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The link of {f(x, y) + zn = 0} and Zariski’s conjecture

Robert Mendris and András Némethi

Abstract

We consider suspension hypersurface singularities of type g = f(x, y) + zn, where f is an
irreducible plane curve singularity. For such germs, we prove that the link of g determines
completely the Newton pairs of f and the integer n except for two pathological cases,
which can be completely described. Even in the pathological cases, the link and the Milnor
number of g determine uniquely the Newton pairs of f and n. In particular, for such g, we
verify Zariski’s conjecture about the multiplicity. The result also supports the following
conjecture formulated in this paper: if the link of an isolated hypersurface singularity is
a rational homology 3-sphere, then it determines the equisingularity type, the embedded
topological type, the equivariant Hodge numbers and the multiplicity of the singularity.
The conjecture is verified for weighted homogeneous singularities too.

1. Introduction

In the past few decades intense research effort has been concentrated on the following problem:
what kind of analytic invariants or smoothing invariants (if they exist) can be determined from the
topology of a normal surface singularity (X,x).

Some of the results have already become classical: e.g. Mumford’s result, which states that (X,x)
is smooth if and only if the fundamental group of the link LX is trivial [Mum61]; or its generalization
by Neumann [Neu81], which claims that the oriented homeomorphism type of the link contains the
same information as the resolution graph of (X,x); or Artin’s computations of the multiplicity and
the embedded dimension of rational singularities [Art62, Art66]; and their generalizations by Laufer
[Lau77] for minimally elliptic singularities, and by Yau [Yau80] for some elliptic singularities.

In general, these questions are very difficult, even if we restrict ourselves to some special families,
e.g. to complete intersections or hypersurface singularities; and even if we permit ourselves to use,
instead of the topology of (X,x), richer topological information, e.g. in the case of hypersurfaces the
embedded topological type. For example, Zariski conjectured three decades ago that the embedded
topological type of an isolated hypersurface singularity determines its multiplicity [Zar71]. This has
been verified up to now only for quasi-homogeneous singularities [Gre86, OSh87, XY89, Yau89] (and
some other sporadic cases).

In a different direction, the conjecture of Neumann and Wahl [NW90] about a possible connection
between the Casson invariant of the link (provided that it is an integral homology sphere) and the
signature of the Milnor fiber opened new windows for the theory.

Recently, the subject has been revived with an even larger intensity; see e.g. [Nem99b, NW02,
NW03, NN02a, NN04, NN02b], their introductions and listed references. Basically, these articles
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claim that if the link of a Q-Gorenstein singularity is a rational homology sphere, then it codifies
extremely rich analytic information about the singularity.

The present paper is in the spirit of the above efforts. We will consider the family of suspension
hypersurface singularities of type f(x, y) + zn, where f is an irreducible plane curve singularity.

For this family, we not only answer positively both main conjectures (namely Zariski’s conjecture,
and the possibility to recover the main analytic and smoothing invariants from the link), but also
we succeed in obtaining much sharper statements.

The main result of the paper is the following (cf. Theorem 5.4).

Theorem 1. Let f : (C2, 0) → (C, 0) be an irreducible plane curve singularity with Newton pairs
{(pi, qi)}s

i=1 and let n � 2 be an integer. Let LX be the link of the hypersurface singularity (X, 0) =
({f(x, y) + zn = 0}, 0). Then, except for two pathological cases S1 and S2 (which are described
completely in §§ 5.1 and 5.3, and can be characterized perfectly in terms of LX), from the link LX

one can recover completely the Newton pairs of f and the integer n (provided that we disregard the
‘z-axis ambiguity’, cf. Remark 5.2.) In both exceptional cases the links have nontrivial first Betti
numbers. In particular, the above statement holds without any exception provided that the link is
a rational homology sphere.

On the other hand, in the cases S1 and S2, the link together with the Milnor number of the
hypersurface singularity f + zn determine completely the Newton pairs of f and the integer n
(cf. the two paragraphs at the ends of §§ 5.1 and 5.3).

Here some remarks are in order.
1) LX determines the number s of Newton pairs of f in all cases.
The exceptional case S1 appears when s = 1, and the corresponding singularities have the

equisingular type of some special Brieskorn singularities. This case can be easily classified.
The exceptional case S2 appears for s = 2 with some other strong additional restrictions. In this

case any link LX can be realized by at most two possible pairs (f, n). This case again is completely
clarified.

In all other cases, e.g. when s � 3, the theorem assures uniqueness. This is slightly surprising.
At the beginning of our study, here we expected more and more complicated special families provid-
ing interesting coincidences for their links. But, it turns out that this is not the case: if the plumbing
graph of the link (or equivalently the resolution graph of (X,x)) has more and more complicated
structure, then it becomes more ‘over-determined’, and it leaves no room for any ambiguity for f
and n.

In fact, in order to reach our goal, it was sufficient to consider rather limited information about
this graph: the determinants of its maximal strings and the determinants of some subgraphs with
only one rupture vertex. Except for the two pathological cases, in all other cases these determinants
already determine all the Newton pairs and n.

2) In general, it is very difficult to characterize those resolution graphs (or links) which can
be realized by, say, hypersurface singularities, or complete intersections, or by any family of germs
defined by some analytic property.

Our proof gives a complete characterization of those graphs which can be realized as resolution
graphs of some {f + zn = 0} for some irreducible f . Indeed, the proof is a precise recipe for how
one can recover the Newton pairs of f and n. If one runs this algorithm (the steps of the proof of
Theorem 5.4) for an arbitrary minimal resolution graph, and at some point it fails, then the graph
definitely is not of this type. If the algorithm goes through and provides some candidates for the
Newton pairs of f and for n, then one has to compute the minimal resolution graph of f + zn = 0
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(using e.g. the algorithm of [Nem99d, Appendix 1], see also below) and compare it with the initial
graph. If they are the same, then the answer is ‘yes’. But it could happen that these two graphs
are not the same (since our algorithm is based on a very limited number of determinants: these
determinants could be the same even if the graphs are not). In this case again the answer is ‘no’.

3) For the case when f is arbitrary (i.e. reduced), but n = 2, and the link is a rational homology
sphere, Laufer established uniqueness [Lau78].

Pichon [Pic97, Pic99] proved by a different method that, for any fixed n, any link can be realized
in finitely many ways as the link of f + zn = 0 (in her case f is reduced too). Some of our partial
results (after some – sometimes nontrivial – identifications) can be compared with some of her
results. For example, our last formula from Proposition 3.5 can be compared with Proposition 3 of
[Pic97], and our Proposition 4.1 with Theorem (6.4) of [Pic99] (formulated in terms of Waldhausen
decomposition). Nevertheless, we decided to present our arguments as well, in order to provide a
self-contained proof and uniform picture.

4) We expect that a possible generalization of the above result for reduced f inevitably will
contain a much larger list of pathological cases, with a lot of numerical, case-by-case verifications
in the proof. For some more concrete ‘warnings’ in this case, see § 5.7.

Now we return to our main theorem and its corollaries.

Corollary 1. Assume that g(x, y, z) = f(x, y) + zn is a suspension hypersurface singularity with
f irreducible, and not of type described in the pathological cases S1 and S2 (cf. §§ 5.1 and 5.3).
Then the link LX of (X, 0) = ({g = 0}, 0) determines completely the following data:

1) (X, 0) up to equisingular deformation (within the class of suspension of irreducible plane
curve singularities);

2) the embedded topological type of (X, 0) (i.e. the embedding LX ⊂ S5), in particular, the
Milnor fibration and all the homological package derived from it;

3) all the equivariant Hodge numbers associated with the vanishing cohomology of g,
in particular, the geometric genus of (X, 0);

4) the multiplicity of g.

In particular, if LX is a rational homology sphere, then LX determines all the four data 1–4. If g
is a pathological case listed in S1 or S2, then LX together with the Milnor number of g determines
completely data 1–4.

Indeed, the Newton pairs of f determine the equisingularity type of f . Data 2–4 follow from the
description of the corresponding invariants for plane curve singularities and different ‘Sebastiani–
Thom type’ formulae; see e.g. [AGV88, SSS91, Nem98, Nem99c]. In fact, recently in [NN02b], the
geometric genus (together with the Milnor number and the signature of the Milnor fiber) was
computed in terms of the Seiberg–Witten invariant of the link, provided that the link is a rational
homology sphere.

It is well known that the Milnor number of g can be determined from the embedded topological
type of g (a fact first noticed by Teissier see also [Yau89]). Therefore, we get the following:

Corollary 2 (Zariski’s conjecture for this family). The multiplicity of g = f(x, y) + zn

(f irreducible) is determined by the embedded topological type of g.

Corollary 1 (see also Theorem 2 below) motivates the following conjecture.
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Conjecture . Let g : (C3, 0) → (C, 0) be an isolated hypersurface singularity whose link LX

is a rational homology sphere. Then the fundamental group of the link characterizes completely
the equisingularity type, the embedded topological type, the equivariant Hodge numbers and the
multiplicity of g.

