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Almost free actions on manifolds

Philip T. Church and Klaus Lamotke

Let X be a compact, connected, oriented topological G-manifold,

where G is a compact connected Lie group. Assume that the fixed

point set is finite but nonempty, the action is otherwise free,

and the orbit space is a manifold. It follows that either

G = £/(l) = S1 and dim* =1+ or G = S (l) = S3 and dim* = 8 ,

and the number of fixed points is even. The authors prove that

these U(l)-manifolds (respectively, S (l)-manifolds) are

classified up to orientation-preserving equivariant homeomorphism

(1) the orientation-preserving homeomorphism type of their

orbit 3-manifolds (respectively, 5-manifolds), and

(2) the (even) number of fixed points.

Both the homeomorphism type in (l) and the even number in (2) are

arbitrary, and all the examples are constructed. The smooth

analog for U(l) is also proved.

1. Introduction
00

In this paper we consider both the topological and the smooth (C )

categories. Manifolds are always assumed to be oriented, closed and

connected, and homeomorphisms and diffeomorphisms are assumed to be

orientation-preserving.

1.1. Let X be a G-manifold, where G is a compact connected Lie

group, let F c X be its fixed point set, let X/G = N be its orbit space

and let Tr : X •* N be the canonical map. Assume that F is finite but

Received 2k October 1973.
177

https://doi.org/10.1017/S000497270004082X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270004082X


178 Philip T. Church and Klaus Lamotke

nonempty and the action is otherwise free. Call such an action almost

free. Much of the information in 1.2-l.U is readily derived or even

essentially known.

1.2. In the smooth case, G = U(l) = S1 or G = SU{2) = S (l) = S 3 .

Furthermore, N is a (topological) manifold if G = S and dim* = 1* or

G = S and dimX = 8 . In this case, N has a canonical smooth

structure.

1.3. In the topological case, if N is a manifold, then G = 5 and

dim* = k or G = S3 and dimX = 8 .

1.4. The number of fixed points v(F) equals the Euler character-

istic

1.5. If N is a manifold, then v(F) is even.

The main result of this paper is the following.

CLASSIFICATION THEOREM 1.6. Let X and X' be almost free

G-manifolds with N and N' manifolds.

(a) If X and X' are equivariantly homeomorphic (diffeomorphio),

then N and N' are homeomorphic (diffeomorphic) and the number of fixed

points v{F) = v{F') .

(b) Conversely, assume N and N' are homeomorphic (diffeomorphic)

and v(F) = v(F') . Then X and X' are equivariantly homeomorphic. In

the smooth case for G = S , X and X' are equivariantly diffeomorphic.

In the smooth case for G = S , the equivariant homeomorphism between X

and X' maps X - F diffeomorphically onto X' - F' .

(c) The orbit manifold and number of fixed points can be arbitrary

subject to 1.2, 1.3, 1-5.

Theorem 1.6 remains true if "manifold" is reinterpreted to mean

orientable, manifold and a "homeomorphism (diffeomorphism)" is not assumed

to be orientation-preserving. The authors do not know whether the result

of (b) in the smooth case for G = S can be improved to: X and X' are

equivariantly diffeomorphic; see 2.10 and h.6 below.
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This theorem extends Antonelli's [3] result on the classification of

the space X (but not the action) up to oriented homotopy type in case N

is a sphere and the action is smooth; see the remark in It.3 below. The

authors wish to acknowledge that the topic of this paper was suggested to

them by AntonelIi's paper.

This paper is organized as follows: in §2 the action of G on X is

studied locally near a fixed point. Especially, Proposition 2.3 and 2.5

yield 1.2 and Theorem 1.6 (a), Proposition 2.6 yields 1.3, and 2.7 yields

l.k. If the fixed points are removed, X - F is a principal G-bundle

over N - Tt(F) . Its characteristic (co)-homology class is studied in §3:

Proposition 3.5 (b) yields 1.5 and Proposition 3.8 yields Theorem 1.6 (b).

In §4 sufficiently many examples of almost free G-manifolds are

constructed in order to yield Theorem 1.6 (a).

2. Local behaviour

The action of G on X is studied locally in the neighborhood of a

fixed point. Representation theory is the main tool in the smooth case,

2.1, Propositions 2.3 and 2.U, and 2.5, because local coordinates can be

introduced such that G acts orthogonally with respect to them.

