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Abstract
Some work in political methodology recommends that applied researchers obtain point estimates of quan-
tities of interest by simulating model coefficients, transforming these simulated coefficients into simulated
quantities of interest, and then averaging the simulated quantities of interest (e.g., CLARIFY). But other
work advises applied researchers to directly transform coefficient estimates to estimate quantities of inter-
est. I point out that these two approaches are not interchangeable and examine their properties. I show
that the simulation approach compounds the transformation-induced bias identified by Rainey (2017),
adding bias with direction and magnitude similar to the transformation-induced bias. I refer to this easily
avoided additional bias as “simulation-induced bias.” Even if researchers use simulation to estimate stand-
ard errors, they should directly transform maximum likelihood estimates of coefficient estimates to obtain
point estimates of quantities of interest.

Keywords: Maximum likelihood estimation (MLE)

1. Introduction
Political scientists employ maximum likelihood (ML) to estimate a variety of statistical models. ML
estimators have desirable and widely understood properties. But for many research questions, the
model coefficient estimates do not directly interest the researcher. Following King et al. (2000),
researchers often use the coefficient estimates to compute substantively meaningful quantities of
interest, such as predicted probabilities, expected counts, marginal effects, and first differences.
The literature offers two methods to compute point estimates for these quantities of interest.

Researchers estimate quantities of interest either by simulating quantities of interest and then
averaging (e.g., King et al., 2000) or by directly transforming coefficients into quantities of inter-
est (e.g., Herron, 1999).1 In practice, researchers’ choice between these two approaches seems
idiosyncratic rather than principled, depending on their preferred software package rather than
any statistical criteria. Further, the methodological literature has not distinguished or compared
the two approaches to estimating quantities of interest.

How does the simulation approach compare to directly transforming coefficients? Which
should researchers prefer? Or are the two approaches interchangeable, as the literature seems

© The Author(s), 2023. Published by Cambridge University Press on behalf of the European Political Science Association. This is an Open
Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

1CLARIFY for Stata (Tomz et al., 2003), Zelig for R (Imai et al., 2008; Choirat et al., 2018), and clarify for R (Greifer et al.
2023) simulate quantities of interest and find the average. The package dynsimpie for Stata also reports the average of simu-
lations (Philips et al., 2016; Jung et al., 2020). The margins command in Stata (StataCorp, 2017), the margins package in R
(Leeper, 2021), and the predict() function in R for the glm (R Core Team, 2018) and polr (Venables and Ripley, 2002) classes
directly transform coefficients into the quantities of interest.
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to imply? Rainey (2017) shows that directly transforming coefficients into quantities of interest
creates “transformation-induced” bias. I show that when researchers use the average of simula-
tions to estimate quantities of interest, they replicate the logic of transformation-induced bias
and add an additional, unnecessary bias to their estimates. I refer to this additional bias as
“simulation-induced” bias. I show that simulation-induced bias occurs in addition to
transformation-induced bias and is approximately the same size and direction. While this bias
is usually small relative to the standard error, methodologists should not recommend methods
that add unnecessary bias to point estimates. Instead, we should recommend methods that better
adhere to the usual justifications.

2. The current practice
2.1. The plug-in estimator

First, researchers can directly transform the coefficient estimates into quantities of interest.
The invariance property of ML estimators allows a researcher to find the ML estimate of a
function of a parameter (i.e., a quantity of interest) by first using ML to estimate the model
parameter and then applying the function to that estimate (or “plugging in the estimate”)
(King, 1998, 75–76; Casella and Berger, 2002, 320–321). I refer to this approach as the
“plug-in” estimator. Importantly, the plug-in estimator remains an ML estimator. Thus, it
retains all of the (desirable) properties of ML estimators (e.g., consistency, asymptotic
efficiency).