This can be verified in the following cases. If g = f + zn with f irreducible, then the Conjecture
is true by Theorem 1 above (see also [Neu81] for the relation between LX and its fundamental
group). If f is arbitrary but n = 2, then it is true by [Lau78].

The next theorem provides a positive answer for weighted homogeneous singularities. Since its
proof is short and involves a different terminology than the body of the paper, we decided to separate
the whole statement at the end of this Introduction.

Theorem 2. The above conjecture is true for any weighted homogeneous hypersurface singularity.

Proof. The Poincaré polynomial pA(t) of the singularity can be determined from the link by [Dol75]
or [Pin77] (see also [Neu83]). Then, by a recent result of Ebeling [Ebe02, Theorem 1] it follows that
the characteristic polynomial ∆(t) of the algebraic monodromy can be recovered from the link LX .
Indeed, notice that ψA(t) used by Ebeling is link-invariant as well. By [Ebe02, Theorem 1], ∆(t) =
[ψA(t)pA(t)]∗, where ∗ stands for K. Saito’s duality. In general, ∗ is defined in terms of some integer
h (cf. [Ebe02, p. 3]), but here one can verify (using e.g. [MO70]) that if ψA(t)pA(t) =

∏
m(1−tm)χm ,

then one can take h := lcm{m : χm �= 0}; hence ∆(t) =
∏

k|h(1 − tk)−χh/k for this h.
Then, by [XY89] (see also [OW71]), we obtain from LX the weights, multiplicity and the

embedded topological type. The statement about the Hodge data follows from [Ste77].

2. Preliminaries about resolution graphs

2.1 Definitions and notation

Assume that (X,x) is a normal surface singularity, f : (X,x) → (C, 0) is a germ of an analytic
function, and φ is an embedded resolution of the pair (f−1(0), x) ⊂ (X,x). We denote by E the ex-
ceptional divisor of φ and by S the strict transform of f−1(0). Let

⋃
w∈W Ew (respectively

⋃
a∈A Sa)

be the irreducible decomposition of E (respectively S). We will assume that W �= ∅, that any two
irreducible components of E have at most one intersection point, and that no irreducible exceptional
divisor has a self-intersection point. The (good) dual embedded resolution graph associated with φ
will be denoted by Γ(X, f). Its vertices V = W � A consist of the nonarrowhead vertices W and
arrowhead vertices A. Any w ∈ W is decorated by the self-intersection ew and genus gw of Ew;
and any v ∈ V by the multiplicity mv of f . In all our graph diagrams, we put the multiplicities in
parentheses (e.g. (3)) and the genera in brackets (e.g. [3]), with the convention that we omit [0].

If we delete the arrows and multiplicities of the graph Γ(X, f), we get a possible (good) resolution
graph of (X,x).

If Γ is a decorated graph (with or without arrowheads), then for w ∈ W we denote by δw the
number of vertices v ∈ V adjacent to w. A vertex w ∈ W is called a rupture (respectively leaf )
vertex if either gw > 0 or δw � 3 (respectively if δw = 1).

There are many (embedded) resolutions, but they are all connected by quadratic modifications.
By the above convention we can blow down a (−1)-curve Ew with gw = 0 if and only if δw � 2.
If the (embedded) resolution graph has no such curve then we say that it is minimal. There is a
unique minimal (embedded) resolution graph denoted by Γmin(X) (respectively Γmin(X, f)).

Let I := (Ew ·Ev)(w,v)∈W×W be the (negative definite) intersection matrix, and write det(Γ) :=
det(−I) > 0. By convention, the determinant of the empty graph is 1.
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We will use the following relations connecting the ingerers {mv}v∈V and {ew}w∈W . Fix a total
ordering of the set W. Let mW be the column vector with |W| entries {mw}w∈W . Similarly, define
the column vector mA with |W| entries whose wth entry is

∑
a∈A∩Vw

ma. Then

I · mW + mA = 0. (2.1.1)

Moreover, if Γ = Γ(X) is a tree, then the inverse matrix I−1 can be computed in terms of determi-
nants of some subgraphs as follows. Consider two vertices w1, w2 ∈ W and the shortest path which
connects them. Let Γw1w2 be the maximal (in general nonconnected) subgraph of Γ which has no
vertices on this path. Then the (w1, w2)th entry of I−1 is given by

I−1
w1w2

= − det(Γw1w2)/det(Γ).

Let LX be the (oriented) link of (X,x). It is known that LX and Γ(X) codify the same amount of
information. For example, LX is a rational homology sphere if and only if gw = 0 for any w and
Γ(X) is a tree.

For more details about the notions of this paragraph, see [Nem00] or [Nem99d].

2.2 Irreducible plane curve singularities [BK86, EN85]
In this case (X,x) ≈ (C2, 0), Γ(C2, f) is a tree, and gw = 0 for any w ∈ W.

In this paper we are mainly interested in irreducible plane curve singularities (i.e. when |A| = 1).
Their equisingular type and link are completely characterized by the set of Newton pairs {(pk, qk)}s

k=1

(see e.g. [EN85, p. 49]). Here (pk, qk) = 1, pk � 2, qk � 1 and q1 > p1.
The minimal embedded resolution graph can be reconstructed from the Newton pairs as follows

(see e.g. [BK86, EN85, Nem99a]). First determine ul
i and vl

i (u0
i , v

0
i � 1, and ul

i, v
l
i � 2 for l > 0)

from the continued fractions:

pi

qi
= u0

i −
1

u1
i −

1

. . . − 1

uti
i

;
qi
pi

= v0
i − 1

v1
i − 1

. . . − 1
vri
i

.

Then Γmin(C2, f) is given by the following:

� � � � � � � � �

�

�

�

�

�

�

�

�

�

�. . . . . . . . .

...
...

...

−u1
1 −ut1

1 −u0
2 − 1 −u1

2 −uts−1

s−1 −u0
s − 1 −u1

s −uts
s −1

−vr1
1

−v2
1

−v1
1

−vrs−1

s−1

−v2
s−1

−v1
s−1

−vrs
s

−v2
s

−v1
s

This has the following schematic form:

� � � � �

� � � �

v̄0 v1 v2 vs−1 vs

v̄1 v̄2 v̄s−1 v̄s

· · · �

Here we have emphasized only those vertices {v̄k}s
k=0 and {vk}s

k=1 which have degree δ �= 2.
We denote the set of these vertices by W∗. The dashed line between two such vertices replaces
a string � � �· · · . In our discussions below, the corresponding self-intersections will be
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less important, but the multiplicities of the vertices v ∈ W∗ will be crucial. They can be easily
described in terms of the integers {ak}s

k=1:

a1 = q1 and ak+1 = qk+1 + pk+1pkak if s− 1 � k � 1. (2.2.1)

Then again, (pk, ak) = 1 for any k. Clearly, the two sets of pairs {(pk, qk)}s
k=1 and {(pk, ak)}s

k=1

determine each other completely. In fact, the set of pairs {(pk, ak)}s
k=1 constitutes the set of decora-

tion of the so-called splice (or Eisenbud–Neumann) diagram of f ; cf. [EN85, p. 51]. Then by [EN85,
§ 10], one has:

mvk
= akpkpk+1 · · · ps, for 1 � k � s;

mv̄0 = p1p2 · · · ps;
mv̄k

= akpk+1 · · · ps, for 1 � k � s− 1;
mv̄s = as.

(2.2.2)

2.3 Cyclic coverings
For any isolated plane curve singularity f we write

Xf,n := {zn = f(x, y)} ⊂ (C3, 0).

Then (x, y, z) �→ (x, y) induces a Zn-Galois covering of (Xf,n , 0) over (C2, 0), and the z-projection
induces a germ (Xf,n , 0) → (C, 0), still denoted by z.

From any fixed (good) embedded resolution graph Γ(C2, f) of f and the integer n, one can
construct a possible dual resolution graph Γ(Xf,n , z), respectively Γ(Xf,n ). A precise algorithm is
given in [Nem99c] (or [Nem99d]; for a more general situation, see [Nem00]).

Assume that in this algorithm, we start with the minimal (good) embedded resolution graph
Γmin(C2, f) of f . Then the output graph provided by the algorithm (without any modification by
any blow-up or blow-down) will be called the canonical embedded resolution graph of (Xf,n , z), and
will be denoted by Γcan(Xf,n , z). (The name is motivated by [Lau78], where Laufer proved that the
above algorithm for a plane curve singularity f provides exactly the canonical resolution of Xf,n in
the sense of Zariski, provided that n = 2.)

3. The embedded resolution graph Γcan(Xf,n , z)

In this section we make the above-mentioned algorithm for Γcan(Xf,n , z) explicit. We assume that
n � 2 and f is irreducible.

