IDEMPOTENTS IN COMPLEX BANACH ALGEBRAS

G. N. HILE AND W. E. PFAFFENBERGER

1. Introduction. The concept of the spectrum of A relative to Q, where A and Q commute and are elements in a complex Banach algebra \mathscr{B} with identity I, was developed in [1]. A complex number z is in the Q-resolvent set of A if and only if $A-z I-\bar{z} Q$ is invertible in \mathscr{B}; otherwise, z is in the Q-spectrum of A, or spectrum of A relative to Q. One result from [1] was the following.

Theorem. Suppose no points in the ordinary spectrum of Q have unit magnitude. Let C be a simple closed rectifiable curve which lies in the Q-resolvent of A, and let

$$
\begin{equation*}
J:=-P^{-1} \int_{C}(A-z I-\bar{z} Q)^{-1}(I d z+Q d \bar{z}) \tag{}
\end{equation*}
$$

where P is defined as

$$
P:=\int_{|z|=1}(z I+\bar{z} Q)^{-1}(I d z+Q d \bar{z}) .
$$

Then J is an idempotent which commutes with A and Q; moreover, $J=0$ if and only if the interior of C belongs to the Q-resolvent set of A, and $J=I$ if and only if the Q-spectrum of A lies entirely interior to C.
(Here P plays the role of the constant $2 \pi i I$ in the ordinary spectral theory. The ordinary spectrum of P is a subset of the set $\{2 \pi i,-2 \pi i\}$.)

The question arises as to whether all idempotents which commute with A can be obtained using this more general concept of the spectrum. It is well known that in the case of the usual spectrum, there exist elements A with connected spectrum and where many nontrivial idempotents commute with A, but where the functional calculus of the usual spectrum cannot retrieve these idempotents using integration of the resolvent.

In this paper we prove that for every idempotent J which commutes with A there exists an element Q which commutes with A such that J can be retrieved as in the above theorem. This result is satisfying in that it demonstrates that disconnected Q-spectra exist at least in the same abundance as there are nontrivial idempotents which commute with A.

[^0]2. Generation of idempotents by integration. We let sp A denote the ordinary spectrum of $A, \operatorname{sp}_{Q}(A)$ the Q-spectrum of A, and $\operatorname{res}_{Q}(A)$ the Q-resolvent set of A.

Theorem 1. Let \mathscr{B} be a complex Banach algebra with identity I, and let A be an invertible element in \mathscr{B}. Suppose J is any nontrivial idempotent in \mathscr{B} which commutes with A. Then there exists an element Q in \mathscr{B} which commutes with A and J, with no points in sp Q of unit magnitude, such that
(*) $J=-P^{-1} \int_{C}(A-z I-\bar{z} Q)^{-1}(I d z+Q d \bar{z})$
for some circle C about the origin which lies in $\operatorname{res}_{Q}(A)$.
Proof. Let us consider Q of the form $Q=q J$ for some fixed complex number q. For λ in \mathbf{C} we set

$$
S(\lambda):=A-\lambda I-\bar{\lambda} Q=A-\lambda I-\bar{\lambda} q J
$$

Let \mathscr{B}^{*} be a maximal commutative subalgebra of \mathscr{B} containing A and Q. Let $\Phi_{\mathscr{B}^{*}}$ denote the set of all algebra homomorphisms of \mathscr{B}^{*} onto \mathbf{C}. Then for each σ in $\Phi_{\mathscr{B}^{*}}$ we have from $J^{2}=J$ that $\sigma(J)=0$ or $\sigma(J)=1$. Now

$$
\sigma(S(\lambda))=\sigma(A)-\lambda-\bar{\lambda} q \sigma(J)
$$

and $\lambda \in \operatorname{sp}_{Q}(A)$ if and only if $\sigma(S(\lambda))=0$ for some σ, which means that for some σ in $\Phi_{\mathscr{G}^{*}}$,

$$
\lambda=\frac{\sigma(A)-q \overline{\sigma(A)} \sigma(J)}{1-|q|^{2}|\sigma(J)|^{2}}
$$

So from the above we conclude that

$$
\operatorname{sp}_{Q}(A)=\left\{\left.\lambda=\frac{\sigma(A)-q \overline{\sigma(A)} \sigma(J)}{1-|q|^{2}|\sigma(J)|^{2}} \right\rvert\, \sigma \in \Phi_{\mathscr{B}^{*}}\right\} .
$$

By Corollary $1[1], \operatorname{sp}_{Q}(A)$ is a nonempty compact subset of \mathbf{C}. We choose q so that $|q| \neq 1$; then since

$$
\operatorname{sp} A=\left\{\sigma(A) \mid \sigma \in \Phi_{\mathscr{D}}\right\}
$$

(see [2], Theorem 3.1.6), and $0 \notin \mathrm{sp} A$, we have $\mathrm{sp}_{Q}(A)$ is bounded away from 0 in \mathbf{C}.