As a concrete example, suppose a researcher uses ML to estimate a statistical model in which
yi∼ f(θi), where i∈ {1, …, N} and f represents a probability distribution. The parameter θi
connects to a design matrix X of k explanatory variables and a column of ones by a link function
g( ⋅ ), so that g(θi) = Xiβ, where b [ Rk+1 represents a vector of parameters with length k + 1.
The researcher uses ML to compute estimates b̂mle for the parameter vector β. I denote the
function that transforms model coefficients into quantities of interest as τ( ⋅ ). For example,
if the researcher uses a logit model and focuses on the predicted probability for a specific
observation Xc, then t(b) = logit−1(Xcb) = 1/(1+ e−Xcb). The researcher can use the invariance
property to quickly obtain a ML estimate of the predicted probability:
t̂mle = t(b̂mle) = logit−1(Xcb̂

mle) = 1/(1+ e−Xcb̂
mle ).

2.2. The average-of-simulations estimator

Second, researchers can use the average of simulated quantities of interest as the point estimator.
King et al. (2000) suggest the following approach:

1. Fit the model. Use ML to estimate the model coefficients b̂mle and their covariance V̂(b̂mle).
2. Simulate the coefficients. Simulate a large number M of coefficient vectors b̃

(i)
, for i∈ {1, 2,

…, M}, using b̃
(i) � MVN[b̂mle, V̂(b̂mle)], where MVN represents the multivariate normal

distribution.
3. Convert simulated coefficients into simulated quantity of interest. Compute t̃(i) = t(b̃

(i)
) for

i∈ {1, 2, …, M}. Most quantities of interest depend on the values of the explanatory vari-
ables. In this situation, researchers either focus on a specific observation (typically some
kind of “average case”) or average across all sample observations (Hanmer and Kalkan,
2013). In any case, the transformation τ( ⋅ ) includes this choice.2

2As King et al. (2000) note, this step might require additional simulation, to first introduce and then average over funda-
mental uncertainty. I ignore this additional step since (1) it is usually not necessary and (2) including it does not affect my
argument.
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4. Average the simulations of the quantity of interest. Estimate the quantity of interest using
the average of the simulations of the quantity of interest, so that t̂avg = 1/M

∑M
i=1 t̃

(i).3

I refer to this as the “average-of-simulations” estimator. But what are the properties of this
estimator?

While the estimates it provides are sometimes similar to well-behaved plug-in estimates, King
et al. (2000) develop their method informally. Much of their theoretical argument happens
quickly when they write “we draw many plausible sets of parameters from their posterior or sam-
pling distribution” (349).4 One might justify their method from a frequentist perspective by first
thinking of their method as “informal” Bayesian posterior simulation (Gelman and Hill, 2007).
This is helpful because the theory and practice of simulating from a posterior distribution are
well-developed and widely understood. The Berstein–von Mises theorem (Van der Vaart, 2000,
140–146) guarantees, under relatively weak assumptions, that posterior simulations are asymptot-
ically equivalent to the simulation procedure suggested by King, Tomz, and Wittenberg. And
because the point estimator b̂mle (and functions of b̂mle ) are consistent, then the mean of the
simulations (and the mean of functions of the simulations) are consistent as well. Therefore,
one can defend t̂avg on the grounds that it is a consistent estimator of τ.

However, the small sample properties of the average-of-simulations remain poorly understood.
Methodologists and applied researchers seem to assume that t̂avg is interchangeable with t̂mle. But
below, I show that the average-of-simulations algorithm compounds the transformation-induced
bias described by Rainey (2017) and adds a similar bias to the estimate that I refer to as
“simulation-induced bias.”