First, we fix some notation. Recall that {(pk, qk)}s
k=1 denotes the set of Newton pairs of f , and

the integers {ak}s
k=1 are defined in (2.2.1). Additionally, we define

• dk := (n, pk+1pk+2 · · · ps) for 0 � k � s− 1, and ds := 1;
• hk := dk−1/dk = (pk, n/dk) and p′k := pk/hk for 1 � k � s;
• h̃k := (ak, n/dk) and a′k := ak/h̃k for 1 � k � s.

In order to run the algorithm, besides (2.2.2), one also needs some additional data about Γ(C2, f).
For the convenience of the reader we collect them in the next lemma. For the proof, see e.g. [Neu87]
or the proof of (3.2) in [Nem98]. Set Mw := gcd{mv | v = w or v is adjacent to w}.
Lemma 3.1. In Γmin(C2, f) one has: Mv̄k

= mv̄k
(0 � k � s); Mvk

= pk+1 · · · ps (1 � k � s − 1);
and Mvs = 1.

Moreover, for any 1 � k � s, fix two integers ik and jk with akik + pkjk = 1. Then the multi-
plicities of the three vertices adjacent to vk, modulo mvk

= akpkpk+1 · · · ps, are: (−ikakpk+1 · · · ps;
−jkpkpk+1 · · · ps; pk+1 · · · ps) if k � s− 1, and (−isas; −jsps; 1) if k = s.

507

https://doi.org/10.1112/S0010437X04000946 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000946


R. Mendris and A. Némethi

Now we start to discuss Γcan(Xf,n , z). By the algorithm, this graph can be considered as a
‘covering’ q : Γcan(Xf,n , z) → Γmin(X, f). Above w ∈ W(Γmin(C2, f)) there are (Mw, n) vertices
v′ ∈ q−1(w) of Γcan(Xf,n , z), each with some multiplicity mv′ and genus gv′ . For a fixed w ∈
W∗(Γmin(C2, f)), the Galois action guarantees that the integers mv′ and gv′ do not depend on the
choice of v′ ∈ q−1(w), but only on w. Sometimes, we denote them by mw and gw. The reader can
easily verify that (2.2.2), Lemma 3.1 and the algorithm gives the following corollary:

Corollary 3.2. a) For any irreducible f and n, Γcan(Xf,n , z) is a tree with

#q−1(vs) = 1, #q−1(vk) = hk+1 · · · hs (1 � k � s− 1),

#q−1(v̄s) = h̃s, #q−1(v̄k) = h̃khk+1 · · ·hs (1 � k � s− 1),

#q−1(v̄0) = h1 · · ·hs.

b)
mv̄0 = p′1p

′
2 · · · p′s,

mv̄k
= a′kp

′
k+1 · · · p′s (1 � k � s− 1),

mv̄s = a′s,
mvk

= a′kp
′
kp

′
k+1 · · · p′s (1 � k � s).

c)
gv̄k

= 0 (0 � k � s),

gvk
= (hk − 1)(h̃k − 1)/2 (1 � k � s).

In particular, the link of Xf,n is a rational homology sphere if and only if (hk − 1)(h̃k − 1) = 0 for
any 1 � k � s.

The graph Γcan(Xf,n , z) has the following schematic form (where the dashed lines replace strings
as above, and we omit the genera and the self-intersections):

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

� �

{z = 0}�

... h1

... h1

... h1

· · ·h̃1

· · ·h̃1

· · ·h̃1

...

... hs−1

...

...hs

· · ·

· · ·h̃s−1

· · ·
h̃s

· · ·· · ·

· · ·

· · ·
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Example 3.3. Assume that s = 1 and write p = p1 and a = a1. Take n such that h = (p, n) and h̃ =
(a, n) = 1. Then Xf,n can be identified with the Brieskorn hypersurface singularity {(x, y, z) ∈ C3 :
xa + yp + zn = 0}. Then the link is a Seifert 3-manifold with Seifert invariants: a, a, . . . , a, p/h, n/h
(a appearing h times, hence all together there are h + 2 special fibers corresponding to the h + 2
arms cf. the above graph diagram). These numbers also give (up to a sign) the determinants of
the corresponding arms of the graph Γ(Xf,n ). For more details about Seifert manifolds and their
plumbings, see e.g. [JN83, NR78].

3.4 The maximal strings of Γcan(Xf,n , z)
The next goal is to compute the determinants of the maximal strings of Γcan(Xf,n , z). For this, fix
a vertex w ∈ W∗(Γmin(C2, f)) and v′ ∈ q−1(w). Consider the shortest path in Γcan(Xf,n , z) which
connects v′ and the arrowhead.

If w �= vs, then on this path there is at least one rupture vertex of Γcan(Xf,n , z). Let v′′ (v′′ �= v′)
be the closest one to v′. If w = vk (1 � k � s − 1), then let Γ(v′) be the string which contains
all the vertices between v′ and v′′ (excluding v′ and v′′), and all the edges connecting them. If
w = v̄k (1 � k � s), then Γ(v′) is the string constructed similarly, but this time we include v′ and
its connecting edge as well. If w = vs, then the above path is already a string. Let Γ(v′) be the
string which contains all the vertices between v′ and the arrowhead (excluding v′), and all the edges
connecting them.

In this way we have a codification of all the maximal strings of Γcan(Xf,n , z). Notice also that
the isomorphism type of the string Γ(v′) does not depend on the choice of v′ ∈ q−1(w), but only on
w. Therefore, sometimes it is preferable to denote this type by Γ(w). Denote by D(v′) (or by D(w))
the determinant det(Γ(v′)). If Γ(w) = ∅, then by definition D(w) = 1.

Proposition 3.5. The possible values of D(w) are the following:

D(v̄0) = a′1,
D(v̄k) = p′k (1 � k � s),

D(vs) = n/(hsh̃s),

D(vk) = n · qk+1/(dk−1h̃kh̃k+1) (1 � k � s− 1).

Proof. We start with the (‘difficult’) case D(vk) (1 � k � s − 1). Using the notation of § 2.2, the
maximal string in Γmin(C2, f) between vk and vk+1 has the following form:

(mvk
) (mvk+1

)
−u1

k+1 −u2
k+1 −utk+1

k+1
� � �� �· · ·

Here mvk
= akpk · · · ps and mvk+1

= ak+1pk+1 · · · ps; cf. (2.2.2). Moreover, pk+1/qk+1 = u0
k+1 −

λ/qk+1, and the quotient qk+1/λ gives the continued fraction [u1
k+1, · · · , utk+1

k+1 ]. This graph can be
identified with the embedded resolution graph of a germ defined on a Hirzebruch–Jung singularity.
Indeed, using e.g. [Nem00, p. 102], one can verify that one can take the germ (zpkaky)pk+1···ps defined
on the normalization of {zqk+1 = xypk+1}. In particular, the collection of graphs {Γ(v′)}v′∈q−1(vk) is
exactly the (nonconnected) graph of the normalization of

X = {(x, y, z, w) : zqk+1 = xypk+1; wn = (zpkaky)pk+1···ps}.
This X has dk = (n, pk+1 · · · ps) (isomorphic) irreducible components, a number that agrees exactly
with #q−1(vk). Hence, D(v′) is the graph of the normalization of

X1 = {zqk+1 = xypk+1; wn/dk = (zpkaky)(pk+1···ps)/dk}.
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Let us write q = qk+1, p = pk+1, N = n/dk, r = pkak, P = pk+1 · · · ps/dk and a = ak+1. Then
(q, p) = 1, (N,P ) = 1, a = rp + q, and X1 = {zq = xyp; wN = (zry)P } in (C4, 0). We will verify
that the determinant of the graph of X1 is

n =
Nq

(N, r)(N, a)
.

In order to prove this last statement, first we show that we can assume P = 1. Indeed, consider
the space Y1 := {zq = xyp, w = tP , tN = zry}. Then X1 and Y1 are birationally equivalent
(eliminate t from the equation for Y1); hence their normalizations are the same. On the other hand,
Y1 is isomorphic with X ′

1 := {zq = xyp, tN = zry} (eliminate w).
Then notice thatX1 is irreducible and its normalization is a Hirzebruch–Jung singularity. Indeed,

the discriminant of the finite map ρ : (X1, 0) → (C2, 0) induced by the (x, y)-projection is the
union of the coordinate lines. Let π1 = Z2 be the fundamental group of {xy �= 0} generated by
e1 and e2 representing two elementary loops around the axes x and y. Let ρ∗ : π1 → G be the
monodromy representation of the restriction of ρ above {xy �= 0}, and ρ∗|Z(ei) be its restriction to
Z(ei), the subgroup generated by ei (i = 1, 2). Then one can verify (using e.g. [BPV84, III.5]) that
Zn ≈ ker(ρ∗)/ker(ρ∗|Z(e1)) × ker(ρ∗|Z(e2)).