2.1. Standard representations. Let A denote the complex numbers C

or the quaternions H and let £p = {g (.A : \g\ = l } , p = 1 for C

and p = 3 for H . Let 5 P act on A x A by

(la) g • (z, w) = (gz, gw) ,

respectively

(lb) g • (3, w) = (zg, gw) .

This action is almost free, that is, free except for the fixed point

(0, 0) , the orbit space is A x A and the projection map

(2a) (z, w) = {2zw, WW-zz) ,

respectively

(2b) (s, w) = (2zw, WW-zz) ,

compare ['4, p. 102]. Restrictions of (la) and (lb) yield actions of S^

on the unit sphere 5 ^ + 1 and the unit disk D2*3*2 in A x A with orbit
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spaces the unit sphere s" and the unit disk iP in A x B

respectively. These SP-manifolds are denoted by ±S P + and ±D P + , +

for (la) and - for (lb). The bundles y+ with total space +5^P+ and

projection given by (2a), respectively (2b), are the (±) Hopf bundles. The

orientation reversing equivariant diffeomorphism given by ^(z, w) = {z, w)

transforms (la) into (lb). We call these representations standard because

of (d) of the following proposition.

PROPOSITION 2.2. (a) The only compact connected Lie groups G

having almost free (that is, free except for the origin) real

representations cere f/(l) = 5 and SU(2) = Sp(l) = S .

(b) The usual representation of U(l) on C and of SU(2) on B

is almost free.

(c) Up to equivalence every real almost free representation is a

direct sum of several copies of this representation.

(d) The orbit space is a manifold if and only if the number of copies

is two, that is, up to orientation preserving equivalence the

representation is the one described in 2.1.

Proof. (a) Since G is compact, the representation can be assumed

to be orthogonal. Therefore the unit sphere 5 in the representation

space is invariant and G acts freely on S . Thus S is the total space

of a bundle with fibre G and it follows from [5] that G has the homo-

1 3 T 1

topy type of 5 , S , or S . Since G is a Lie group, it is S = J/(l)

or S3 = SU(2) .

Conclusion (b) is trivial.

(o) Let A denote the usual complex representation of t/(l) on C ,

respectively o'f SU(2) on CT , and let A denote A considered as real

representation. Then A and hence A are irreducible. From the

explicit description of all irreducible complex representations of i/(l)

(see [7, pp. 77-78]) and of St/(2) (see [76, p. 58]), it follows that none

of them is almost free except A . Let B be some almost free not

necessarily irreducible real representation. Then the complex
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representation B ® C is almost free. For B ® C = B © B as real

representations, and the direct sum of representations is almost free if

and only if each summand is almost free. The same reason implies:

B®C = A®...®A (m terms) as complex representations and hence

B ® B = A ® .. . ® A (m terms) as real representations. Since the

decomposition of a representation into irreducible components is unique,

B = A © ... © A (k terms, where 2k = m ).

(d) Assume "two copies": the orbit space is a manifold according to

2.1. Assume "manifold": let D denote the unit disk in the

representation space. Then D lG is the cone over S lG because the

action is orthogonal. Since Dn/G is assumed to be a manifold, Sn~ /G

must be a sphere. On the other hand, £>~ /G is the base space of the

fibre bundle with total space 5 and fibre G = £> , respectively = 5

(compare (a) of the proof). Then n = U for G = S , respectively

n = 8 for G = S 3 , is a consequence of the homotopy sequence of a

fibering.

PROPOSITION 2.3. Let X be a smooth almost free G-manifold. Then

(a) the group is G = S or = S ,

(b) the orbit space is a smooth manifold if and only if G = S

and dim* =1* or G = S and dim? = 8 . In this case

the formulas (la), respectively (lb), and (2a)j respectively

(2b), describe the action and projection with respect to

local coordinates near any fixed point.

Proof. The slice theorem, see, for example, [72, p. 3], implies: in

some neighborhood of a fixed point there are smooth coordinates such that

G acts linearly. Thus Proposition 2.3 is a consequence of Proposition 2.2

except for the smooth structure of N which will be dealt with in 2.5

below.

2.4. The associated bundle (topological and smooth case). Since G

acts freely on X - F , the restriction IT : X - F •+ N - tr(F) is the

projection of a (smooth) locally trivial principal G-bundle E, , see [4,
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p. 157], for the topological and [7 2, p. 8 ] , for the smooth case. Since G

and X - F are oriented, N - ir(F) is oriented, and so is N , if N is

a manifold: precisely, first G then N - TI(F) gives the orientation of

X - F .