3. A theory of simulation-induced bias
Before developing the theory of simulation-induced bias, I review the concept of transformation-
induced bias from Rainey (2017). As Rainey (2017) shows, transforming unbiased model coefficient
estimates can introduce bias into estimates of quantities of interest. Rainey (2017, 404) decomposes
the bias in the estimate of the quantity of interest, which he refers to as total τ-bias, into two compo-
nents: transformation-induced τ-bias and coefficient-induced τ-bias. Rainey (2017) defines these as

total t-bias = E t b̂mle
( )[ ]− t E b̂mle

( )[ ]︸��������������︷︷��������������︸
transformation-induced

+ t E b̂mle
( )[ ]− t b

( )︷����������︸︸����������︷coefficient-induced

. (1)

Transformation-induced τ-bias behaves systematically. The shape of the transformation τ( ⋅ )
determines the direction of the bias. In general, any strictly convex (concave) τ( ⋅ ) creates upward
(downward) transformation-induced τ-bias. The direction and magnitude of the coefficient-
induced τ-bias depend on the choice of τ( ⋅ ) and the bias in the coefficient estimates, but an
unbiased estimator b̂mle implies the absence of coefficient-induced τ-bias.

But Rainey (2017) does not consider the average-of-simulations estimator. This raises the
question: Does the average-of-simulations estimator t̂avg suffer the same transformation-induced
bias as the plug-in estimator t̂mle? I now turn to the average-of-simulations estimator and develop
the idea of “simulation-induced bias.”

3In the discussion that follows, I assume no Monte Carlo error exists in t̂avg. In other words, I assume thatM is sufficiently
large so that t̂avg = E[t(b̃)], where b̃ � MVN[b̂mle, V̂(b̂mle)].

4King, Tomz, and Wittenberg’s claim that the draws are from the (frequentist) sampling distribution is incorrect. Take the
sample mean as an example. If researchers could manipulate a sample to simulate draws from the sampling distribution, then
they could compute the population mean with arbitrary precision, because the mean of the sampling distribution is the popu-
lation mean. Of course, the precision of the sample mean is limited by the sample size—researchers cannot simulate from the
sampling distribution.
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If the transformation of coefficient estimates into an estimate of the quantity of interest is
always convex (or always concave), then Jensen’s inequality allows the simple statement relating
t̂avg and t̂mle given in Lemma 1.

Lemma 1: Suppose a nondegenerate ML estimator b̂mle. Then any strictly convex (concave) τ( ⋅ )
guarantees that t̂avg is strictly greater (less) than t̂mle.

This result is intuitive. Since I simulate using a multivariate normal distribution, b̃ has a
symmetric distribution. But the distribution of t(b̃) is not symmetric. If b̃ happens to fall
below the mode b̂mle, then τ( ⋅ ) pulls t(b̃) in toward t̂mle. If b̃ happens to fall above the mode
b̂mle, then τ( ⋅ ) pushes t(b̃) away from t̂mle. This creates a right-skewed distribution for t(b̃),
which pushes the average t̂avg above t̂mle. See Appendix A for the proof.

For a convex transformation, Lemma 1 shows that t̂avg is always larger than t̂mle. I refer to the
expectation of this difference between t̂avg and t̂mle as “simulation-induced bias,” so that

simulation-induced t-bias = E t̂avg( ) − E t̂mle
( )

.

Theorem 1: compares the sum of simulation- and transformation-induced τ-bias in t̂avg to
transformation-induced τ-bias in t̂avg.

Theorem 1 Suppose a nondegenerate ML estimator b̂mle. Then for any strictly convex or concave
τ( ⋅ ), the sum of the simulation-induced and transformation-induced τ-bias in t̂avg is strictly
greater in magnitude than the transformation-induced τ-bias in t̂mle.

Regardless of the direction of simulation-induced and transformation-induced τ-bias,
Theorem 1 shows that the magnitude of the combination in t̂avg is always larger than the
transformation-induced bias alone in t̂mle for strictly convex or concave τ( ⋅ ). The proof follows
directly from Jensen’s inequality, but see Appendix A for the details.

Theorem 1 shows that t̂avg compounds transformation-induced τ-bias with simulation-
induced τ-bias. But is this bias substantively important? An analytical approximation provides
a helpful guideline.

