
1 An Introduction to
Biological Networks

Nuria Planell, Xabier Martinez de Morentin and David Gomez-Cabrero

1.1 Biology Needs to be Analysed Like a System

From basic biology to clinical research, scientists are trying to elucidate the mecha-
nisms underlying the regulation of cells in order to understand their origin, evolution
and behaviour in health and disease. Nowadays, we know that the human body com-
prises a considerable number of different cell types working in coordination. Within
a cell, the following framework depicts our understanding of the biological information
flow from the genome to the phenome: first, the DNA molecules (genomics) are
transcribed to mRNA (transcriptomics) and then translated into proteins (proteomics),
which can catalyse reactions that act on and give rise to metabolites (metabolomics),
glycoproteins and oligosaccharides (glycomics), and various lipids (lipidomics).
Finally, these proteins and biomolecules are involved in different metabolic pathways
and cellular processes that, in conjunction, dictate the cell behaviour or phenotype [1].

The study of each one of these layers of information (genomics, transcriptomics
and proteomics, among others) independently has been extensive and, as a result,
there is significant knowledge of the sophisticated machinery that orchestrates the
cellular processes. Furthermore, within each layer, many single features (e.g. single
genes) have been the target of extensive research, such as the TP53 protein [2–4]. The
single-feature analysis derives partially from historical technical limitations and from
the belief that one gene produced a single protein and that one protein had a single
function. As a result, there are many single-gene vs single disease analyses [2–4]. How-
ever, many genes produce several protein isoforms and proteins may have different
functions and cellular roles, depending on their environment [5]. Most importantly,
many features interact and the ‘single-feature’ analysis does not allow characterizing
such interactions or the behaviours derived from them. Importantly, most cellular
functions are organized as highly connected sets of genes and/or proteins and/or
metabolites communicating through biochemical and physical interactions. Therefore,
biology needs to move to a holistic view and start to explore all the biological information in an
integrated way: as a system. Now, we need to identify (the best) ways to model biological
systems [6, 7].
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One way is to focus on the features and their interactions (whatever the nature
of such interactions) and, as a result, a biological system can be depicted as a network
[8]. In such a biological network, the components (nodes) can be genes, proteins or
metabolites, among other elements, and the interactions can be physical interactions,
biochemical interactions or co-expression, among others.

To illustrate the concept, we will detail an example: a pathogen (for instance, a
virulent strain of Escherichia coli) infecting our body. When this happens, the immuno-
logical response is activated to eradicate the infection and restore a healthy status. At
the cellular level, it means that different processes are initiated to produce a pathogen-
related response. As a brief description, these processes start with a signal (stimulus)
that triggers a sequence of (chemical or physical) signals that are transmitted through
the cell, provoking a signal cascade that results in a cellular response. Any process
that starts from a particular stimulus and is transformed into a biochemical signal
throughout the cell is known as a signal transduction process (and these are all good
candidates for network modelling).

As a detailed example, we consider one of the signal transduction processes acti-
vated as a pathogen-related response, the TLR4 (Toll-like receptor 4) signal trans-
duction pathway. The interaction between the pathogenic molecule and the cellu-
lar receptor TLR4 initiates the signal transduction by recruiting intracellular adap-
tor molecules such as myeloid differentiation factor 88 (MyD88) and TIRF-related
adaptor proteins. Depending on the adaptor proteins recruited, two different signal
cascades can take place: one that depends on the MyD88 molecule and another which
is TRIF-dependent. Following the MyD88-dependent pathway, after the recruitment
of adaptor proteins, TNF receptor-associated factor 6 (TRAF6) is activated to interact
with the second complex of proteins (TAK1 and TAB2/3). Going forward, mitogen
protein kinases (MAPKs; MKK3/6 and MKK4/7) and another complex of proteins
(NEMO/IKK complex) are activated, leading to the activation of AP1 (through p38 or
c-Jun N-terminal kinase (JNK)) and NF-κB, respectively; all are involved in the tran-
scription control of pro-inflammatory cytokines (IL-6, IL-12, TNF-α, etc.). The MyD88-
independent pathway recruits TRIF-dependent adaptor proteins and starts the signal
cascade by binding to the IKK-related kinase TBK1 and IKKε, which mediates direct
phosphorylation of IRF3 transcription factor. IRF3 will migrate to the cellular nucleus
and promote the transcription of IFN-inducible genes [9, 10]. Briefly, from the initial
pathogenic stimulus, a signal cascade starts to lead to the production of inflammatory-
related cytokines.