2.5. The smooth structure of the orbit space. Let X be a smooth

almost free G-manifold, G = S and dimZ =1+ or G = 5 and dimX = 8 .

Being the base space of a smooth bundle, N - u{F) is a smooth manifold.

The local coordinate description given in 2.1 determines a smooth structure

in the neighborhood V of the image TI(X) of each fixed point x . The

smooth structures in N - w(F) and U are compatible: with respect to

either structure, for every open subset V c U - TT(X) , a function

f : V -*• R is smooth if and only if / o n is smooth, because v\X - F

has maximal rank and so does fr given by formula (2a) or (2b) outside 0 .

The uniqueness of this smooth structure and the only non-trivial part

of Theorem 1.6 (a) are consequences of the following proposition.

PROPOSITION. Let X and X' be as above, and let a : X -» X' be an

equivariant diffeomorphism. Then N is diffeomovphio to N' .

Proof. Let a : N ^ N' be the induced homeomorphism, and let K be

the union of disjoint closed (p+2)-disks, each containing precisely one

point of v(F) . Then a maps N - intK diffeomorphically onto

N' - inta(K) . Since any diffeomorphism of S^ can be extended to a

diffeomorphism of lP+2 for p = 1 or = 3 (that is, T = T = 0 [7,

p. ix]) , a restricted to N - intX can be extended to a diffeomorphism

of N onto N' .

PROPOSITION 2.6 (topological case). Let X be an almost free

G-manifold with N = X/G a manifold. Then

G = S1 , dim* = k , and dimtf = 3

or

G = S3 , dimX = 8 , and dimtf = 5 .

Let p = 1 or = 3 . For any a £ F and bioollared embedding

j : [lf+2, 0) •+ (N, ir(a)) such that j(l¥+2) n ir(F) = ir(a) , there is an
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equivariant embedding A : ±D p + -*- X , see 2.1, with X(0) = a and

•n\[D P+ ) = j[lP ) . The point a [and ir(a) ) is said to have index

d = ±1 according as ±D " is required, and the index is independent of

the choioe of j .

Proof. The map IT : X -*• X/G is a singular fibering [S] and it

follows from [20] that IT restricted to IT [j[p")) is topologically

equivalent to the cone map of a fibre bundle with total space Sn , base

space S^ , and fibre a homotopy (w-<7)-sphere,

(n, q) = {h, 3), (8, 5) , or (l6, 9) •

Since this is a principal G-bundle E, , 2.U, where G is a Lie group,

G = o or = 5 . We now prove that the only principal S^-bundle over

£r with total space a homotopy o" is the (±) Hopf bundle. Since

the Hopf bundle Y+ is (2p+l)-universal, every principal S^-bundle over

^ + 1 is induced from y+ ^V a map / : Ŝ "*"1 •+ SP+1 . Let E be the

total space of f * Y. and m = |degree /| . Comparison of the exact

homotopy sequences of f * Y+ and y+ yields 1T
p(^') =

 z
m • Hence

E ^ £>P implies m = 1 . Since f * Y+ depends only on the homotopy

class of f , / * Y+ = Y+ • The homotopy class of the restriction

j|s" : s" •+ N - Tr(a) is uniquely determined by a . Hence the

equivalence class of [d\£> ) * £ > that is, the sign of the Hopf bundle,

does not depend on the choice of j .

2.7. Proof of 1.4. The Lefschetz fixed point theorem is used, see

[9]. Choose some element g € G , g f 1 . Then g : X -*• X is an

homeomorphism with fixed point set F . Since G is connected, g is

homotopic to the identity. Therefore x W = E,jr(s7, Q\) > where

F = {q ... , q } , and l[g, q^) € Z denotes the fixed point index of g

at q-, . Here I\£, q-S) depends only on g restricted to some neighbor-

hood V of q, , more precisely: choose coordinates in V ; so that the
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restriction of g can be considered as a map g : V •*• R . The index