I approximate the simulation-induced τ-bias in t̂avg as

simulation-induced t-bias in t̂avg = E t̂avg( ) − t E b̂mle
( )[ ]( )︸������������︷︷������������︸

t.i. t-bias in t̂avg

− E t̂mle
( )− t E b̂mle

( )[ ]( )︸�������������︷︷�������������︸
t.i. t-bias in t̂mle

= E t̂avg( ) − E t̂mle
( )

= E t̂avg − t̂mle
( )

= E E t b̃
( )[ ]− t b̂mle

( )( )

= E E t b̃
( )[ ]− t E b̃

( )[ ]︸����������︷︷����������︸
approximated in Equation (1),
p. 405, of Rainey (2017)

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

≈ E
1
2

∑k+1

r=1

∑k+1

s=1

Hrs b̂
mle

( )
V̂rs b̂

mle
( )[ ]

,

(2)
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where the remaining expectation occurs with respect to b̂mle, H(b̂mle) represents the Hessian
matrix of second derivatives of τ( ⋅ ) at the point b̂mle and, conveniently, V̂(b̂mle) represents
the estimated covariance matrix for b̂mle.

This approximation appears similar to the approximation for the transformation-induced
τ-bias, which (adjusting notation slightly) Rainey (2017, 405, Equation (1)) computes as

t.i. t-bias ≈ 1
2

∑k+1

r=1

∑k+1

s=1

Hrs E b̂mle
( )[ ]

Vrs b̂
mle

( )
, (3)

where H[E(b̂mle)] represents the Hessian matrix of second derivatives of τ( ⋅ ) at the point E(b̂mle)
and V(b̂mle) represents the covariance matrix of the sampling distribution of b̂mle.

When one compares Equations (2) and (3), they yet again compare the expectation of a func-
tion to the function of the expectation. Therefore, Equations (2) and (3) are not exactly equal. But,
as a rough guideline, one should expect them to be similar. And to the extent that the two are
similar, the additional simulation-induced τ-bias in t̂avg is about the same as the
transformation-induced τ-bias in t̂mle.

Because of the similarity between Equations (2) and (3), the simulation-induced τ-bias
becomes large under the conditions identified by Rainey (2017) as leading to large
transformation-induced τ-bias: when the non-linearity in the transformation τ( ⋅ ) is severe and
when the standard errors of b̂mle are large. While the transformation-induced τ-bias vanishes
as the number of observations grows large, it can be substantively meaningful for the sample
sizes commonly encountered in social science research. In standard modeling situations,
Rainey (2017) demonstrates that transformation-induced bias can (1) be larger than the bias
in the estimates of the model coefficients and (2) shrink to zero more slowly as the sample
size increases. By extension, the same claims hold for simulation-induced bias (which, again,
appears in addition to transformation-induced bias).

4. The intuition of simulation-induced bias
To develop the intuition for the theoretical results above, I examine a stylized example with simu-
lations, an alternative analytical approach, and an empirical example.

4.1. Using a drastic, convex transformation: τ(μ) = μ2

To develop an intuition for the simulation-induced τ-bias in t̂avg, consider the simple (unrealistic,
but heuristically useful) scenario in which yi∼N(0, 1), for i∈ {1, 2, …, n = 100}, and the
researcher wishes to estimate μ2. Suppose that the researcher knows that the variance equals
one but does not know that the mean μ equals zero. The researcher uses the unbiased ML esti-
mator m̂mle = ∑n

i=1 yi/n of μ, but ultimately cares about the quantity of interest τ(μ) = μ2. The
researcher can use the plug-in estimator t̂mle = (m̂mle)2 of τ(μ). Alternatively, the researcher
can use the average-of-simulations estimator, estimating τ(μ) as t̂avg = 1/M

∑M
i=1 t(m̃

(i)), where
m̃(i) � N(m̂mle, 1/

��
n

√
) for i∈ {1, 2, …, M}.

The true value of the quantity of interest is τ(0) = 02 = 0. However, the ML estimator
t̂mle = (m̂mle)2 equals zero if and only if m̂mle = 0. Otherwise, t̂mle . 0. Since m̂mle almost surely
differs from zero, t̂mle is biased upward.

