Blood groups in twin studies Calculation of the probability of monozygosis

L. E. Nijenhuis

In the issue of this journal of July 1960, I published a paper: "Blood groups in twin studies. Calculation of the probability of monozygosis" (Vol. IX, page 30 r308). Now a few months later, working with these formulas I recognized that the calculation method is not correct.

The formulas 1 a and $1 b$, and $2 a$ and $2 b$ are not usable in the calculation for two reasons:
I) The a prior probability of monozygosis is not longer the same as in the random population (i. e. 30%),
2) also if they are corrected for these over-all probability, they do not give the ratio of probability "dizygosis": " monozygosis", but the combination "dizygosis with a special blood type ": "monozygosis with that same blood type ".

So it must be concluded that the principle, refered to in the 2nd and 3 rd cdition of the book of Race and Sanger: "Blood groups in Man " is right, and the variation presented in our paper is incorrect.

Therefore instead of the formulas $1 a, 1 b, 2 a$ and $2 b$ in our preceding paper the following formulas must be used:

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{XY} \mathrm{Y}_{2} Z\right)=\frac{\sum \bar{X}_{i} \bar{Y}_{i} \text { fr }(\mathrm{i}, \mathrm{i})^{2}\left(\mathrm{I}^{\mathrm{a}}\right),}{\sum \overline{\mathrm{X}}_{i} \overline{\mathrm{Y}}_{\mathrm{i}}}{ }^{-} \\
& \mathrm{P}\left(\mathrm{XY}_{I} \mathrm{Z}\right)=\frac{\sum \overline{\mathrm{X}}_{\mathrm{i}} \overline{\mathrm{Y}}_{i} \mathrm{fr}}{\sum \overline{\mathrm{X}}_{\mathrm{i}} \overline{\mathrm{Y}}_{\mathrm{i}}}(\mathrm{i}, \mathrm{i})(\mathrm{ib}) \\
& \mathrm{P}(\mathrm{XYaZ})=\frac{\sum \overline{\mathrm{X}}_{i} \overline{\mathrm{Y}}_{i} \text { fr }(\mathrm{i}, \mathrm{i})^{\mathrm{a}}}{\sum \overline{\mathrm{X}}_{\mathrm{i}}}{\overline{\overline{\mathrm{Y}}_{i}}}^{\left(\mathbf{2}^{\mathrm{a}}\right)} \\
& \mathrm{P}(\mathrm{XY}(\mathrm{a}-\mathrm{I}) \mathrm{Z})=\frac{\sum}{\Sigma} \overline{\mathrm{X}}_{\mathrm{i}} \overline{\mathrm{X}}_{\mathrm{i}} \overline{\mathrm{Y}}_{\mathrm{i}} \quad \text { fr } \quad(\mathrm{i}, \mathrm{i})^{\mathrm{a}-\mathrm{i}}\left(2^{\mathrm{n}}\right)
\end{aligned}
$$

A complication can be met, if the genotype of one of the parents is known and that of the other is not, and other children have a genotype different from the twins, due to different genes originating form the parent with the known genotype.
c.g. Parents $B \times A_{1}$, twins A_{1}, other children A_{1} and $A_{1} B$. The genotype of the parent with group B must be $B O$; the genotype of the parent with A_{1} may be $A_{1} A_{1}, A_{1} A_{2}$ or $\mathrm{A}_{1} \mathrm{O}$.

The formulas 2 a and 2 b must be now:

$$
\begin{aligned}
& \mathrm{P}\left\{\mathrm{XY}\left(\mathrm{aZ} Z_{1}+\mathrm{bZ} Z_{2}\right)\right\}=\frac{\sum \overline{\mathrm{X}} \overline{\mathrm{Y}}_{\mathrm{i}} \text { fr (i) }{ }^{\mathrm{a}+\mathrm{b}}}{\Sigma \overline{\mathrm{X}} \overline{\mathrm{Y}}_{\mathrm{i}}}=\frac{\Sigma \overline{\mathrm{Y}}_{\mathrm{i}} \text { fr (i) }{ }^{\mathrm{a}+\mathrm{b}}}{\Sigma \overline{\mathrm{Y}}_{\mathrm{i}}}\left(2 \mathrm{a}^{1}\right) \\
& \mathrm{P}\left[\mathrm{XY}\left\{(\mathrm{a}-\mathrm{I}) \mathrm{Z}_{1}+\mathrm{bZ}_{2}\right\}\right]=\frac{\sum \overline{\mathrm{X}} \overline{\mathrm{Y}}_{\mathrm{i}} \text { fr (i) }{ }^{\mathbf{a + b}-\mathbf{1}}}{\sum \overline{\mathrm{X}} \overline{\mathrm{Y}}_{\mathrm{i}}}=\frac{\sum \overline{\mathrm{Y}}_{\mathrm{i}} \mathrm{fr}(\mathrm{i})^{\mathrm{a}+\mathbf{b}-\mathbf{1}}}{\sum \overline{\mathrm{Y}}_{\mathrm{i}}}\left(2 \mathrm{~b}^{\mathbf{1}}\right)
\end{aligned}
$$

where $Z_{1}=$ genotype of the twins
$\mathrm{Z}_{2}=$ the other genotype in the other children.
Furthermore it should be noted that it is also possible to use the calculation method and the formulas in cases where the blood groups of the parents are not known.
e.g. A case of twins, both with group M :
$\mathrm{X}_{1}=\mathrm{MM} \quad \mathrm{Y}_{1}=\mathrm{MM}$
$\mathrm{X}_{2}=\mathrm{MN} \quad \mathrm{Y}_{2}=\mathrm{MN}$
$\mathrm{fr}(\mathrm{I}, \mathrm{I})=1,00 \quad \mathrm{fr}(2, \mathrm{I})=0,5$
$\operatorname{fr}(1,2)=0,5 \quad \operatorname{fr}(2,2)=0,25$
These fr values can be substituted with the frequencies of the genotypes MM and MN in the formulas ia and ib.

Another example, twins both $\mathrm{P}+$:
$\mathrm{X}_{1}=\mathrm{PP} \quad \mathrm{Y}_{1}=\mathrm{PP}$
$\mathrm{X}_{\mathbf{2}}=\mathrm{Pp} \quad \mathrm{Y}_{2}=\mathrm{Pp}$
$\mathrm{X}_{3}=\mathrm{pp} \quad \mathrm{Y}_{3}=\mathrm{pp}$
fr $\mathrm{I}, \mathrm{I}=\mathrm{I}, \mathrm{OO} \quad$ fr $2, \mathrm{I}=\mathrm{I}, \mathrm{OO} \quad$ fr $3, \mathrm{I}=1,00$
fr $1,2=1,00 \quad$ fr $2,2=0,75 \quad$ fr $3,2=0,50$
fr $\mathrm{I}, 3=\mathrm{I}, \mathrm{O} \quad$ fr $2,3=0,50 \quad$ fr $3,3=0,00$

Acknowledgment

Our thanks are duc to Mrs Maynard Smith, The Galton Laboratory, London, for her critical remarks and suggestions on this erratum and addition.