Kg, q) is defined by Ud-g)A : Hjv, V-qJ •* #„(#*» fl"-0) ,

0x H-* l[g, qx) • 0 2 . Here id - g : {v, V-qx) •*• (i?
M, Rn-0) ,

x t-+ x - gx . Hn(V, V-qx) % Z and »„(«", fl*-O) % Z are the homology

groups with integer coefficients, and 0., 0- denote generating elements

which are determined by means of the same orientation of if . In our

case, use the local coordinate description of g given by the formulas

(la), respectively (lb), in 2.1. We conclude: id - g is an orientation

preserving homeomorphism; hence 1(0, <?,) = 1 for every X and thus

2.8. Let D2P+2 and W2p+2 = S?p+1 be the ^-manifolds of 2.1

with orbit spaces if and Sir = Sp , respectively, p = 1 or 3 •

The following problem will be studied. Given an equivariant homeomorphism,

respectively diffeomorphism, a of S p onto itself, can it be extended

to an (equivariant ?) homeomorphism, respectively diffeomorphism, a of

D ? The answer is yes in the topological case. Define

3 : D2P+2 % D2p+2 , tx •* ta(x) for x € S2p+1 and 0 < t < 1 . But for

a diffeomorphism a , this 3 need not be smooth at the origin.

The following proposition partially answers the question in the smooth

case. This result will be used in order to prove Theorem 1.6 (b) .

PROPOSITION. Given an equivariant diffeomorphism a of D - 0 onto

itself, there is an equivariant diffeomorphism 3 of D onto itself such

that 3 = a in some neighborhood of 8£> .

The following conventions will be used.

I = [0, l] is the unit interval. The S^-action on £>P x I is

defined by j • (x, t) = (gx, t) .

From the (equivariant for n = 2p + 2 and p = 1 or = 3 )

diffeomorphism s"""1 x (0, l] % Dn - 0 , (x, t) + tx , subsets of
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S""1 x (o, 1] will be identified with subsets of Dn - 0 .

For a map / between ,s -manifolds, the induced map of orbit spaces

is denoted by f .

LEMMA 2.9. Under the hypothesis of the proposition there is an

equivariant diffeomorphism y of S ^ x (0, 1] onto itself such that

Y = a on a neighborhood of S p + x i £ 9D P + and y = id on

fiP+1 x (0, 2/3] .

Proof. The diffeomorphism a\S^ can be extended to a diffeo-

morphism of lf+2 onto itself (r = T = 0 , [9], p. ix) , and using [75,

p. 5513> this extension can be chosen in such a way as to yield a

diffeomorphism / of ^ + x (o, 1] onto itself such that

f(u, t) = (u, t) for 0 £ t £ 2/3 and f(u, t) = a(tu) on a neighborhood

of 5 2 p + 1 x l . Now ^P+1 is a fibre bundle over S^*1 and by the

covering homotopy theorem, [79, p. 50], in the smooth version there is an

equivariant diffeomorphism y of a x (o, l] onto itself such that

Y = a on a neighborhood of £>? x i and Y = / •

2.10. Proof of 2.8. Here p = 1 . Let Y be as given by Lemma 2.9.

Since y = id for (x, t) with 0 < t £ 2/3 , and since S1 is abelian,

there is a smooth p : S x (o, 2/3] •+ S such that

y(x, t) = (p(ir(:c), t)'X, t) for 0 < t £ 2/3 • Since the second homotopy

group T T 2 ( ^ ) = 0 there is a smooth a : z * (0, 2/3] •*• S1 such that

o(j/, t) = p{y, t) for t in a neighborhood of 2/3 and o(y, t) = 1 for

0 < t £ 1/2 . Define &(tx) = y(x, t) for 2/3 < 4 5 1 ,

e(te) = (o(ir(x), t)-x, t) for 1/2 £ t £ 2/3 , and 6(tx) = tx for

0 £ t £ 1/2 .

REMARK. Since S is non-abelian, and since the relevant homotopy

group Tt^(S ) = Z t 0 , the argument given above cannot be extended to the

case p = 3 .
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3. The characteristic class

In 2.X a bundle £ has been associated with the almost free G-

manifold X . The global behaviour of the action of G on X will be

studied by means of the characteristic homology class c(E,) of this

bundle. Singular homology and cohomology with integer coefficients are

consistently used.

3.1. Classification of principal S^-bundles, p = 1 or = 3 .

Let r) be an universal principal S -bundle with base space (= classifying

space) B . Let l € FF (B) % Z denote the fundamental class. Then for

any paracompact topological space U having the homotopy type of a

CW-complex

a : [U, B] + E(U) , f - f*r\ ,

is an isomorphism [7 7]. Here [U, B] denotes the set of homotopy classes

of maps U -*• B and E(f/; denotes the set of isomorphism classes of

principal S^-bundles over U . On the other hand, define

3 : [U, B] +HP+1(U) , f + f*(i) .