Moreover, even if m̂mle = 0, m̃(i) almost surely differs from zero. If m̃(i) = 0, then (m̃(i))2 . 0.
Thus, m̂avg is almost surely larger than the true value τ(μ) = 0 even when m̂ = 0.

I illustrate this fact clearly by repeatedly simulating y and computing t̂mle and t̂avg. Figure 1
shows the first four of 10,000 total simulations. The figure shows how the unbiased estimate
m̂mle is translated into t̂mle and t̂avg.
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First, to find t̂avg, I complete three steps: (1) simulate m̃(i) � N(m̂mle, 1/10) for i∈ {1, 2, …, M
= 1,000}, (2) calculate t̃(i) = t(m̃(i)), and (3) calculate t̂avg = 1/M

∑M
i=1 t̃

(i). The rug plot along the
horizontal axis shows the distribution of m̃. The hollow points in Figure 1 shows the transform-
ation of each point m̃(i) into t̃(i). The rug plot along the vertical axis shows the distribution of t̃.
Focus on the top-left panel of Figure 1. Notice that m̂mle estimates the true value μ = 0 quite well.
However, after simulating m̃ and transforming m̃ into t̃, the t̃s fall far from the true value τ(0) = 0.
The dashed orange line shows the average of t̃. Notice that although m̂mle is unusually close to the
truth μ = 0 in this sample, t̂avg is much too large.

Second, to find t̂mle, I transform m̂mle directly using t̂mle = (m̂mle)2. The solid green lines show
this transformation. The convex transformation τ( ⋅ ) has the effect of lengthening the right tail of
the distribution of t̃, pulling the average well above the mode. This provides the basic intuition for
Lemma 1.

The remaining panels of Figure 1 repeat this process with three more random samples. Each
sample presents a similar story—the convex transformation stretches the distribution of t̃ to the
right, which pulls t̂avg above t̂mle.

I repeat this process 10,000 total times to produce 10,000 estimates of m̂mle, t̂mle, and t̂avg.
Figure 2 shows the density plots for the 10,000 estimates (i.e., the sampling distributions of
m̂mle, t̂mle, and t̂avg). As I show analytically, m̂mle is unbiased with a standard error of
s/

��
n

√ = 1/
����
100

√ = 1/10. Both t̂mle and t̂avg are biased upward, but, as Theorem 1 suggests,
t̂avg has more bias than t̂mle. And as the approximation suggestions, t̂avg has about twice the
bias of t̂mle. Indeed, the exact bias of each estimator is easy to compute for this simple example.
Appendix B shows that the biases are 1/n = 1/100 and 2/n = 2/100 in this example.

Figure 1. The first four Monte Carlo simulations of m̂. These four panels illustrate the relationship between t̂mle and t̂avg

described by Lemma 1 and Theorem 1.
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4.2. Using the law of iterated expectations

One can also develop the argument analytically via the law of iterated expectations. It helps to
alter the notation slightly, making two implicit dependencies explicit. I explain each change
below and use the alternate, more expansive notation only in this section.

The law of iterated expectations states that EY(EX|Y(X | Y)) = EX(X), where X and Y represent
random variables. The three expectations occur with respect to three different distributions: EY

denotes the expectation with respect to the marginal distribution of Y, EX|Y denotes the expect-
ation with respect to the conditional distribution of X| Y, and EX denotes the expectation with
respect to the marginal distribution of X.

Outside of this section, the reader should understand that the distribution of b̃ depends on
b̂mle and could be written as b̃ | b̂mle. To remain consistent with previous work, especially
Herron (1999) and King et al. (2000), I use b̃ to represent b̃ | b̂mle. The definition of b̃ makes
this usage clear. In this section only, I use b̃ | b̂mle to represent the conditional distribution of
b̃ and use b̃ to represent the unconditional distribution of b̃. Intuitively, one might imagine
(1) generating a data set y, (2) estimating b̂mle, and (3) simulating b̃ | b̂mle. If I perform steps
(1) and (2) just once, but step (3) repeatedly, I generate a sample from the conditional distribu-
tion b̃ | b̂mle. If I perform steps (1), (2), and (3) repeatedly, then I generate a sample from the
unconditional distribution b̃. The unconditional distribution helps us understand the nature of
the simulation-induced τ-bias.

