the base flow is stationary and the interfacial charge is zero in the equilibrium
state, the effects of charge convection only arise at quadratic order and therefore have no
effect on the linear stability. The growth rate predicted by LT in this case is given by

s = −ReE

[
1

2CaE
− (Q − 1)

2

{
R − 1 − s(Q − 1)R
R + 1 + s(Q + 1)R

}]
. (6.1)

Note that the dependence on wavenumber k is through the electric capillary number, with
Ca−1

E ∝ k. Equation (6.1) is consistent with the results of Melcher & Schwarz (1968) in
the limit of zero inertia.

In the limit of instantaneous charge relaxation (i.e. considering only Ohmic terms in
(2.5)), the growth rate further simplifies to

s = −ReE

[
1

2CaE
− (Q − 1)(R − 1)

2(R + 1)

]
. (6.2)

The first term on the right-hand side is always negative and captures the stabilizing effect
of capillary stresses. It is proportional to k, indicating that surface tension preferentially
stabilizes high wavenumbers. The last term in (6.2) captures the effect of electric stresses
and can be of either sign. For the system to be electrically unstable, the following condition
must be met:

(Q − 1)(R − 1) > 0, (6.3)

which means either R > 1, Q > 1 or R < 1, Q < 1. Setting s = 0 in (6.2) also provides
a critical electric capillary number for instability:

CaE,c = R + 1
(Q − 1)(R − 1)

. (6.4)

The system is unstable for CaE ≥ CaE,c (long waves), and it is stable otherwise. The
maximum growth rate is reached at zero wavenumber or under vanishing surface tension
(CaE → ∞) and is given by

smax = ReE
(Q − 1)(R − 1)

2(R + 1)
. (6.5)

In the case of finite charge relaxation, the dispersion relation (6.1) is a quadratic equation
for the growth rate s. The roots can be shown to be imaginary only when

(QR − 1)(Q − 1) < 0, (6.6)

which is incompatible with the condition of (6.3) for instability, so that the growth rate is
always real in electrically unstable systems.

Figure 4(a,b) shows the dominant unstable modes of deformation and charge
distribution obtained via Num-LSA. It is evident that all the modes are sinusoidal as
expected in the absence of flow, and the fastest-growing mode, ξ̂1, has the largest possible
wavelength permitted by the computational domain. This is indeed expected based on
LT. For comparison, we also calculate the growth rate of various eigenmodes numerically
by performing short-time TS. The growth rate s obtained from LT, Num-LSA and TS
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Figure 4. Effect of tangential electric field. Dominant eigenmodes of (a) deformation ξ̂ and (b) interfacial
charge q̂, obtained via Num-LSA for (R,Q, λ,ReE,CaE) = (2, 3, 1, 1, 15.92). The corresponding growth rate
values are (s1, s2, s3, s4) = (0.111, 0.098, 0.085, 0.073). (c, d) Time evolution of the interface shape and charge
distribution in a TS with an initial condition given (ξ̂1, q̂1). Inset: black curve shows the location of the tip of
the interface (maximum deflection) over time while the red line shows the growth rate predicted by Num-LSA.
Also see supplementary movie.

is plotted as a function of electric capillary number CaE in figure 5. The results from
Num-LSA and TS are in close agreement with those predicted by (6.1), which provides
validation of our numerical schemes. The numerical error E = |(s − sLT)/sLT | decays with
the grid size N at a rate between 1.5 and 2 according to the inset of figure 5. Consequently,
we dwell on numerical errors of O(10−5) with a grid size N ∼ 1000.

The nonlinear evolution of the interface shape and charge distribution is illustrated
in figure 4(c, d) (also see supplementary movie available at https://doi.org/10.1017/jfm.
2021.967), showing a representative TS where the interface shape and charge distribution
were initially perturbed by the dominant unstable eigenmode with a small amplitude. At
short times, the sinusoidal modes amplify as the surface deflection grows and charge is
brought to the interface via Ohmic conduction. As nonlinear effects become significant,
the interface deflection becomes asymmetric. Electric stresses on the interface drive a
flow which tends to further sweep opposite charges towards the interface tip, leading
to the development of sharp charge gradients and of a pointed tip with high curvature.
The tip grows unboundedly with an increasing curvature until it eventually causes our
numerical method to break down. One should note that the eigenmodes have up–down
mirror symmetry, meaning that both (ξ̂, q̂) and (−ξ̂ ,−q̂) have identical growth rates
and exhibit similar dynamics at short times. This is in contrast to the nonlinear regime
of evolution where the shape and charge distributions become asymmetric as evident in
figure 4.