In our case the Galois group G of the induced regular covering can be identified with G =
{(ξ, η) ∈ C∗ × C∗ : ξq = 1, ηN = ξr}. Since ρ∗ is onto, ker(ρ∗) has index Nq in Z2. Moreover,
ρ(e1) = (exp(2πi/q), exp(2πir/(Nq))), and hence ker(ρ∗|Z(e1)) = k1Z for k1 = Nq/(N, r). Similarly,
ρ(e2) = (exp(2πip/q), exp(2πia/(Nq))), and hence ker(ρ∗|Z(e1)) = k2Z for k2 = Nq/(N, a). Hence
the claim follows.

The other identities can be computed by a similar argument. But also notice that in all other
cases the corresponding maximal string contains a leaf vertex of Γcan(Xf,n ). Therefore, D(v′) can
be identified with the corresponding Seifert invariant, similarly as in Example 3.3. Hence these
identities also follow from Example 3.3.

Remark 3.6. In Γcan(Xf,n , z) the following hold:

1) If w = v̄k (0 � k � s) then Γ(w) �= ∅. Indeed, Γ(w) contains at least as many vertices as the
corresponding arm in Γmin(C2, f), which is clearly not empty.

2) The same argument is valid for any Γ(vk) (1 � k � s − 1) provided that qk+1 > 1. In fact,
for such w = vk, Γ(vk) = ∅ if and only if qk+1 = 1 and n = dk−1h̃kh̃k+1.

3) Γ(vs) = ∅ if and only if n = hsh̃s.

Here a natural question appears: Is it possible to distinguish the arms Γ(v′) (v′ ∈ q−1(v̄0)) from
the arms of type Γ(v′) (v′ ∈ q−1(v̄1))? The next corollary says that if gv1 = 0 then already their
determinants are different.

Corollary 3.7. a) If D(v̄0) = D(v̄1) then D(v̄0) = D(v̄1) = 1 and gv1 �= 0.
b) If D(v̄s) = D(vs) then D(v̄s) = D(vs) = 1.

Proof. a) If D(v̄0) = D(v̄1), then a1/h̃1 = p1/h1 by Proposition 3.5. Since (a1, p1) = 1, one gets
a1/h̃1 = p1/h1 = 1. But then h1 � 2 and h̃1 � 2 since a1 = q1 > p1 � 2.

b) Similarly by Proposition 3.5 one has ps/hs = n/hsh̃s. But these two numbers are also relatively
prime.

3.8 The subgraphs Γ±(vk)
Above we discussed the case of maximal strings of

Γcan(Xf,n , z).
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Obviously, one can consider the determinants of much bigger subgraphs delimited by different
rupture vertices. In this way one obtains a large number of rather subtle invariants of this graph.
Nevertheless, in order to recover the Newton pairs of f and the integer n from this graph, it is
enough to consider only a restrictive subfamily of them.

Let us fix an integer k (1 � k � s). Consider the maximal subgraph of Γcan(Xf,n , z) which
does not contain any vertex from the set q−1(vk). It has many connected components. The compo-
nent which supports the arrowhead of Γcan(Xf,n , z) is denoted by Γ+(vk). There are h̃khk+1 · · ·hs

more components (isomorphic to each other), which contain vertices above v̄k. They are strings
of type Γ(v̄k) (cf. Corollary 3.2, part a and § 3.4). Finally, there are hk · · ·hs isomorphic compo-
nents containing vertices above v̄0. We denote such a component by Γ−(vk), and D±(vk) denotes
det(Γ±(vk)).

Obviously, Γ−(v1) = Γ(v̄0), and Γ+(vs) = Γ(vs) whose determinants are computed in
Proposition 3.5.

Proposition 3.9. Assume that s � 2.

a) D−(v2) = (a′1)h1−1 · (p′1)h̃1−1 · a′2.
b) D+(vs−1) = n ·D(vs−1)hs−1 ·D(v̄s)h̃s−1/(hshs−1h̃s−1).

Proof. a) Fix a vertex v′ ∈ q−1(v2) and one of the graphs Γ−(v′). Let w1 be its unique rupture
point, and let w2 denote that vertex which was connected by an edge with v′ in Γcan(Xf,n , z).
(If Γ(v1) = ∅ then w1 = w2, but the proof is valid in this case as well.) We put back on the vertices
of Γ−(v′) the multiplicities of Γcan(Xf,n , z). They will form a compatible set (i.e. will satisfy (2.1.1))
provided that we put on w2 an arrow with multiplicity mv′ = mv2 . This graph with arrowhead and
multiplicities has the following schematic form:

�

�

�

�

� �

(mv2)
(mv1) �...h1

· · ·
h̃1

Notice that Γ−(v′)\{w1} has h1 + h̃1 +1 connected components, h1 of type Γ(v̄0), h̃1 of type Γ(v̄1),
and one of type Γ(v1). Therefore, by § 2.1 one gets the following:

mv1

mv2

= −I−1
w1w2

=
D(v̄0)h1 ·D(v̄1)h̃1

D−(v2)
.

Now, use Corollary 3.2, part b and Proposition 3.5.
b) We proceed similarly, but now with the graph Γ+(vs−1). Its schematic form, together with

the multiplicities of Γcan(Xf,n , z), is as follows:

�

�

�
...hs

� �

� �
(mvs−1)

(mvs−1)

(1)
(mvs) �

�

�

· · ·
h̃s

If from this graph we delete its rupture point (and the arrows and multiplicities) then we get
the following connected components: hs of type Γ(vs−1), one of type Γ(vs), and h̃s of type Γ(v̄s).
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Therefore, from § 2.1, similarly as above, one gets the following:

mvs =
D(vs−1)hs ·D(v̄s)h̃s

D+(vs−1)
+ hs · D(vs−1)hs−1 ·D(v̄s)h̃s ·D(vs)

D+(vs−1)
· mvs−1 .

Then use again Corollary 3.2, part b and Proposition 3.5 (and as = qs + psps−1as−1).

Remark 3.10. By a similar argument one can prove the next identity for k � 2 (which is not needed
later):

D−(vk)
a′k

=

[
D−(vk−1)
a′k−1

]hk−1

· (a′k−1)
hk−1−1 · (p′k−1)

h̃k−1−1.

4. From Γcan(Xf,n , z) to Γmin(Xf,n )

Let Γmin(Xf,n , z) be the minimal embedded resolution graph of (Xf,n , z). This can be obtained
from Γcan(Xf,n , z) by a sequence of blow-downs (and without any blow-up).

Proposition 4.1. All the rupture vertices of Γcan(Xf,n , z) survive in Γmin(Xf,n , z) as rupture
vertices (i.e. they are not blown down in the minimalization procedure, and in Γmin(Xf,n , z) they
still live as rupture vertices).

Proof. From the theory of Hirzebruch–Jung singularities it follows that a string of type Γ(v̄k)
(0 � k � s) is completely collapsed in the minimalization procedure if and only if its determinant
D(v̄k) equals 1. First we verify that all the rupture vertices above v1 will survive (as rupture vertices).
Let v′ be one of them considered in Γcan. It supports h1 strings of type Γ(v̄0), h̃1 strings of type
Γ(v̄1) and another edge, denoted by e. Recall that D(v̄0) = a′1 and D(v̄k) = p′k; cf. Proposition 3.5.
By Corollary 3.7, if both D(v̄0) and D(v̄1) equal 1, then gv′ �= 0. Hence v′ will be a rupture vertex
in Γmin(Xf,n , z).

If D(v̄0) �= 1 but D(v̄1) = p1/h1 = 1 then the strings of type Γ(v̄0) will survive. Their number is
h1 = p1 � 2. Symmetrically, if D(v̄1) �= 1 but D(v̄0) = a1/h̃1 = 1 then h̃1 = a1 � 2 strings of type
Γ(v̄1) will survive. If both determinants are greater than 1, then all the strings will survive with
total number h1 + h̃1 � 2. Since the arrowhead survives, and Γmin(Xf,n , z) is connected, the edge
e will survive as well. Hence v′ has degree at least 3 in Γmin(Xf,n , z).

By induction, we assume that for a fixed k, all the rupture vertices above any vi ∈ W∗ survive for
any i � k−1. We show that this is the case for vk as well. For this, fix an arbitrary v′ ∈ q−1(vk). First
notice that by the inductive step, the hk subgraphs Γ−(v′) will survive (they cannot be completely
contracted since they contain rupture points that survive). Similarly as above, since the arrowhead
survives, the edge connecting v′ with Γ+(vk) will also survive. If D(v̄k) = 1, then hk = pk � 2.
If D(v̄k) �= 1, then all the graphs Γ(v̄k) will survive. Hence, in any case δv′ � 3 in Γmin(Xf,n , z).