The composition

5 : E(U) T ~ * [U, B] J L FP+l(U)

is the "characteristic class". If p = 1 , a is the first Chern class.

For the Hopf bundle -f over Sp , e(y*J is a generator of

ffP+1(sP+1) % Z . If ff(U, M) = 0 , q > p + 1 , for all coefficient

modules M, g and hence c is an isomorphism [7S, p. khi, Theorem 3].

REMARK 3.2. Let Jf.be a (p+2)-dimensional manifold, and let

A ± 0 be a closed subset of N . Then U = N - A satisfies all

hypotheses of 3.1, so that the principal S -bundles £ over N - A are

classified by their characteristic classes e(£) € ir (N-A) .

3.3. Let X be an almost free S^-manifold (p = 1 or = 3 ) with

fixed point set F and orbit manifold N = X/S? . According to
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Proposition 2.6, dimtf = p + 2 . Therefore 3.1 and Remark 3-2 apply. The

associated bundle £ as defined in 2.k is characterized by

( ; more precisely:

LEMMA. Let X and X' be two almost free S?-manifolds with fixed

point sets F and F' , orbit manifolds N and N' and associated

bundles £ and E,' . If there is a homeomorphism f : N -> N' such that

(1) M F ) = TT'(F')

and

(2) 5(0 = /*5(C') ,

then X and X' are equivariantly homeomorphio. In the smooth case, if

f is a diffeomorphism, then X and X' are equivariantly diffeomorphio

in the ease p = 1 . In the case p = 3 there is an equivariant

homeomorphism y : X + X' such that y maps X - F diffeomorphically

onto X' - F' .

Proof. Given / satisfying (l) and (2), then 3.1 implies: the

"bundle £ is equivalent to the induced bundle f*E,' . Thus there is an

equivariant homeomorphism (diffeomorphism) y : X - F -*• X' - F' , so that

the induced map of the orbit spaces is / . By filling in the fixed

points F , respectively F' , y is extended to an equivariant

homeomorphism y : X -*• X' . But in the smooth case, this y need not be

smooth at the fixed points. For p = 1 it will be smoothed in the

following way. In the neighborhood of every fixed point in X or X'

smooth coordinates are chosen so that the S -action is given by 2.1; in

other words for every fixed point x (. X and its image x' = \i[x ) £ X'

there are smoothly and equivariantly embedded disks YD, 0 c [x, x ) and

D' c (X', x'j such that the restriction of y is an equivariant

diffeomorphism D - 0 ^ D' - 0 . The induced map O 3 - 0 ^ D l 3 - 0 of

the orbit spaces is the restriction of / , hence may be extended to a

diffeomorphism D^ % D' . Thus 2.8 applies: there is an equivariant

diffeomorphism u : D ^ D' such that V = y in a neighborhood of
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9Z?v . Then V>' : X £ X' with y1 = y off U D^ and y' = \i^ in D is
v

an equivariant diffeomorphism.

3.4. It will be more convenient to replace the cohomology class e(£)

by its dual homology class e(£) , since c(£) is represented by a one-

dimensional chain, that is, by a rather simple geometric object. The

definition of c(£) runs as follows. Let <?, (X = 1, 2, ... , Z) be the

points of n(F) , let D^ be disjoint (p+2)-cells in N = # > + 2 with

q, (. intD , and let E = U int£>, . Let <p be the composition isomorphism
A

flP+1(ff-ir(F)) £ lf+1(N-E) J^_ HAN-E, 9f) + fl (#, f) ^ fl (_N

a

where a is the duality isomorphism, [/9, p. 305], and the other

isomorphisms are induced by inclusion. Define

Then 3.3 (2) is equivalent, [7£, p. 251+], to

PROPOSITION 3.5. (a) For the connecting homomorphism

9 : H (N, ir(f)) •*• HA-n(F)) , the Xth component of 9e(C) is the index

d, (= ±1) of q, , (Proposition 2.6).
A A

(b) The number of fixed points is even: v{F) = Z = 2k

(fe = 1, 2, ...) , and after reordering d-. = (-1) .

(b) yields 1.5.