6.2. Effect of stagnation point flow
Next, we consider the stability of the interface under the applied flow only, with no electric
field. Since there is no applied electric field, the interfacial charge remains zero and the
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Figure 5. Growth rate s as a function of CaE obtained by Num-LSA, LT and TS for (R,Q, λ,ReE) =
(2, 3, 1, 1). Inset shows the decay of the numerical error E with the grid size N for CaE =
7.96.

fate of the system is entirely determined by the balance of viscous and capillary stresses.
Consequently, the only two time scales in the problem are τγ and τf , previously defined in
(3.3) and (3.5), respectively. The LT yields the following expression for the growth rate:

s∗
LT

= 1 − 1
2Ca

, (6.7)

where s∗
LT

has been scaled by τ−1
f instead of τ−1

c,2 , and where Ca = τγ /τf is the viscous
capillary number and remains proportional to k−1

p . This result is consistent with the
analysis of Tseng & Prosperetti (2015) in the limit of zero inertia.

Figure 6(a) shows the most unstable modes of deformation obtained via Num-LSA. The
modes are clearly non-sinusoidal in this case, with deflections from the flat base state
occurring primarily in the neighbourhood of the stagnation point. The dominant mode ξ̂1
resembles a Gaussian centred around the origin, and higher-order modes involve shapes
with increasing numbers of oscillations, all concentrated near x = 0. Since the modes
are non-sinusoidal, the growth rate of the fastest-growing mode differs from the local
prediction of (6.7). This is confirmed in figure 6(c) where the growth rates from LT and
Num-LSA are compared as a function of Ca. Both methods provide similar growth rates
at high capillary numbers (long wavelengths), but their predictions diverge at small values
of Ca: while the local theory shows a stabilization of the system below a critical capillary
number, the numerical stability analysis predicts that the system is always unstable.

The nonlinear evolution of the interface shape is illustrated in figure 6(b) (also see
supplementary movie), showing a transient simulation in which the interface shape was
perturbed at t = 0 by the dominant unstable eigenmode of shape. The interface deflection
increases with time, and as nonlinear effects become significant the dimple in the interface
narrows while the curvature at the tip increases, leading to an increase in capillary stresses
which tend to resist further deformation. As shown in the inset of figure 6(b), this
causes the interface deflection to saturate and reach a steady profile where capillary
stresses balance viscous stresses arising from the applied flow. This is unlike the case
of figure 4 for the electric field only, where the tip deformation did not saturate.

931 A25-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

96
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.967


Instability of a planar fluid interface

0

5t = 0 – 5.66

lo
g|
ξ t

ip
|

0

–2.6
–2.8
–3.0
–3.2

0 π–π

0

(×10–3)

(×10–2)

π–π

–2

–1

0
0

0.5s∗

1.0 LT
Num-LSA

s1 = 0.851
2 4

Ca
t

x

6
ξ

1

–1

0ξ̂

ξ̂1

ξ̂2
ξ̂3

ξ̂4

(b)

(a)

(c)

Figure 6. Effect of applied stagnation point flow. (a) Dominant eigenmodes of deformation ξ̂ obtained
via Num-LSA for a system with (λ,Ca) = (1, 6). The corresponding growth rates are (s∗

1, s∗
2, s∗

3, s∗
4) =

(0.851, 0.650, 0.517, 0.393). (b) Time evolution of the interface shape in a TS with an initial condition given
by ξ̂1. Inset: black line shows the location of the tip of the interface (maximum deflection) over time while the
red curve shows the growth rate predicted by Num-LSA. Also see supplementary movie. (c) Growth rate s∗ as
a function of Ca obtained via Num-LSA and LT.

6.3. Combined effects of electric field and flow
We now turn to the general case where the system is subject to both a tangential electric
field and a stagnation point flow. In this case, the LT with finite charge relaxation and
charge convection by the flow yields the dispersion relation of (4.9), with sinusoidal
eigenmodes for all perturbation variables. It is clear, from the form of (4.9), that the
applied flow and electric field contribute additively to the growth rate: the presence of
the base flow simply shifts the growth rate of (6.2) for the electric problem by an amount
of Â. In particular, an external flow with Â > 0 always has a destabilizing effect under
the local theory approximations. If charge convection is neglected in the theory, the effect
of the background flow only affects the dynamics of the system through the kinematic
boundary condition and the dispersion relation reduces to

sLT = Â − ReE

[
1

2CaE
− (Q − 1)

2

{
R − 1 − sLT (Q − 1)R
R + 1 + sLT (Q + 1)R

}]
. (6.8)

As we show in figure 8 and discuss further below, this approximation results in a
decrease in growth rate when compared with (4.9), suggesting that charge convection is
destabilizing under the local theory.