Now, recall that Γmin(Xf,n ) denotes the minimal (good) resolution graph of (Xf,n , 0). It can be
obtained from Γmin(Xf,n , z) by deleting its arrowhead (and all the multiplicities) and blowing down
successively all the (−1)-curves with genus 0 and new degree � 2. In fact, there is exactly one case
when after deleting the arrowhead of Γmin(Xf,n , z) we do not obtain a minimal graph, and this is
described completely in the next proposition. In the sequel we refer to this ‘pathological’ situation
as the ‘P-case’.

Proposition 4.2. Assume that by deleting the arrowhead of Γmin(Xf,n , z) we obtain a nonminimal
graph. Then Γmin(Xf,n , z) has the following schematic form with the two left branches isomorphic
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and with e � −3 (we omit the multiplicities). The rational (−1)-curve is the unique vertex v′ =
q−1(vs) (which survives in Γmin(Xf,n , z); cf. Proposition 4.1).

�

�

�

����

����

�
−1

v′

e

e

This situation can happen if and only if n = ps = 2.
In this case, Γmin(Xf,n ) is obtained from Γmin(Xf,n , z) by deleting its arrowhead and blowing-

down v′. No other blow-downs are necessary.

Moreover, in this case, all the vertices of Γmin(Xf,n , z) have genus zero.

Proof. If the graph obtained from Γmin(Xf,n , z) by deleting its arrowhead is not minimal, then the
vertex v′ in Γmin(Xf,n , z) which supports the arrowhead should be a (−1) rational curve of degree
3 in Γmin(Xf,n , z). This can happen only if this vertex v′ is exactly the unique vertex q−1(vs) (and
gvs = 0). This also shows that Γ(vs) was collapsed in Γmin(Xf,n , z); hence D(vs) = n/hsh̃s = 1.
Hence we obtain that

hsh̃s = n � 2 and (hs − 1)(h̃s − 1) = gvs = 0.

Assume first that hs = 1 and h̃s > 1. Since D(v̄s) = ps > 1, the h̃s strings Γ(v̄s) are present
in Γmin(Xf,n , z). This can happen if and only if h̃s = 2 and Γ−(vs) is collapsed completely in
Γmin(Xf,n , z). Since for s � 2 the rupture points q−1(v1) survive in Γmin(Xf,n , z), this can happen
only if s = 1 and D(v̄0) = a1/h̃1 = 1. This shows that a1 = h̃1 = 2, which contradicts the inequality
a1 = q1 > p1 � 2.

Therefore h̃s = 1 and hs > 1. Since the degree of v′ (in Γmin(Xf,n , z)) is at least 1 + hs (hence
1 + hs � 3), one gets hs = 2, and also the fact that the graphs of type Γ(v̄s) are collapsed in
Γmin(Xf,n , z); hence ps/hs = 1. Therefore, n = hs = ps = 2.

Then h̃k = 1, and hence gvk
= 0 for any k.

Finally, notice that e � −3 (cf. the diagram) since after we blow down v′ we get a subgraph of
type

� �e+ 1 e+ 1

which must be negative definite.
On the other hand, one can verify easily that, if n = ps = 2, then the above situation always

occurs.

Remark 4.3. Assume that gvk
= 0. If a family of strings supported by any fixed v′ ∈ q−1(vk) is

collapsed completely during the minimalization procedure, then the cardinality of this family (in
spite of the fact that it is missing in Γmin(Xf,n )) can be determined, and it is 1. More precisely, if
for k � 1, the h̃k graphs of type Γ(v̄k) are completely collapsed, then hk = pk � 2. Then by the
genus formula of Corollary 3.2, part c, one gets h̃k = 1. Similarly, if k = 1 and the h1 graphs of type
Γ(v̄0) are collapsed, then h1 = 1.

In order to recover the Newton pairs of f and the integer n from the graph Γmin(Xf,n ), we
need some information about some subgraphs G of Γmin(Xf,n ) of the following type. Each G is a
connected component of Γmin(Xf,n ) \ {v} for some rupture vertex v of Γmin(Xf,n ), and it contains
exactly one rupture vertex of Γmin(Xf,n ). In a general setting their precise definition is the following.
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4.4 Definitions
Let Γ be a decorated tree (with self-intersections and genera {gv}v, without arrowheads and
multiplicities). Assume that it has at least two rupture vertices.

1) Let Γ(R) be the minimal connected subgraph of Γ which contains all the rupture vertices
R of Γ. Let L(Γ(R)) be the set of leaf vertices of Γ(R). For any v ∈ L(Γ(R)) let G(v) be the
maximal connected subgraph of Γ which contains v but contains no other rupture vertex of Γ. The
determinant det(G(v)) is denoted by D(v).

2) For any v ∈ L(Γ(R)), let vroot be the unique rupture vertex of Γ with the property that on
the shortest path in Γ connecting v and vroot there are no other rupture vertices of Γ. Then clearly
vroot is adjacent with a certain vertex of G(v) (in fact G(v) is one of the connected components of
Γ \ {vroot}).

3) For each rupture vertex v ∈ R, denote by St(v) the set of maximal strings of Γ which are
supported by v (on one end) and contain a leaf vertex of Γ (on the other end). More precisely,
these strings are those connected components of Γ \ Γ(R) which have an adjacent vertex with v
(in Γ). We write St(v) as a disjoint union of its subsets {Sti(v)}i∈I(v) which are the level sets of
det : St(v) → Z. We set Di := det(St) for St ∈ Sti(v) and #i := #Sti(v). Then we define

DSt(v) :=




∏
i∈I(v)

D#i
i if St(v) �= ∅,

1 if St(v) = ∅,

Dred
St (v) :=




∏
i∈I(v)

D#i−1
i if St(v) �= ∅,

1 if St(v) = ∅,

and α(v) ∈ Q ∪ {∞} by

α(v) =




∏
i∈I(v)

#i if St(v) �= ∅,

1 if St(v) = ∅ and gv = 0,
2gv

δv − 2
+ 1 if St(v) = ∅ and gv �= 0.

[α(v) = ∞ if and only if the degree δv of v in Γ is 2, St(v) = ∅ and gv �= 0.]
4) For each v ∈ L(Γ(R)) we define the β-invariant by

β(v) :=
D(v)
DSt(v)

· α(vroot)
α(v)

.

4.5
In the next paragraphs we apply these definitions for Γ = Γmin(Xf,n ). Here, we prefer to regard
Γmin(Xf,n ) together with Γcan(Xf,n , z), as a minimalization of Γcan(Xf,n , z). In particular, we will
define subsets, subgraphs, etc. in Γmin(Xf,n ) as the images of well-defined subsets, subgraphs, etc.
of Γcan(Xf,n , z) by the minimalization procedure. (Of course, in the next section it will be a crucial
task to recover some of these sets only from the abstract graph Γmin(Xf,n ). The key result for this
is Proposition 4.7.)

In order to avoid any confusion, for any subset of vertices of Γcan(Xf,n , z), we will denote by π(A)
the image of A by the minimalization procedure. Hence, π(A) denotes those vertices of Γmin(Xf,n )
which have ancestors in A, and survive in Γmin(Xf,n ); in some cases this set can be empty.

The following facts follow easily from the structure results proved in § 4 and Propositions 4.1
and 4.2.
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4.6 Facts

Assume that Γ = Γmin(Xf,n ) with s � 2. Then the following hold:

a) The set L(Γ(R)) is the disjoint union of two sets R1 and LRs, where

i) R1 := π(q−1(v1));

ii) LRs := ∅ if hs > 1; otherwise LRs := π(q−1(vs)), the image by the minimalization procedure
of the unique rupture vertex of Γcan(Xf,n , z) sitting above vs.

(In both cases, by Propositions 4.1 and 4.2, these sets are subsets of the rupture vertices of
Γmin(Xf,n ).)

b) The subgraphs G(v) for v ∈ L(Γ(R)) = R1 ∪ LRs (cf. part a) can be identified as follows:

i) Assume that we are not in the ‘P-case’ with s = 2. For each v ∈ q−1(v1) consider the unique
subgraph of type Γ−(vroot) in Γcan(Xf,n , z), for some vroot ∈ q−1(v2), which contains v. Then its
image in Γmin(Xf,n ) by the minimalization procedure is G(v).

ii) Assume that hs = 1. For v = q−1(vs) consider Γ+(vroot) in Γcan(Xf,n , z) with vroot :=
q−1(vs−1). Then its image in Γmin(Xf,n ) by the minimalization procedure is G(v).

c) The α and β defined in § 4.4 are constant on R1.

(The motivation for the notation LRs is the following: Later we will use the symbol Rs for
π(q−1(vs)); hence LRs = Rs if π(q−1(vs)) is a ‘leaf rupture vertex’, otherwise it is empty.)

The main point is that in part a, the cases i and ii can be distinguished by the genus and
β-invariant.