Applying the law of iterated expectations, I obtain Eb̃(b̃) = Eb̂mle (Eb̃|b̂mle (b̃ | b̂mle)). The three
identities below connect the three key quantities from Theorem 1 to three versions of
Eb̂mle (Eb̃|b̂mle (b̃ | b̂mle)), with the transformation τ( ⋅ ) applied at different points.

(4)

(5)

(6)

If I subtract Equation (5) from Equation (4), I obtain the transformation-induced τ-bias in t̂mle

(see Equation (1) for the definition of transformation-induced τ-bias). To move from Equation

Figure 2. The sampling distributions of m̂mle, t̂mle, and t̂avg.
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(4) to (5) I must swap τ( ⋅ ) with an expectation once. This implies that, if τ( ⋅ ) is convex, Equation
(5) must be greater than Equation (4). This, in turn, implies that the bias is positive.

To obtain the τ-bias in t̂avg I must subtract Equation (6) from (4). But to move from Equation
(4) to (6) I must swap τ( ⋅ ) with an expectation twice. Again, if τ( ⋅ ) is convex, then Equation (6)
must be greater than Equation (4). However, because one should expect b̂mle and b̃ | b̂mle to have
similar distributions, one should expect the additional swap to roughly double the bias in t̂avg

compared to t̂mle. This additional swap creates the additional, simulation-induced τ-bias.

4.3. Using a re-analysis of Holland (2015)

Holland (2015) presents a nuanced theory that describes the conditions under which politicians
choose to enforce laws and supports the theoretical argument with a rich variety of evidence. In
particular, she elaborates on the electoral incentives of politicians to enforce laws. I borrow three
Poisson regressions and hypotheses about a single explanatory variable to illustrate how the
plug-in estimates can differ from the average-of-simulations estimate.

Holland writes:

My first hypothesis is that enforcement operations drop off with the fraction of poor resi-
dents in an electoral district. So district poverty should be a negative and significant pre-
dictor of enforcement, but only in politically decentralized cities [Lima and Santiago].
Poverty should have no relationship with enforcement in politically centralized cities
[Bogota] once one controls for the number of vendors.

I use Holland’s hypothesis and data to illustrate the behavior of the average-of-simulations and
plug-in estimators. I refit Model 1 from Table 2 in Holland (2015) for each city. I then use
each model to compute the percent increase in the enforcement operations for each district in
the city if the percent of the district in the lower class dropped by half. For example, in the
Villa Maria El Triunfo district in Lima, 84 percent of the district is in the lower class. If this
dropped to 42 percent, then the average-of-simulations estimate suggests that the number of
enforcement operations would increase by about 284 percent (from about 5 to 20). The plug-in
estimate, on the other hand, suggests an increase of 264 percent (from about 5 to 17). The plug-in
estimate, then, is about 7 percent smaller than the average-of-simulations estimate—a small, but
noticeable shrinkage.

Figure 3 shows how the estimates change (usually shrink) for all districts when I switch from
the average-of-simulations estimates to plug-in estimates. Table 1 presents the details for the

Figure 3. This figure compares the average-of-simulations estimates with the plug-in estimates using three Poisson regres-
sion models from Holland (2015). The quantity of interest is the percent increase in the enforcement operations when the
percent of a district in the lower class drops by half. The arrows show how the estimates change when I switch from the
average-of-simulations to the plug-in estimate.

8 C. Rainey
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labeled cases in Figure 3. In Bogota, the estimate shrinks by 11 percent in Sante Fe and 16 percent
in Usme. In Lima, the estimate shrinks by 5 percent in Chacalacayo and 7 percent Villa Maria El
Triunfo. The shrinkage is much larger in Santiago, where the standard errors for the coefficient
estimates are much larger. The estimate shrinks by about 47 percent in San Ramon and 53 per-
cent in La Pintana. The median shrinkage is 6 percent in Bogota, 2 percent in Lima, and 37 per-
cent in Santiago. For many districts in Santiago, the average-of-simulations estimate is about
twice the plugin estimate. These estimates clearly show that the average of simulations and the
ML estimate can differ meaningfully in actual analyses.