In Figure 1.1a (inspired and partially adapted from [10]), the infection process
described is depicted, where the proteins or protein complexes are the nodes and
the physical or biochemical interactions the edges. Such description can be further
summarized into a network, as shown in Figure 1.1b, where elements of the information
are ignored (e.g. location in the cell or the type of interaction) and only proteins (nodes)
and interactions (edges) are kept. Following both representations, we can identify and
follow the signal cascade from the initial stimulus to the final cellular response. The
network representation has a mathematical description and notation that will be intro-
duced in the next section (and further discussed in Chapter 2). Finally, in Figure 1.1c
we observe that the network can also be stored as a matrix, where rows and columns
denote the proteins, and for an entity in the matrix a ‘1’ (dark grey in the figure)
denotes an interaction between both proteins.
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Figure 1.1 Example of a biological network: a signalling transduction network.
(a) Biological description. (b) Network description of (a). (c) Contingency matrix description
of (a). See text for details of the biological network described [10].
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1.2 Introduction to Networks

In the previous section, we established that biological systems can be modelled as net-
works. The role of the modelling here is to provide a holistic description of a system
(derived from the biological information) in a way that allows studying characteristics
of the systems that cannot be derived from the collection of per-feature characteris-
tics (‘stamp collection’ [7]). In biological networks, nodes can represent any type of
biological molecule or even a complex of molecules. Edges can represent any type
of relationship between a pair of nodes; for example, edges may represent that two
molecules are present in the same tissue, are related to the same disease, are part of
the same biological process [11] or the same molecular function [12], or similar expres-
sion levels [13], among other relationships. In Figure 1.1, a protein–protein interaction
network is depicted in which nodes are the proteins and, in some cases, the edges
represent known physical interactions [14, 15].

Biological networks can be described as graphs; and, while in the text we will use
graph and network interchangeably, we should clarify that network analysis is the
study of graphs when they represent relations (symmetric or asymmetric) between
discrete objects [16, 17]. Interestingly, the concept of graph theory was initially devel-
oped as a tool to solve mathematical riddles. The first (and most famous) riddle is the
problem of the bridges of Königsberg: the town Königsberg had seven bridges and
the problem was to visit all parts of the city while crossing each bridge only once [18].
Euler proved in 1736 that there was no feasible solution [19].

Importantly, around the end of the 1950s, the analysis and generation of random
graphs was proposed by Erdös and Rényi [20] and simultaneously by Gilbert [21].
A random graph studies the uniformly random selection of graphs from the set of all
possible graphs with N nodes and M edges, with N and M being arbitrary numbers.
Interestingly, it was observed that those models were not able to capture a prop-
erty observed in most ‘real-life’ networks: small-world properties. A significant small-
world property is the short average path length necessary to connect every pair of
nodes. Watts and Strogatz proposed a model to generate small-world random graphs
[22]. However, those graphs did not generate another ‘real-life’ network property:
‘hubs’. Hubs are (a small number of) nodes with a more extensive than average num-
ber of edges to/from other nodes; the property is termed ‘scale-free’. Barabási and
Albert studied scale-free graph properties [23].

The analysis of random vs non-random graphs is of particular relevance, which
we will explore further in a later section, because in biological systems (as well as
observed in social networks) the graphs associated are not random graphs as defined
by Erdös and Rényi [20]. For instance, there are nodes with an increased number
of edges. In gene networks, these nodes are known as ‘hubs’ or ‘master regulators’,
and they are of interest because they may show an association with specific biological
processes.