Proposition 4.7. Assume that Γ = Γmin(Xf,n ) with s � 2.

a) If there exists at least one v ∈ L(Γ(R)) with gv �= 0, then R1 = {v ∈ L(Γ(R)) : gv �= 0} and
LRs = {v ∈ L(Γ(R)) : gv = 0} (LRs can be empty).

b) If gv = 0 for any v ∈ L(Γ(R)) and LRs �= ∅, then β(v) ∈ (0,∞) and

β(v) > 2 if v ∈ R1,
β(v) � 1/2 if v ∈ LRs.

Proof. a) Genus gv is constant on R1 and gv = 0 for (the unique) v ∈ LRs provided that LRs �= ∅,
since in this case hs = 1 (cf. Corollary 3.2).

b) Since hs = 1 we can exclude the ‘P-case’. First assume that s � 3.

If v ∈ R1 then by Corollary 3.7 and Remark 4.3 one has α(v) = h1h̃1. For vroot, analyzing the
three different cases from the definition of α(vroot), and using Remark 4.3 and the genus formula,
we get α(vroot) = h̃2. On the other hand, D(v) = (a′1)h1−1(p′1)h̃1−1a′2 (cf. Proposition 3.9, part a)
and DSt(v) = (a′1)

h1(p′1)
h̃1 (use Proposition 3.5 and notice that if a string is collapsed completely

then its determinant is 1). Therefore, β(v) = a2/(a1p1) > p2 � 2; cf. (2.2.1).

If v = π(q−1(vs)) then α(v) = h̃s (use gs = 0, Remark 4.3 and Corollary 3.7). By similar
argument as above, α(vroot) = h̃s−1. By Proposition 3.9, part b and hs = 1 one has D(v) =
D+(vs−1) = n(p′s)h̃s−1/(hs−1h̃s−1). By Proposition 3.5, DSt(v) = (p′s)h̃s ·n/(hsh̃s). Therefore, using
again hs = 1, one gets β(v) = 1/(hs−1ps) � 1/2.

Assume that s = 2 and let v′i = q−1(vi) (i = 1, 2). Then α(v′i) = hih̃i (i = 1, 2). Hence the
computation of β(v′1) is the same as above, and it gives a2/(a1p1) > 2. For v′2 we have an additional
h1 and we get β(v′2) = 1/p2 � 1/2.

515

https://doi.org/10.1112/S0010437X04000946 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000946


R. Mendris and A. Némethi

5. From Γmin(Xf,n ) back to f and n

Our final goal is to recover the Newton pairs of f and the integer n from the graph Γmin(Xf,n ).
In general, this is not possible. Nevertheless, by our main theorem, there are only two cases when
such an ambiguity appears (the S1- and S2-coincidences). They are presented in the following
subsections.

5.1 S1-coincidence
Assume that (X, 0) = (xq1 + yp1 + zn = 0, 0) is a Brieskorn singularity with (q1, p1) = 1. Let us
first analyze how one can recover the set of integers {q1, p1, n} from the minimal resolution graph
Γ of (X, 0). In this case, the computation of the graph Γ from the integers {q1, p1, n} is a classical,
well-known fact (cf. also our algorithm). The graph is either a string (with all genera zero) or a
star-shaped graph (where only the central vertex might have a nonzero genus). If Γ is a string,
then (X, 0) is a Hirzebruch–Jung hypersurface singularity. But there is only one family of such
singularities, namely the Aq1−1 singularities provided by the integers {q1, 2, 2}. In this case, q1 is
just the determinant of the string.

There is a rich literature of star-shaped graphs and Seifert 3-manifolds, and also of their subclass
given by Brieskorn hypersurface singularities. The reader is invited to consult [OW71, § 3, case (I)],
(cf. also [JN83, NR78]).

If one wants to recover the integers {q1, p1, n}, then one considers the set of strings St(v) of the
central vertex v. Recall definition 3 in § 4.4 for the notation. Then #I(v) � 3. If #I(v) = 3 then
{q1, p1, n} = {D1#2#3,D2#1#3,D3#1#2}. If one Sti0 is missing (empty) then Di0 = 1 and #i0

can determined from the genus of the central vertex (see e.g. our genus formula of Corollary 3.2,
part c or [OW71, (3.5)]). Hence the previous procedure still works.

Similarly, in our special situation (q1, p1) = 1, one can show that, if two subsets Sti are empty,
then one can still recover {q1, p1, n} excepting only one case, namely when St(v) consists of only
one string. In our terminology, this can happen only when the string which supports the arrowhead
survives and all the others are contracted (i.e. p′1 = a′1 = 1). Similar ambiguity appears when
St(v) = ∅.

But all these ambiguity cases can be classified very precisely. Consider an identity of type
(h1 − 1)(h̃1 − 1) = 2g > 0 and an arbitrary positive integer l. Then the triplet {q1, p1, n} =
{h̃1, h1, h̃1h1l} provides the following graph Γ (with l − 1 (−2)-vertices):

� � � �· · ·
[g]

−1 −2 −2 −2

Now fix l > 0 and g > 0. Then, different triplets {h̃1, h1, h̃1h1l} with (h1 − 1)(h̃1 − 1) = 2g, h1 > 1
and h̃1 > 1 provide the same graph. [For example, (3, 7, 21) and (4, 5, 20) provide the same graph
consisting of a vertex with g = 6 and self-intersection −1.]

This is the only coincidence in the case of Brieskorn singularities with (q1, p1) = 1. Obviously,
this cannot happen if g = 0.

Relation with the Milnor number. Notice that in those cases when Γ fails to determine the integers
{q1, p1, n}, Γ together with the Milnor number µ of the Brieskorn singularity do determine {q1, p1, n}.
Indeed, in the ‘ambiguity cases’ one has (q1, p1, n) = (h̃1, h1, h̃1h1l), where 2g = (h1−1)(h̃1−1) > 0
and l are readable from the graph. But µ = (h1 − 1)(h̃1 − 1)(h̃1h1l − 1) = 2g(h̃1h1l − 1). This
determines h̃1h1, and finally h1 and h̃1 (using the genus formula).
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Remark 5.2 (‘z-axis ambiguity’). Recall that by our general aim, we have to recover the Newton
pairs of f and the integer n. In the Brieskorn case, after we recover the set (q1, p1, n) we have to
make a choice for the z-axis. Recall that (p1, q1) = 1. If k integers among of (p1, q1), (p1, n) and
(q1, n) equal 1, then there are k possibilities for the choice of the z-axis.

5.3 S2-coincidence
The next coincidence appears when

s = 2, and a′1 = p′1 = h̃2 = 1 (or equivalently, s = 2, (n, a2) = 1 and (n, p2)a1p1|n ). (5.3.1)

In this case clearly q1 = h̃1 and p1 = h1, but the h̃1 strings of type Γ(v̄0) and the h1 strings of
type Γ(v̄1) are not visible on the minimal graph since their determinants are 1, and hence they are
contracted. The graph Γmin(Xf,n ) has the following schematic form, where gv1 > 0 and we omit
the self-intersections:

�

�

�

�

�[gv1 ]

[gv1 ]

...h2

The strings that appear on the right correspond to Γ(v2) and Γ(v̄2), but in general, we cannot decide
which one is which. From the graph we can read h2 and the genus gv1 = (h1 − 1)(h̃1 − 1)/2, and of
course, a lot of determinants.

Using h2, h̃2, and D(v1), D−(v2), D+(v1) and the set {D(v2),D(v̄2)}, we can also recover
a2, q2, n/(h1h̃1), h1h̃1p2 and the set {p2, n}, where we cannot distinguish p2 from n.

Notice that once we know h1h̃1, then using the genus formula and h̃1 = q1 > p1 = h1, we obtain
h1 and h̃1 without any ambiguity, and hence (by the above equations) all the data. But for the
three ‘variables’ h1h̃1, p2 and n we know only the values n/(h1h̃1), h1h̃1p2 and the set {p2, n}.
This, in general, has two possible solutions (which correspond by a permutation of p2 and n). If this
is the case, then it might happen that there are two different realizations of the same graph for two
different pairs (f, n). But for this, both solutions should provide positive integers as candidates for
the Newton pairs and n. If this does not happen then the graph is uniquely realized (see Example 3
below).

The complete discussion of all the cases when the above equations which involve D(v1), D−(v2),
D+(v1) and the set {D(v2),D(v̄2)} associated with the graph provide exactly two ‘good’ solutions
for (f, n) is long and tedious, so we have decided not to give it here (nevertheless we think that
Example 3 illuminates the problem completely). What is important is the fact that any graph (in
this family) can be realized by at most two possible pairs (f, n), and this coincidence in some cases
really occurs. (Moreover, given a pair (f, n), or the graph of Xf,n , one can write down easily the
possible candidate for the numerical data of (f ′, n′), the possible pair of (f, n), with the same graph.)

In the next examples we will write {(p1, q1), (p2, q2);n} for the Newton pairs of f and the
integer n. Recall that (5.3.1) implies p1 = h1 and q1 = h̃1.