Proof. (a) For j : D •* N as in Proposition 2.6,

(j\Sr ) c(5) = i [S^ ] , where [s^ J is the fundamental cohomology

class and d is the index (±l) of a . This fact and the connnutativity

of the diagram below imply (a) of the proposition.

flp+1(#-Tr(F)) ̂  flP+1(ff-£) £ HAN-E, 3S) ̂  ff (iV, g) ^ ffn (il/,

4- + +
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Here the top row is the isomorphism <p , 3 A , a and 3 are duality-

isomorphisms, the 3's denote connecting homomorphisms, the remaining

homomorphisms are induced by inclusions. The commutativity of the square

containing a and f3 can be found in [/£, p. 255]. The other partial

diagrams are trivially commutative.

(b) Let i : ir(D -> N be the inclusion. Then from (a),

i,dc(O = E,d, (here H{N) is identified with Z 1. From the exactness
A A U

of the homology sequence of [N, TT(F)) , -£̂ 3 = 0 , that is, ^\d, = 0 .

Since d, = ±1 , there must be as many <i, = +1 as <2. = -1 . (b) of the

proposition follows.

REMARK. If Z coefficients are used, the argument yields 1.5 in

case N (and thus X ) is non-orientable.

The following section, Lemmas 3.6 and 3.7? and Proposition 3.8,

prepare the proof, 3.9, of Theorem 1.6 (b).

LEMMA 3.6. Given a path y : [0, l] -• lf+ , N a (smooth) manifold

and p > 0 , given 0 = t < t < ... < t~ = 1 with Y ( * O distinct,

there are a path 6 homotopia to y with the t, fixed and a bioollared

(smooth) dosed (p+2)-cell D cz N with image6 c into .

Proof. We may suppose that y{t) # [t^j for every t # t, . Let

J = {s € [0, l] : there are a path a and a bicollared (smooth) closed

(p+2)-cell E cN with a([0, s]) c int£ and a homotopic to y with

t. and all t 2 s fixed} .

Then 0 t J , J is open, and it suffices to prove that J is closed:

let s be such that every open interval containing s meets J . We

shall prove s, (. J . Let U c if be a closed (p+2)-cell with

y[s ) 6 inty and Y(*^) £ U unless s = t^ . There is s 2 s with

Y([S_, s ]) c intU and s € J . Then a and E are given for s = s~ .

Let D = {x : x € if , ||a;|| 5 p} denote the disk of radius p . There is

a homeomorphism (diffeomorphism) p : D % U with p(0) = Y(sn) ,
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\i(D , ) c E , and y[[s , sj) c v[D2/J • <1!hus t h e r e is a (smooth)

isotopy H. : N ̂  N such that H \ (N-intU) is the identity and

Ht{v(0)) = M(0) , HQ is the identity, and ^(v^/g)) = ̂ 2/3) " L e t

E' = # (£) and let a'(t) = H (a(t)) for £ 5 s and = Y U ) otherwise.

Since a([s0, sj) c p(^2/3) = ̂ ( y ^ g ) ) c ̂ (S) = E' , it follows that

e € J .

REMARK. In the smooth case, a much simpler argument suffices. There

is a piecewise linear arc 6 homotopic to y with the t, fixed and we

may simply choose D to be a smooth regular neighborhood of image 6 .

LEMMA 3.7. There are a biaollared (smooth) (p+2)-aell 3 : D c N

with TT(F) C into , and b € H [D, TT(F)) with j*& = c(^) (notation as in

3-k).

Proof. Let F = {q , ..., q . } , let c^ (X = 1, 2, ..., 2fe-l) be a

path joining q., to <y, , and let c^a\ ̂  ̂ -1 (̂> 7r(jP)) >̂e its homology

class. Then by Proposition 3-5, I cla. = 3c(C) , and from the
X odd

exactness of the homology sequence there is an a € HAN) such that

i^a = e(£) - J cla, . Let & be a loop at c? such that clS = a ,
X odd A L

let Y-i = 6a, (product of paths), and let Y^ = ai for X > 1 . Then

£ clY, = c(C) • Let D and 5 be as given by Lemma 3.6 for
X odd

Y = YXY2 ••• Y2k-1 a n d tX = (^-1)/(2 f e-1) • Define

6,(£) = tt, + (l-t)t. , 0 5 t 5 1 , and b = J cl6, € ff (o, if(F)) .
A A A " 1 X odd A X

PROPOSITION 3.8. iet M be an orientied, connected n-dimensional

manifold without boundary, n + 1 , nth (n t 1 only, in the smooth

ease). Let D.3 D™ c M 'be two bicollared (smooth) disks. Let

px € intDx , qx £ intZ?2 , X = 1, . . . , I , P\ * Pv
 and 1\ * <?y for

X ^ y j be finitely many points. Then there is a homeomorphism
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(diffecmorphism) f : M % M such that fty^ = D and f[py) = <JX for

X = l, ..., I .