The Num-LSA and TS, however, paint a more complex picture. Recall that, in these
two cases, the electric capillary number CaE is defined based on kp = 2πL−1

p , where Lp is
the size of the periodic domain and sets the largest possible length scale for the unstable
eigenmodes. The dominant eigenmodes of shape and charge obtained by Num-LSA for a
representative case are plotted in figure 7(a,b). Similar to the case of § 6.2 with flow only,
all the modes are non-sinusoidal and exhibit strong variations near the stagnation point.
This is true especially of the eigenmodes of charge, which display shock-like structures at
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Figure 7. Combined effects of electric field and flow. (a, b) Dominant eigenmodes of deformation ξ̂ and
interfacial charge q̂ for a system with (R,Q, λ,CaE,ReE, Â) = (2, 3, 1, 15.92, 1, 0.177). (c, d) Time evolution
of the interface shape and charge distribution in a TS with initial condition given by (ξ̂1, q̂1). Inset in (c): black
line shows the location of the tip of the interface (maximum deflection) over time while the red curve shows
the growth rate predicted by Num-LSA. Also see supplementary movie. Note that (b) and (c) only show one
quarter of the total domain, as interfacial charge variations are strongly localized near the origin.

x = 0. These shocks result from the advection by the applied flow of surface charges of
opposite sign on each side of the stagnation point. They are reminiscent of the nonlinear
shapes of figure 4, but are even more strongly concentrated near the origin (note the
different scales in figure 7a,b). Note that the charge conservation equation (2.5) does not
account for surface diffusion of charge, which, if included, may regularize the profiles.
These sharp gradients seen in the linear eigenmodes are yet further amplified in the
nonlinear regime, as we show by performing TS with a condition given by the first unstable
eigenmode with a small amplitude. The evolution of the shape and charge profiles is shown
in figure 7(c,d) (also see supplementary movie): the interface deflection sharpens rapidly
as charges accumulate on each side of the stagnation point, leading ultimately to failure of
our numerical method. The emergence of shocks in the charge distribution has also been
observed in related configurations, such as in liquid drops under applied electric fields
(Lanauze, Walker & Khair 2015; Das & Saintillan 2017a,b). There, the quadrupolar Taylor
flow generated by tangential electric stresses at the drop interface sweeps surface charges
from the poles towards the equator, resulting in sharp gradients at that location.

To further understand the interaction between the background flow and the electric field,
we study the behaviour of the system as a function of local strain rate Â in figure 8, in
a case where the interface is electrically unstable. As already discussed above, the LT
predicts that the applied flow is always destabilizing, especially in the presence of charge
convection. The behaviour is more complex according to the Num-LSA, showing that the
background flow in fact has a stabilizing effect for 0 < Â < Âc (Âc ≈ 0.118), as the growth
rate decreases from its value at Â = 0. Beyond Â ≥ Âc, the background flow becomes
destabilizing even in the presence of charge convection. However, the growth rate is always
smaller when charge convection is included in the model. Interestingly, the growth rates
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10–1

Figure 8. Maximum growth rate as a function of local strain rate Â in a system with (R,Q, λ,ReE,CaE) =
(2, 3, 1, 1, 15.92). The blue and red curves show results of Num-LSA with and without charge convection,
respectively, while the light and dark green curves show the predictions of LT with and without charge
convection, respectively.

predicted by LT and Num-LSA are in close agreement in the absence of charge convection.
We discuss in § 6.4 the mechanism for these trends, which involves the subtle interplay of
convection with Ohmic conduction.

The effect of the conductivity ratio R and permittivity ratio Q on the stability of the
system is studied in figure 9. Although both LT and Num-LSA yield qualitatively similar
trends with respect to R and Q, the maximum growth rates obtained by the two methods
differ significantly, and predict opposite effects of charge convection as already observed
in figure 8. Another significant difference is that according to LT the interface is only
unstable above critical values of R,Q ∼ O(1), whereas it is unstable for all values of R
and Q according to the numerical stability. The evident discrepancy between the results of
the two methods is attributed to the local approximation made in LT, where linear terms
in x were neglected in the charge conservation equation. As demonstrated by Num-LSA,
these coupling terms with non-constant coefficients result in very efficient charge transport
towards the stagnation point, leading to strongly localized eigenmodes unlike the Fourier
modes assumed by LT.