Example 1. The two different solutions (3, 7) and (4, 5) for the genus formula

(h1 − 1)(h̃1 − 1) = 2 · 6
can be completed to the following two sets of invariants: {(3, 7), (20, 1); 21} and {(4, 5), (21, 1); 20}.
For them the corresponding two graphs are the same:
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� � � � �

�

[6]

−421 −1 −2 −2 −2

−21

· · ·

Here the number of (−2)-curves is 19, and h2 = 1.

Example 2. If one wants examples with arbitrary h2, then one of the possibilities is the following:
One multiplies in the above data (of Example 1) p2 and n by the wanted h2. For example, the data
{(3, 7), (40, 1); 42} and {(4, 5), (42, 1); 40} provide the same h2 = 2 and the same graph:

�

�

� � � �

�

�
�

�
�

[6]
−841

[6]
−841

−1 −2 −2 −2

−21

· · ·

Here again, the number of (−2)-curves is 19.

Example 3. Assume the data {(p1, q1), (p2, q2);n} of (f, n) satisfy (5.3.1); hence p1 = h1 and q1 = h̃1.
If (f, n) has ‘a pair’ (f2, n2) (with the same graph) then the data of (f2, n2) have the form (cf. the
above discussion) {(x, y), (n, q2), p2}, where x and y can be determined by the equations xy/p2 =
p1q1/n and (x−1)(y−1) = (p1−1)(q1 −1). It is easy to write down cases when this has no integral
solutions.

For example, the data {(2, 3), (5, 1); 6} satisfy (5.3.1), but have no ‘pair’. The minimal resolution
graph can be realized in a unique way in the form f + zn (f irreducible) (cf. Theorem 5.4 below).

Relation with the Milnor number. Even if the same graph is realized by two different pairs (f1, n1) and
(f2, n2), the corresponding Milnor numbers µi associated with the hypersurface singularities fi+zni

(i = 1, 2) distinguish the two cases. This follows from the formula µ = [2gv1p2+(p2−1)(a2−1)](n−1).
Since gv1 > 0, a2, np2 and n + p2 are readable from the graph, this relation determines p2, and
hence all the numerical data.

Now we are ready to formulate and prove the main result of this paper.

Theorem 5.4. Let f : (C2, 0) → (C, 0) be an irreducible plane curve singularity with Newton pairs
{(pi, qi)}s

i=1 and let n be an integer � 2. Let Γmin(Xf,n ) be the minimal (good) resolution graph of
the hypersurface singularity (Xf,n , 0) := ({f(x, y) + zn = 0}, 0). Then the following facts hold:

a) The integer s is uniquely determined by Γmin(Xf,n ).
b) Integer s = 1 if and only if Γmin(Xf,n ) is either a string (with all the genera zero), or a star-

shaped graph (where only the central vertex might have genus g nonzero). Moreover, f(x, y) + zn

has the same equisingularity type as the Brieskorn singularity xq1 + yp1 + zn.

Also Γmin(Xf,n ) is a string if and only if {q1, p1, n} = {q1, 2, 2}. If Γmin(Xf,n ) is a star-shaped
graph with g = 0, then the set of integers {q1, p1, n} is uniquely determined. Moreover, the only
ambiguity which can appear in the case g > 0 is described in § 5.1.

c) If s = 2 then it can happen that two pairs (f1, n1) and (f2, n2) (but not more) provide identical
graphs Γmin(Xf,n ). If this is the case then both of them should satisfy the numerical restrictions:

(n, a2) = 1 and (n, p2)a1p1|n (∗)
(which can be recognized from the graph as well), and (automatically) at least one of the vertices
has genus g > 0. This case is described in § 5.3.
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d) In all other cases (i.e. for any s � 3 or for s = 2 excluding the exceptional case (∗)), Γmin(Xf,n )
determines uniquely the Newton pairs of f and the integer n (by a precise algorithm which basically
constitutes the next proof).

e) In particular, except for the two cases S1 and S2 (cf. §§ 5.1 and 5.3), from the link one can
recover completely the Newton pairs of f and the integer n (provided that we disregard the z-axis
ambiguity; cf. Remark 5.2.) In particular, this is true without any exception provided that the link
is a rational homology sphere.

On the other hand, in the cases S1 and S2, the link together with the Milnor number of the
hypersurface singularity f + zn determines completely the Newton pairs of f and the integer n (cf.
the two paragraphs at the end of §§ 5.1 and 5.3).

Proof. We denote Γmin(Xf,n ) by Γ and its rupture vertices by R. It is convenient to separate those
cases when #R is small.

Case A. Assume that R = ∅. By Proposition 4.1 the set of rupture vertices of Γmin(Xf,n , z) is
never empty. Hence, by Proposition 4.2, R = ∅ if and only if in the ‘P-case’ we contract v′, and v′

is the unique rupture vertex of Γmin(Xf,n , z). But Γmin(Xf,n , z) has a unique rupture point if and
only if s = 1. Therefore (cf. Proposition 4.2) this situation occurs if and only if s = 1, p1 = n = 2
and (q1, 2) = 1; i.e. f(x, y) + zn has the equisingularity type of xq1 + y2 + z2. Clearly, q1 can be
recovered from the graph: it is its determinant; cf. also § 5.1.

Case B. Assume that #R = 1. From Proposition 4.2 it is clear that in the ‘P-case’ the number of
rupture vertices of Γ is even. Hence, this case is excluded, and the number of rupture vertices
of Γmin(Xf,n , z) is also 1. By Proposition 4.1, this can happen only of s = 1. In particular, f + zn

is of Brieskorn type: xq1 + yp1 + zn, with q1 > p1 � 2, (p1, q1) = 1 and n � 2 (where the case
p1 = n = 2 is excluded, see above). This case is completely covered by § 5.1.

Case C. Assume that #R > 1. By Propositions 4.1 and 4.2, #R > 1 if and only if s � 2. The proof
(algorithm) consists of several steps; each step recovers some data.

1) The set R1 can be determined from § 4.6 and Proposition 4.7. Indeed, we start with the set
L(Γ(R)) (where Γ = Γmin(Xf,n )). Then, if there exists at least one v ∈ L(Γ(R)) with gv �= 0, then
R1 = {v ∈ L(Γ(R)) : gv �= 0} (cf. Proposition 4.7, part a). If gv = 0 for all v, then we consider their
β-invariants β(v). If they are all equal, then by Proposition 4.7, part b, one gets R1 = L(Γ(R)). If
they are not all equal, then only one can be � 1/2 (corresponding to {v} = Rs), and all the others
are > 2 (and equal to each other) corresponding to R1 (cf. Proposition 4.7, part b).

2) The sets π(q−1(vk)) (1 � k � s). Define a distance on the set R. If w1, w2 ∈ R, and on the
shortest path in Γ connecting them there are exactly l rupture vertices of Γ (including w1 and w2),
then we say that d(w1, w2) := l − 1 � 0. Moreover, for any subset R′ ⊂ R and w ∈ R we define
d(R′, w) as usual by min{d(w′, w) : w′ ∈ R′}.

Then, for any k � 1, we write Rk := {v ∈ R : d(R1, v) = k − 1}. Let

s′ := max{k : Rk �= ∅}.
We distinguish two cases:

a) #Rs′ = 1. Then s = s′ and π(q−1(vk)) = Rk for 1 � k � s.
b) #Rs′ > 1. This can happen exactly in the ‘P-case’ (cf. Proposition 4.2). In this situation,

s = s′ +1, π(q−1(vk)) = Rk for 1 � k � s−1, and the (unique) vertex v′ = q−1(vs) of Γmin(Xf,n , z)
is ‘missing’ in Γ, i.e. π({v′}) = ∅ (cf. Proposition 4.2).

For a moment we postpone the ‘P-case’, and we assume case a. We will come back to the ‘P-case’
in step 11.
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3) The integers {hk}s
k=2 are determined by the identities hk = #Rk−1/#Rk (h1 will be determined

later).

4) The sets {π(q−1(v̄k))}s−1
k=2 and the integers {h̃k}s−1

k=2, {pk}s−1
k=2 (for s � 3). Fix 2 � k � s− 1 and

some v ∈ Rk. Consider the set of strings St(v) supported by v (cf. definition 3 in § 4.4).
If St(v) �= ∅, then #St(v) = h̃k and det : St(v) → Z is constant with value p′k. Then pk = p′k ·hk.

Then this happens for any choice of v, and π(q−1(v̄k)) is the set of leaf vertices of Γ situated on the
strings of type

⋃
v St(v), v ∈ Rk.

If St(v) = ∅ then all the strings of type Γ(v̄k) are collapsed in Γ; in particular π(q−1(v̄k)) = ∅.
Hence their determinants p′k = pk/hk = 1. In particular, pk = hk � 2. Then h̃k is given by the genus
formula h̃k − 1 = 2gv/(hk − 1).