For the proof of this proposition combine the following facts.

(a) Let p x , ..., pt , <71, ..., qz € into* with p^ * p y and

q. t q for X # y be finitely many points. There is a diffeomorphism
A )J

7i : 0 n £ Dn such that ^(pj = < ? x ' A = 1 > - --> z - a n d h = id in the

neighborhood of the boundary S

(b) Homogeneity of manifolds in the smooth case, [77]. Given two

embeddings j , j : D -*• M , there is a diffeomorphism f : M ->- M with

d2 = f • ix •

(c) Homogeneity of manifolds in the topological case. Given two

bicollared disks D , D• c M . There is an homeomorphism f : M •*• M

such that h[p ) = D . This is a consequence of the annulus conjecture.

(Let D c D be bicollared; then d- - intD is homeomorphic to

SH~1 x [0, l] .) This has been proved for n 5 3 , [6] and n > 5 , [?3].

3.9. Proof of Theorem 1.6 (b) . Let D, b in N and D', b' in N'

be chosen as in Lemma 3.7. Let TT(F) = {q , ..., q^-h) e ^ a n d

•n'(F') = {q' ...,q'}cN' be the fixed points. Since N %, N' ,

Proposition 3.8 implies there is an f : N % N' with f{D) = D' and

f(qx) = q^ for X = 1, ..., 2k . From Proposition 3-5, f*9e(?) = 8e(£') ;

hence Ŝ f̂c = 3b' . Here h : D % D' denotes the restriction of / .

Since 3 on H-Ad', TT(F')) is a monomorphism, h^b = b' . Thus

f : N % N' satisfies f(ir(F)) = TT'(F) and fto(O = e(C') or 3.U (3),

equivalently />Jfc(C') = c(C) , and Theorem (b) results from 3.3.

4. Examples

In this chapter sufficiently many almost free S^-manifolds are

described explicitly in order to prove Theorem 1.6 (c). The conventions

concerning A and p = 1 or = 3 are the same as in 2.1.
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4.1. The SP-manifold S2p+2 . Let S P act on A2 x R fcy

g ' (z, w, x) = (gz, gw, s) . Then f>P = {(s, w, a;) : zz+wu+x = l} is

invariant and the operation of £ on o is free except for the two

fixed points (0, 0, ±l) . The orbit space is

SP+2 = {(a, s, t) e AXR2 : aa+s2+t2 = l} ,

and the projection is ir(j3, w, x) = (2zw, ynj-z'z, x[2-x ) ) . Equivalently,

identify the boundaries of +D " and -D " by the identity to form

this s"-manifold.

4.2. The SP-manifold SP+1 x 5? + 1 . Let SP act on A2 x /?2 by

, Wj, x, y) = (gz, gw, x, y) . Then

is invariant, and the operation of Sp on S" x s" is free except for

the four fixed points (0, 0, ±1, ±l) . The orbit space is SP as in

k.l, and the projection is TT(3, w, x, y) = (l+x y ) s(zu, x, y) (scalar

multiplication).

4.3. The equivariant connected sum # . Let X. (j = 1, 2) be two
0

almost free 5p-manifolds with orbit manifolds N. and fixed point sets
0

F. ; let x . € X. be two fixed points with index[x ) = +1 and
O d d -L

i n d e x ( x J = - 1 , s e e P r o p o s i t i o n 2 . 6 . Le t A. : [+D2p+2, o) •* [x., x.) b e
<- O d d

equivariant (smooth) embeddings, A orientation preserving, A

orientation reversing. Form the identification space from X-. - x and

X2 ~ X2 b y i d e n t i f y i n S ^-^tu) with A2((l-t)w) for each u i 5r2p+1 ,

0 < t < 1 . The resulting S^-manifold is called the equivariant connected

sum of X and X , and is denoted by X § X . Observe: disregarding

the iS^-action, this is the usual connected sum; X # X? is almost free;
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the orbit space [X MX ~)/!F is the connected sum N tt N ; the number of