6.4. Mechanisms of charge transport in the dominant mode of instability
In order to explain the non-monotonic role of charge convection seen in figure 9, we further
analyse the various mechanisms of charge transport in the dominant mode of instability.
We define the Ohmic and convective fluxes as

q̇ohm = n · [R−1E1 − E2
]
, (6.9)

q̇conv = −ReE∇s · (qu), (6.10)

so that the charge conservation equation reads ∂tq = q̇ohm + q̇conv . Figure 10(a) shows
the profiles of q̇ohm and q̇conv for the most unstable eigenmode in a system with
(R,Q,CaE,ReE, Â) = (2, 3, 15.92, 1, 0.177). It is evident that Ohmic conduction and
charge convection oppose each other in the dominant mode as they have opposite signs
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Figure 9. Maximum growth rate as a function of (a) conductivity ratio R with Q = 3 and (b) permittivity ratio
Q with R = 2. The remaining parameters are (λ,ReE,CaE, Â) = (1, 1, 15.92, 0.1) in both cases. Inset in (a)
shows a longer range for the vertical axis, highlighting additional stable eigenmodes.
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Figure 10. (a) Ohmic flux and convective flux, defined in (6.9) and (6.10), in the dominant mode of instability
for a system with (R,Q,CaE,ReE, Â) = (2, 3, 15.92, 1, 0.177). (b) Ohmic flux in the dominant mode of
instability for two different values of Â, with and without charge convection.

over most of the domain. According to figure 10(a), charge convection is dominant in
the vicinity of the stagnation point, whereas conduction takes over further away from
the origin. Close to the stagnation point, q̇ohm exhibits oscillations, which are stronger
with increasing Â as shown in figure 10(b) but are suppressed when charge convection is
neglected.

To elucidate the underlying mechanisms for this behaviour, we analyse the respective
roles of interface deflections and charge perturbations in driving Ohmic currents in
the dominant eigenmode. Recall that the eigenmodes obtained by Num-LSA involve
perturbations in both shape ξ̂ and charge q̂. Here we estimate the Ohmic current induced
by these eigenmodes in the linear regime:

ˆ̇qohm = R−1Ên
1 − Ên

2. (6.11)

To express Ên
1 and Ên

2 in terms of (q̂, ξ̂ ), we linearize the boundary integral equation (5.2)
to find

− 1 + Q
2(1 − Q)

(Ên
2 − Ên

1) = n̂x − q̂
1 − Q

, (6.12)
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Figure 11. (a) Eigenmodes of charge q̂, interfacial deflection ξ̂ and horizontal component
of the unit normal vector n̂x in the dominant mode of instability for a system with
(R,Q, λ,ReE, Â,CaE) = (2, 3, 1, 1, 0.177, 15.92). (b) Resulting Ohmic currents induced by perturbations in
the charge distribution (blue), interfacial shape (green) and their net distribution (red); see (6.14) for details.

where n̂x = ∂xξ̂ is the x component of the surface normal. Gauss’s law also provides

Ên
2 − QÊn

1 = q̂. (6.13)

Eliminating Ên
1 and Ên

2 using (6.12) and (6.13) yields the following expression for the
charge conduction flux:

ˆ̇qohm = 2
(1 − RQ)
R(1 + Q)

n̂x − R + 1
R(1 + Q)

q̂, (6.14)

which captures the conduction response of the system to small perturbations. The first
term on the right-hand side represents the Ohmic flux induced by perturbing the shape
while the second term is the flux induced by the charge perturbation. Figure 11 shows
the profile of the perturbation in the dominant eigenmode along with the resulting Ohmic
fluxes for the same set of parameters as used in figure 10. It is evident from figure 11(b)
that the Ohmic currents induced by the applied deformation and charge distribution have
opposite signs over the entire domain, and thus work against each other. This explains the
oscillations in ˆ̇qohm observed near the stagnation point in figure 10(a), and it is this complex
Ohmic response that opposes charge convection in the dominant eigenmode, leading to the
stabilizing effect of convection seen in figures 8 and 9. One should note that this behaviour
is independent of the sign of (1 − RQ) since there is no preferred order to the arrangement
of the fluid layers in the linear regime. In other words, two systems characterized by RQ
and (RQ)−1 are dynamically equivalent.

7. Conclusions

We have presented a theoretical and numerical model in two dimensions to study the
dynamics of an interface separating two immiscible fluid layers subject to a tangential
electric field and a stagnation point flow. We performed a local linear stability analysis
in the vicinity of the stagnation point, which was able to recover the previous results
of Melcher & Schwarz (1968) in the absence of the background flow, and of Tseng &
Prosperetti (2015) in the absence of the electric field and in the limit of zero inertia.
Our local theory was complemented by a numerical analysis using the boundary element
method, which was also used to perform a numerical normal-mode linear stability

931 A25-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

96
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.967


M. Firouznia, M.J. Miksis, P.M. Vlahovska and D. Saintillan

analysis based on the complete Melcher–Taylor leaky dielectric model including charge
convection. Our results show that charge convection plays a significant role in determining
the dynamics of the system by altering the dominant unstable mode, in which it was shown
to have a stabilizing effect. Further, we explored the dynamics of the system far from
equilibrium using transient nonlinear numerical simulations and demonstrated how the
coupling of flow and interfacial charge dynamics in the dominant unstable mode gives rise
to strongly nonlinear effects such as the formation of high-curvature tips and of charge
density shocks.