Computationally, the process of drawing biological systems into networks can be
described mathematically by adjacency matrices (see Figure 1.1c). In such a matrix,
both columns and edges are the nodes, and every position (nodei,nodej) may denote
the existence/non-existence of an edge as a binary 1/0 (e.g. a protein–protein inter-
action [24]), or they may specify numerical ‘weights’ that may be associated with
the strength of the relationships. Those weights could be computed as a measure of
similarity between the nodes using, for instance, correlation or mutual information
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[25], among other measures. It is essential to specify that the selection of the distance
measure may shape a biological network differently [26].

1.3 Types of Biological Networks

As previously presented, a biological system can be represented as a biological net-
work, and it may include several groups of coordinated subsystems. From the molec-
ular level up to a whole biological system, one can think in different types of networks:
molecular networks, cell-to-cell networks, host–microbiome networks and systems
medicine networks. Moreover, each one of these networks can be divided into different
subsystems.

Within molecular networks, the most relevant ones are protein–protein inter-
action (PPI) networks, gene regulatory networks, signal transduction networks,
metabolomics or biochemical networks and functional or co-expression networks.
The nodes of these networks are genes and/or proteins and/or metabolites, and the
edges are physical or biochemical interactions, co-expression patterns, etc. [17, 27].
A schematic representation of the different types of molecular networks is shown in
Figure 1.2.

Protein–protein interaction networks are fundamental in biological functions.
Protein interactions determine molecular and cellular mechanisms that control healthy
and diseased states in organisms. In these networks, nodes represent proteins and
edges represent a physical interaction between two proteins. The edges are non-
directed, as it cannot be said which protein binds the other; that is, which partner
functionally influences the other. Within the example described in Figure 1.1a, several
PPI networks can be defined. The interaction between different adaptor molecules
and the TLR4 gives a complex structure that is per se a PPI.

Transcription factor
derived network

Signaling network Protein-Protein interaction
network

Directed, weighted
Nodes: TFs and target genes
Edges: TF binding promoter

Directed, unweighted
Nodes: proteins

Edges: regulation

Undirected, unweighted
Nodes: proteins

Edges: proteins physical interact

Metabolic network

Undirected, weighted
Nodes: metabolic enzymes
Edges: sharing compounds

NETWORKS DERIVED

C

N

Figure 1.2 Examples of types of biological networks. The image from the Protein-Protein
interaction section was created in 2002 by Dcrjsr, and is licensed under the Creative
Commons Attribution 3.0 Unported licence.
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The structures and dynamics of protein networks are disturbed in complex
diseases such as cancer [24] and autoimmune disorders. Therefore, such networks
facilitate the understanding of these mechanisms in both pathogenic or physiologic
scenarios and can be translated into effective diagnostic and therapeutic strategies [28].

To generate PPI networks, besides the various experimental methods, a variety of
large biological databases that collect and organize PPI information are available, most
of which are organism-specific. Among them are the Yeast Proteome Database (YPD)
[29], the Munich Information Center for Protein Sequences (MIPS) [30], the Molecular
Interactions (MINT) database [31], the IntAct database [32], the Database of Interacting
Proteins (DIP) [33], the Biomolecular Interaction Network Database (BIND) [34], the
BioGRID database [35], the Human Protein Reference Database (HPRD) [36], the HPID
[37] and the DroID for Drosophila [38]. Additionally, well-documented services based
on text-mining analysis provide relevant resources, including the Stitch and String
databases [39, 40].

Gene regulatory networks give information concerning the control of gene
expression in cells. Nodes are either a transcription factor or a putative DNA reg-
ulatory element, and directed edges represent the physical binding of transcription
factors to such regulatory elements. Edges are directed: incoming (transcription factor
binds a regulatory DNA element) or outgoing (regulatory DNA element bound by
a transcription factor). In addition to transcription factor activities, overall gene
transcript levels are also regulated post-transcriptionally by microRNAs (miRNAs),
short noncoding RNAs that bind to complementary cis-regulatory RNA sequences
usually located in 30 untranslated regions (UTRs) of target mRNAs. Then, edges can
also be denoted as incoming (miRNA binds a 30UTR element) or outgoing (30UTR
element bound by an miRNA).