5. Conclusion
Many social scientists turn to King et al. (2000) for advice on interpreting, summarizing, and pre-
senting empirical results. The authors improved empirical research by highlighting the import-
ance of substantively meaningful quantities of interest. I agree with King and Zeng’s (2006)
summary of the literature: “[w]hether such effects are calculated via analytical derivation or
what is now the more common approach of statistical simulation, political scientists have
made much progress in learning how to make sophisticated methods speak directly to their sub-
stantive research questions” (132).

Researchers estimate quantities of interest either by averaging simulated quantities of interest
(e.g., CLARIFY in Stata, Zelig in R, or clarify in R) or using the invariance property of ML esti-
mators (e.g., margins in Stata and R). In practice, researchers’ choice between these two estima-
tors seems idiosyncratic rather than principled, depending on their preferred software package
rather than any statistical criteria. The methodological literature recommends both, but has
not distinguished or compared the two approaches to estimating quantities of interest.

When researchers use the average of simulations (King et al., 2000) to estimate quantities of
interest, they replicate the logic of transformation-induced bias (Rainey, 2017) and add
simulation-induced bias to the estimates. This additional bias is roughly the same magnitude
and direction as transformation-induced bias and occurs in addition to transformation-induced
bias. While the additional bias is usually small relative to the standard error, methodologists
should not recommend methods that add unnecessary bias to point estimates. Instead, we should

Table 1. This table presents the details for the districts labeled in Figure 3

Average of simulations ML estimate

City District % Changea fromb toc % Change from to shrinkaged

Usme 9% 5.5 5.8 7% 5.4 5.8 16%
Cuidad Bolivar 8% 6.0 6.4 7% 5.9 6.3 15%
Bosa 8% 7.1 7.4 7% 6.9 7.4 15%
San Cristobal 7% 12.6 13.4 6% 12.5 13.3 14%

Bogota Santa Fe 6% 27.3 29.0 5% 26.6 28.0 11%
Villa Maria El Triunfo 284% 5.3 19.5 264% 4.7 17.1 7%
Villa El Salvador 231% 7.3 23.5 217% 6.8 21.4 6%
Ventanilla 192% 8.4 23.4 182% 8.2 23.0 5%
Lurin 176% 6.9 17.4 168% 6.4 17.1 5%

Lima Chacalacayo 167% 6.7 16.4 159% 6.2 16.1 5%
La Pintana 642% 1.4 4.0 301% 0.8 3.4 53%
Cerro Navia 545% 1.5 4.2 272% 1.0 3.6 50%
Lo Espejo 517% 1.4 4.3 263% 1.0 3.5 49%
Renca 451% 1.3 4.1 241% 1.0 3.4 47%

Santiago San Ramon 451% 1.2 4.0 241% 1.0 3.3 47%

aQuantity of interest; percent change in enforcement operations when the percent in the lower class drops by half.
bEnforcement operations when the percent in the lower class equals its observed value.
c Enforcement operations when the percent in the lower class equals half its observed value.
d Shrinkage in the quantity of interest due to switching from the average of simulations to the ML estimator.
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recommend methods that better adhere to the usual evaluative standards. Even if we recommend
using simulation to estimate standard errors, we should not recommend averaging simulations to
obtain the point estimate. Instead, researchers should directly transform ML estimates of coeffi-
cients to obtain ML estimates of the quantities of interest. The resulting point estimates inherit
the desirable properties of ML estimators and avoid unnecessary simulation-induced bias.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psrm.2023.8.
All data and computer code necessary to reproduce the results are available on Dataverse at https://doi.org/10.7910/DVN/
5YKD4S.
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