fixed points is V(F{X§X )) = V[F ) + v(F ) - 2 . Up to equivariant

homeomorphism in the topological S^ and 5 case, up to equivariant

diffeomorphism in the smooth Si case and up to (possibly non-equivariant)

diffeomorphism in the smooth S case, the equivariant connected sum §

is well defined (that is, does not depend on the choice of x. and X. ) ,
3 3

is commutative, and associative. This follows from Theorem 1.6 (b) because

the connected sum of the orbit manifolds has the corresponding properties.

How Theorem 1.6 (a) in case X/s" is a sphere, is immediate: a ,

U.I, has 2 fixed points, S^ x S? , k.2, has h fixed points and

(k-l) times the equivariant connected sum of S^ x S^ ,

k = 2, 3, ... , has 2k fixed points.

REMARK. Antonelli [3] obtained this classification of the manifold X

(but not the action) up to oriented homotopy type if p = 1 and up to

homeomorphism if p = 3 for almost free smooth G-manifolds X with X/G

a sphere.

4.4. Plumbing + . Let X. be as in h.3. Let
3

X. : [TF , Oj •* [N., y .) be (smooth) embeddings with image
0 3 3

X. n TT .{F .) = 0 , X orientation preserving, X orientation reversing.
3 3 3 -L ^

Let Sr act on s" x £F by g(a, y) = (ga, y) . There are equivariant

homeomorphisms (diffeomorphisms) A . : £" x If % TT . (image X.) because,
3 3 3

2.1), X. - F. is a locally trivial principal S"-bundle over
3 3

N. - TT.(F.) . According to the choice of X. , A is orientation
3 3 3 3 -L

preserving, and A is orientation reversing. Form the identification

space X1 + X2 from ^ - ir^ 1^) and * 2 - T ^
1 ^ ) by identifying

A (g, tu) with ^2[g, (l-t)u) for each M € 5 P + 1 , 0 < t < 1 . This

construction is called plumbing; compare [2, p. 185]- Observe: X + X

https://doi.org/10.1017/S000497270004082X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270004082X


194 Philip T. Church and Klaus Lamotke

is an almost free S^-manifold with orbit space N # N (connected sum);

the number of fixed points is V[F(X +X )) = v(F ) + v[F ) . The same well

definedness, and so on, comments apply as for the equivariant connected

sum.

REMARK. Due to the uniqueness theorem, Theorem 1.6 (b), the plumbing

S2p+2 + 5 2 p + 2 yields SP+1 x ^ + 1 except possibly in the smooth S3

case.

4.5. Proof of Theorem 1.6 (a). Let N be any (p+2)-manifold, and

let k be any natural number 1, 2, 3, ... . Let £r act on Sp * N by

g(a, y) = {go-, y) • According to U.3, there is an almost free S^-manifold

y with 2k fixed points and orbit space £? . Then plumbing yields the

almost free SP-manifold (Ŝ xtf) + y with orbit space N and 2k fixed

points.

REMARK. Let Z be any principal S^-bundle over N . Then

Z + Y !̂  (S^x#) + y because of the uniqueness theorem, Theorem 1.6 (b) .

•7 Q

4.6. The S -manifold T, . The authors were unable to settle the

question whether two almost free smooth 5 -manifolds with the same number

of fixed points and diffeomorphic orbit manifolds are equivariantly

diffeomorphic; compare Theorem 1.6 (b) , and Remark 2.10. Thus the

following 5 -manifold may be interesting. Let TT : S' -*• S be the Hopf

bundle as in 2.1, case p = 3 . Let iji : S -*• S be the IT of l*.l for

p = 1 . This is the suspension of the Hopf map 5 -*• S and hence

represents the nontrivial element of the homotopy group T Y ( S ) , [JO, p.

328]. Define the equi variant diffeomorphism h : S -*• S' by

h(z, w) = (z, w) • I(/(TT(2, W ) ) (scalar multiplication from right).

o o
Identify the boundaries of +D and -D by h to define an almost free

S -manifold £ with two fixed points and orbit space S . According to
Q O

Theorem 1.6 (b) , Z is equivariantly homeomorphic to 5 , U.I.
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QUESTION. Is £ equivariantly diffeomorphic to S 1
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