These networks use a directed graph representation to model the way proteins and
other biological molecules are involved in gene expression, and they aim to describe
the order of the events that take place in different stages of the process. Following the
example in Figure 1.1a, the associated (not in the figure) regulatory network of the
activated transcription factors AP1 and NF-κB could be detailed.

To generate this regulatory networks, protein–DNA interaction data is collected
in databases like JASPAR [41], TRANSFAC [42] or B-cell Interactome (BCI) [43], while
post-translational modification can be found in databases like Phospho.ELM [44], Net-
Phorest [45] or PHOSIDA [46].

Signal transduction networks connect receptors and many different cellular
machines. Such networks not only receive and transmit signals, but also process
information. To represent the series of interactions between the different biological
entities (nodes) such as proteins, chemicals or macromolecules and to investigate
how signal transmission is performed either from the outside to the inside of
the cell or within the cell, multi-edged directed graphs are used. One example
of these signal cascades is shown in Figure 1.1a. Given a pathogenic stimulus, a
signal is transmitted through the cell to give a response. Depending on the cellular
circumstances (environmental parameters), different responses can be triggered; in
that way, the environment could trigger for a MyD88-dependent or -independent
response in the case of the TLR4 signalling pathway. Some sources of information
regarding signal transduction pathways are the MiST [47] and TRANSPATH [48]
databases.
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Metabolomics or biochemical networks describe a series of chemical reactions
occurring within a cell at different time points. The enzymes play the primary role
within a metabolic network since they are the main determinants in catalysing bio-
chemical reactions. Often, enzymes are dependent on other cofactors, such as vita-
mins, for proper functioning.

In graph representation of metabolic networks, nodes are metabolites and edges
are either the enzymes that catalyse these reactions or the reactions that convert
one metabolite into another. Edges can be directed or undirected, depending on the
reversibility of a given reaction. Among the several databases holding information
about biochemical networks, some of the most popular are the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [49], EcoCyc [50], BioCyc [51] and metaTIGER [52].

Functional networks are gene co-expression networks. The reasoning used to
define this type of network is that associated proteins are more likely to be encoded by
genes with similar transcription profiles [53, 54]. In these networks, nodes represent
genes and edges link pairs of genes that show correlated co-expression above a set
threshold based on an association measure such as the Pearson correlation coefficient
or mutual information [55]. In the example shown in Figure 1.1a, the set of genes
whose transcription is regulated by NF-κB and AP1, such as IL-6, IL-12, IL-1 and TNF-
α, may show statistically significant correlation because they are involved in the same
biological process [56].

Beyond molecules, cell–cell communication (CCC) networks can also be defined.
This kinds of networks describe the cross-talk between cells. In those networks, nodes
are different cell types and the edges are receptor–ligand interactions. A CCC network
is a directional bipartite graph that is usually constructed based on the differential
over-expression of ligand and receptor genes of the cell types of interest [57].

Given the complex system that defines a whole organism and the functional
interdependencies between the molecular components shown in a human cell, we
observe that most diseases are rarely a consequence of an abnormality in a single gene.
Instead, the disease phenotype reflects the perturbations of a complex intracellular
network. The identification of these perturbed networks defined as disease modules
can allow the identification of molecular relationships between apparently distinct
pathologic phenotypes. These disease connections can be presented as a disease
network, where nodes are disease and diseases are connected if they share one or
several disease-associated genes or if they are both associated with enzymes that
catalyse adjacent reactions. In metabolic diseases, links induced by shared metabolic
pathways are expected to be more relevant than links based on shared genes [58]. To
construct this kind of network, available resources are the gene–disease associations
collected in the OMIM [59], KEGG [60] and BiGG [61] database.

Other approaches are emerging within systems medicine, including drug–target
networks and drug–drug networks. Both drug–target and drug–drug networks will
help in new drug development as they are implicated in drug discovery and prediction
of adverse effects [62, 63]. Those types of networks are also described in Chapter 9.