In this study, the convergent flow and the electric field were assumed to be independently
applied. This differs from the case of the equatorial EHD instability in drops (Brosseau
& Vlahovska 2017; Wagoner et al. 2020), where the flow is also generated by the
electric field. In spite of this simplification, our analysis provides valuable insights into
the underlying mechanisms responsible for the EHD equatorial streaming such as the
evolution of the convergent line instability and the emergence of strong charge gradients.
A more detailed discussion of the relevance of the present work to describe equatorial
instabilities in liquid drops is provided in Appendix A. Extensions of the present study
could include considering the effect of the viscosity contrast (λ /= 1) and of equilibrium
surface curvature on the behaviour of the system. Further attempts to improve the accuracy
of the numerical simulations may involve implementation of shock-capturing schemes
for the solution of the charge conservation equation, as well as surface reparametrization
schemes for handling extreme local deformations.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.967.
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Appendix A. Relevance to the equatorial streaming instability

Brosseau & Vlahovska (2017) reported streaming from the equator of a drop placed in
a uniform electric field. In the experimental system, RQ > 1 and the EHD flow driven
by electric shear stresses on the drop interface converges at the equator (see figure 1).
At the equator the applied electric field is also parallel to the drop interface. Thus, the
configuration resembles the set-up considered in our theoretical study. Here, we use the LT
and Num-LSA analyses to gain insight into the interface destabilization at the stagnation
line of the EHD flow.

The LT of a fluid interface subject to a convergent flow predicts that the interface is
always unstable (Tseng & Prosperetti 2015). However, the LT for a fluid interface subjected
to a tangentially applied DC uniform field is stable for the experimental conditions
according to (6.1). In the experiments the streaming was only observed at sufficiently high
electric fields, CaE ∼ O(1), which is likely due to the competition of the destabilizing and
stabilizing actions of the field-driven flow and of the electric field.

Figure 12 shows the theoretical prediction for the growth rate of the instability. The
strain rate of the convergent flow can be estimated from the EHD flow at the equator of the
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Figure 12. Growth rate s as a function of CaE obtained via Num-LSA and LT for a system with (R,Q) =
(31.4, 0.6) characteristic of the EHD flow in a droplet. Here ReE and Â are linearly proportional to CaE in
that case, and the blue marker (λ,ReE, Â,CaE) = (1, 4.37, 1.19, 1.45) is the reference point based on the
experiments. Purple and blue lines show the predictions by LT for λ = 1 and 0.07, respectively.

drop based on Taylor’s classic solution (Taylor 1966):

A = 9
5

R(RQ − 1)
(2R + 1)2

τ−1
EHD

with τEHD = μ2(1 + λ)
ε2E2

0
, (A1)

where fluids 1 and 2 represent the drop and the suspending liquid, respectively. We
obtain A ≈ 2.22 s−1 using the experimental parameters for a drop of silicone oil (ρ1 =
960 kg m−3, ε1/ε0 = 2.8, σ1 = 1.4 × 10−12 S m,μ1 = 0.048 Pa s) suspended in castor oil
(ρ2 = 961 kg m−3, ε2/ε0 = 4.6, σ2 = 4.4 × 10−11 S m, μ2 = 0.69 Pa s) under an electric
field of E0 = 4 kV cm−1 and a surface tension γ = 4.5 mN m−1. The LT does predict a
threshold CaE, which increases with viscosity ratio. According to the Num-LSA, which
can be only performed for λ = 1, the interface is always unstable. However, the growth
rate is vanishingly small at low CaE and the instability may not develop on the time
scale of the experiment, which is of the order of 1 s. Indeed, only above CaE ∼ 1 does
the instability grow at rate faster than 1 s−1. Increasing the viscosity ratio further slows
down the growth of the instability, and suggests that streaming would not be observed for
viscosity ratios greater than one, in qualitative agreement with the experiment. Finally,
we note that while the present study focuses on planar interfaces, the equatorial streaming
instability in drops occurs on a curved surface and the effects of base-state interfacial
curvature on the instability remain unknown.
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