For the ‘ends’ k = 1 and k = s we need more special computations (since we have to separate the
two different types of strings which may or may not be ‘missing’ from Γ). In step 5 we recover h̃s;
in steps 6 and 7, n and ps and the arrowhead of Γmin(Xf,n , z) (excepting the case (∗)). In step 8
we treat the invariants with index k = 1.

5) The integer h̃s. If hs > 1 then the genus formula for gvs gives h̃s. If hs = 1, the strings of type
Γ(v̄s) cannot be collapsed; hence St(v) �= ∅ for {v} = Rs. Then h̃s = α(v); cf. definition 3 in § 4.4
and Corollary 3.7, part b.

6) ps and n and the arrowhead of Γmin(Xf,n , z) in the following cases:

i) either s � 3, or
ii) s = 2 but {a′1, p′1} �= {1}.

First we show that in both cases we can compute the product hs−1h̃s−1. Indeed, in the case i this
follows from steps 3 and 4. If s = 2 then we proceed as follows. Since a′1 and p′1 are not both 1,
St(v) �= ∅ for v ∈ R1. If the determinant has two values on this set, then h1h̃1 = α(v); cf. definition 3
in § 4.4 and Corollary 3.7, part a. If all the determinants are the same, then either Γ(v̄0) or Γ(v̄1) is
collapsed. If Γ(v̄0) is collapsed, then a′1 = 1, and hence h̃1 � 2. In the second case h1 � 2. Hence in
both cases the following procedure works: take c1 := #St(v) (which automatically is � 2), compute
c2 by the genus formula 2gv1 = (c1 − 1)(c2 − 1) and set h1h̃1 = c1c2.

Now, we go back to ps and n and the position of the arrowhead.
Notice that by Proposition 4.1 and step 2, the determinants of type D(vs−1) and D+(vs−1) are

well defined in Γ, and their values do not change by the minimalization procedure. For example,
D+(vs−1) can be computed from Proposition 3.9, part b. Notice also that DSt(vs) = n(p′s)h̃s/hsh̃s

(cf. Proposition 3.5). Therefore

D(vs−1)hs−1DSt(vs)
D+(vs−1)

=
hs−1h̃s−1ps

hsh̃s

.

Hence this value can be determined from the graph, a fact which is true for hs−1h̃s−1 (see above)
and hs (cf. step 3) and h̃s (cf. step 5) as well. Hence we get ps. In particular, we can compute the
string determinants D(v̄s) = p′s and (using DSt(vs)) D(vs) = n/(hsh̃s) as well. This gives n too. If
D(vs) �= 1 then we put the arrow on the string with this determinant (cf. Corollary 3.7); if D(vs) = 1
then we put the arrowhead on π(q−1(vs)). In this way we recover the arrow of Γmin(Xf,n , z).

7) ps and n and the arrowhead of Γmin(Xf,n , z) if

iii) h̃s �= 1.

Consider St(v) for {v} = Rs, cf. definition 3 in § 4.4. Then by a verification Dred
St (v) = (p′s)h̃s−1.

Since h̃s is determined in step 5, and it is �= 1, one gets p′s. Then we repeat the arguments of step 6.
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8) The integers a1, p1, h1 and h̃1 in the cases when one of the conditions i or ii or iii is valid. Fix
a vertex v ∈ R1 and consider St(v) as in definition 3 in § 4.4.

If St(v) �= ∅, then #I(v) � 2. If #I(v) = 2, then compute the two numbers D1 ·#2 and D2 ·#1.
They are the candidates for a1 = q1 and p1; cf. Proposition 3.5. Since q1 > p1, these two numbers
cannot be the same. If, say, D1 · #2 > D2 · #1, then St1 is the index set of π(q−1(v̄0)) and St2 of
π(q−1(v̄1)). Hence h1 = #1, h̃1 = #2, q1 = D1 · #2 and p1 = D2 · #1.

If there is only one level set with data D1 and #1, then in the above argument we write D2 = 1
and we determine #2 using the genus formula 2gv1 = (#1 − 1)(#2 − 1) (which is possible since
D2#1 = #1 � 2). We repeat the above argument.

Now we assume that St(v) = ∅. This can happen only if a′1 = p′1 = 1; hence q1 = h̃1 and
p1 = h1. First we determine H := h1h̃1.

D(v1) gives an equation of type q2 = H ·A, where A is a positive number which can be determined
from the graph by the previous steps. Moreover, D−(v2) = a′2, and hence a2 = D−(v2)h̃2 is known
from the graph. Finally, a1p1p2 = Hp2, where p2 too is known from the graph. Then the identity
a2 = q2 + a1p1p2 gives a nontrivial linear equation for H.

Then h1h̃1 = H and (h1 − 1)(h̃1 − 1) = 2gv1 provides h1 and h̃1 modulo their permutation. But
h̃1 = q1 > a1 = h1, and hence we get h1 and h̃1.

9) The integers {ak}s
k=2 when one of the conditions i or ii or iii is valid. Once we have the position of

the arrow, we have all the multiplicities {mvk
}k; hence Corollary 3.2, part b gives all the integers a′k.

An alternative way is to use Remark 3.10 inductively.

10) Assume that the conditions i, ii and iii are not valid. This means that s = 2 and a′1 = p′1 =
h̃2 = 1. This is exactly the case of S2-coincidence treated in § 5.3.

11) The ‘P-case’. Now we go back to step 2, case b. In this case #Rs′ = 2, so write Rs′ = {w1, w2}.
Take the shortest path in Γ connecting w1 and w2. Take the edge ‘at the middle of the path’, blow
it up, and put an arrow on it. This new graph is exactly Γmin(Xf,n , z). Set Rs := {v′}, where v′ is
the new vertex. Then we can repeat all the above arguments.

Notice that step 6 works, since if s = 2 and a′1 = p′1 = 1, then h1 = p1 � 2 and h̃1 = a1 � 2, and
hence gv1 > 0. But in the ‘P-case’ all the genera are zero. (Hence step 7 is not needed.) [In fact,
since in this case we already have the position of the arrow, we can compute some of the invariants
much faster using the multiplicities and Corollary 3.2, part b.]

5.5 The symmetry of the graph
In the above proof we were rather meticulous in separating the possible sets π(q−1(v)). The fruit of
this is the following corollary (whose proof is left to the reader, and basically it is incorporated in
the previous proof of the main theorem).

First recall that the cyclic covering Xf,n → X has a Zn-Galois action. This lifts to the level
of the resolution; hence Γmin(Xf,n ) inherits a natural Zn-action as well. The question is: Has the
graph Γmin(Xf,n ) any extra symmetry?

Take for example the Brieskorn case of Example 3.3. Then the Galois action permutes
cyclically (via its image Zh) the h arms with Seifert invariants a. On the other hand, the total
symmetry group of the graph is the total permutation group of these arms. So, in this sense,
the symmetry group of the graph is definitely larger than the (image) of the Galois action. On the
other hand, their orbits are the same. This fact is valid in general.

Corollary 5.6. Assume that σ is a (decorated graph) automorphism of Γmin(Xf,n ) which identifies
two vertices, say, v1 and v2. Then v1 and v2 are in the same orbit with respect to the Galois action.
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5.7 Final remarks about the reducible case
1) We emphasize again that it is rather surprising (at least for the authors) that from the link
of Xf,n (without any additional assumption about the link) one can recover the equisingularity
type of f and the integer n excepting only two families. Still, we expect that even for reducible f ,
the link of Xf,n contains all the information about the equisingularity type of f and the integer n
‘generically’, i.e. excepting a set of coincidences which is ‘small’ inside of suspension singularities. At
this moment it is extremely difficult to guess how large is the set of these exceptions. Coincidences
with star-shaped graphs are known, and can be classified. But definitely there are other type of
coincidences as well.

For example, the minimal resolution graphs of the suspension singularities

{(x19 + y38)(x32 + y16) + z3 = 0} and {(x5 + y6)(x10 + y3) + z45 = 0}
are the same, namely:

� �

[18] [15]

−2 −2

Moreover, the above S2-coincidence warns us that we can expect rather strange coincidences as
well. We also notice that if f is reducible, the graph of Xf,n in general is not a tree, a fact which
enlarges the possible graphs considerably.

On the other hand, we conjecture that even for reducible f , if the link of Xf,n is a rational
homology sphere, then it determines the equisingularity type of f and the integer n in a unique way.

2) Analyzing the above results, we realize that some of them can be generalized in a natural way
to the reducible case; but in some other cases we cannot even formulate the possible generalizations
(e.g. in the crucial Proposition 4.7).

3) Corollary 5.6 cannot be extended to the general case of nonirreducible germs. For example,
Γmin(C2, 0) can have a symmetry (take e.g. f = (x2 + y3)(x3 + y2)) which lifts to an automorphism
of Γmin(Xf,n ), which does not come from the Galois covering.
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