Finally, microbiome–host networks can also be defined. The role of the micro-
biome in human health and disease has received greater interest during recent years
as the microbiome is involved in metabolism, physiology, nutrition and different
immunological functions. For more in-depth information on microbiome and host–
microbiome networks, see Chapter 11.
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In summary, several types of networks can be defined in biology in order to
explain and simplify complex systems. However, these approaches are restricted to
the amount of information known; a vast amount of interactions is thought to be
unknown. Consequently, biological networks should be considered as a dynamic field
that will evolve over time, depending on knowledge generation and curation.

1.4 Mathematical Properties of Biological Networks

In biological networks, as well as in social networks, the distribution of the number
of edges incident upon a node – denoted as node degree centrality measure – follows
a power law distribution, P(k) = Ak2−y [64], that is not observed in random graphs.
As a result of the power-law distribution there will be high diversity of node degrees;
this characteristic is known as scale-free [23]. A second property is the small world
[22], which denotes that the ‘shortest path’ (or the collection of nodes) needed to
communicate a pair of nodes is reduced compared to random networks.

An additional property of interest in networks is connectivity, which estimates
(and identifies) the minimum number of edges (or nodes) required to separate nodes
into isolated subgraphs. Isolated subgraphs are groups of nodes that cannot describe a
path connecting them. In Figure 1.1a, the elimination of edges (p38,AP-1), (JNK,AP-1)
and (NF-κKB,NF-κB) would generate two subgraphs.

There are also measures of interest that define the relevance of a node, such as
centrality measurements. Beyond node degree centrality, betweenness centrality quan-
tifies the number of times a node appears in shortest paths between pairs of nodes
or closeness centrality quantifies the average length of the paths between the node of
interest and any other node, among other measures [8]. These properties are described
and discussed in Chapter 3.

1.5 Storing and Visualizing Networks

Networks are a useful tool for modelling and studying most biological systems. While
the mathematical tools for their analysis are relevant, the storage and visualization of
networks are also relevant because they provide powerful exploratory tools.

For storing and communication, the Systems Biology Markup Language (SBML)
[65] provides a representation format based on XML, which allows the communica-
tion and storage of computational models of biological processes. It’s an open-source
framework and nowadays is the standard for representing computational models in
systems biology.

For visualization, there are many tools available, among the most popular being
Cytoscape [66] and Gephi [67]. Both tools provide methods for visualization, but also
network analysis (including the estimation of centrality measures) or interfaces with
programming languages such as R. Importantly, network visualization is a complex
problem by itself, because it requires describing in two dimensions a set of features
and their connections. There are several methodologies available for the projection of
networks in two dimensions (named layout). Several examples of the network shown
in Figure 1.1 are shown in Figure 1.3.
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Figure 1.3 Two networks layouts from the network shown in Figure 1.1. (a) Hierarchical
layout. (b) Stacked node layout.
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Finally, is it also relevant to mention the existence of standards for annotation
in network visualizations; a good example is Systems Biology Graphical Notation
(SBGN) [68, 69].

1.6 Conclusions and ‘Networks of Networks in Biology’

Two major conclusions are delivered from the current discussion. The first is that to
understand any biological system, it is necessary to shift from a collection of facts towards
a truly holistic approach that considers all elements of a system. To this end, and as a
second conclusion, network analysis provides a modelling framework that summarizes a
given system based on its elements and their interactions. In Figure 1.1 we showed an
example of such applications, and in Figure 1.2 we have briefly summarized current
network-based applications in systems biology. Additionally, we have shown that over
the past two decades, there has been extensive development of tools for generating,
visualizing, analysing, storing and sharing networks. Importantly, while in the current
chapter we have addressed the intuitive concept of networks, in the coming chapters
the mathematical description of networks will be provided in detail (see Chapter 2).

A final note is that to advance the holistic approach, all the different layers
described in Figure 1.2 need to be integrated. Classical network analysis did not
consider in detail such types of networks in which multiple types of nodes may be
considered, where pairs of nodes may be associated by several edges that depict dif-
ferent types of connections (e.g. ‘transcription-factor to gene’ and ‘correlation between
genes’). Therefore, new types of networks and their analytical tools are required. This
book discusses multi-layer networks as the next set of network analysis tools [70, 71].
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