We now break $\operatorname{sp}_{Q}(A)$ into two sets, corresponding to $\sigma(J)=0$ and $\sigma(J)=1$; namely, we define

$$
\begin{aligned}
& S_{0}:=\left\{\lambda=\sigma(A) \mid \sigma(J)=0 \text { and } \sigma \in \Phi_{\mathscr{B}^{*}}\right\}, \\
& S_{1}:=\left\{\left.\lambda=\frac{\sigma(A)-q \overline{\sigma(A)}}{1-|q|^{2}} \right\rvert\, \sigma(J)=1 \text { and } \sigma \in \Phi_{\mathscr{B}^{*}}\right\} .
\end{aligned}
$$

Then clearly $\operatorname{sp}_{Q}(A)$ is the union of S_{0} and S_{1}, and since J is a nontrivial idempotent in \mathscr{B} it follows that both S_{0} and S_{1} are nonempty subsets of $\mathrm{sp}_{Q}(A)$.

Now since $\operatorname{sp} A$ is bounded away from 0 in \mathbf{C} and $S_{0} \subset \operatorname{sp} A$, it is clear that if we choose q large enough and positive, $q>1$, then S_{1} can be made so close to 0 in \mathbf{C} that $S_{1} \cap S_{0}=\emptyset$, and also such that there exists a circle C about 0 in \mathbf{C} with S_{1} and S_{0} lying interior and exterior to C, respectively.

Having chosen such a fixed q, we will now show that if we parametrize C as a simple closed rectifiable curve in a counterclockwise direction, then J can be reproduced by formula (*). By Theorem 12 [1] we know that the element K as defined by the right side of $\left({ }^{*}\right)$ is a nontrivial idempotent in \mathscr{B} which commutes with A and Q; therefore if we write

$$
K:=-P^{-1} \int_{C}(A-z I-\bar{z} q J)^{-1}(I d z+q J d \bar{z})
$$

we have two cases to consider:
Case 1. Suppose $\sigma \in \Phi_{\mathscr{G} *}$ and $\sigma(J)=0$; then $\sigma(A) \in S_{0}$ and $\sigma(A)$ lies exterior to \mathbf{C}, implying that

$$
\sigma(K)=-\sigma\left(P^{-1}\right) \int_{C}(\sigma(A)-z)^{-1} d z=0
$$

Case 2. Suppose $\sigma \in \Phi_{\mathscr{B}^{*}}$ and $\sigma(J)=1$; then we have

$$
\sigma(K)=-\sigma\left(P^{-1}\right) \int_{C}[\sigma(A)-z-\bar{z} q]^{-1}(d z+q d \bar{z}) .
$$

We let $\phi(z):=z+\bar{z} q$ and note that $\sigma(A)-z-\bar{z} q=0$ only at

$$
h_{0}:=(\sigma(A)-q \overline{\sigma(A)}) /\left(1-|q|^{2}\right),
$$

with h_{0} lying in S_{1} and hence in the interior of C. Since q is real we have $\phi\left(h_{0}\right)=\sigma(A)$, and so we can write

$$
\begin{aligned}
\sigma(K) & =-\sigma\left(P^{-1}\right) \int_{C}[\sigma(A)-z-\bar{z} q]^{-1}(d z+q d \bar{z}) \\
& =\sigma(P)^{-1} \int_{C} \frac{d \phi(z)}{\phi(z)-\phi\left(h_{0}\right)}
\end{aligned}
$$

where from (\dagger)

$$
\sigma(P)=\int_{|z|=1}[\phi(z)]^{-1} d \phi(z) .
$$

Therefore, from the scalar version of Theorem $7[\mathbf{1}]$ (with $\mathscr{B}=\mathbf{C}, Q=q$, $f(z) \equiv 1$, we obtain $\sigma(K)=1$.

By cases 1 and 2 we now have $\sigma(K)=1$ when $\sigma(J)=1$ and $\sigma(K)=0$ when $\sigma(J)=0$. Therefore

$$
\sigma(J-K)=0 \quad \text { for all } \sigma \text { in } \Phi_{\mathscr{B}},
$$

which implies $\operatorname{sp}(J-K)=\{0\}$ and

$$
\left\|(J-K)^{n}\right\|^{1 / n} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Now

$$
(J-K)^{2}=J-2 J K+K, \quad(J-K)^{3}=J-K
$$

and by induction, $(J-K)^{2 n+1}=J-K$ for all positive integers n. But then

$$
\|J-K\|^{1 / 2 n+1} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

which means $\|J-K\|=0, J=K$.
The case of a singular element A is handled in the following.
Theorem 2. Let \mathscr{B} be a complex Banach algebra with identity I, and let $A \in \mathscr{B}$ with $0 \in \operatorname{sp} A$. Suppose J is a nontrivial idempotent in \mathscr{B} which commutes with A. Then there exists a scalar β and an element Q in \mathscr{B} which commutes with A and J, with no points in sp Q of unit magnitude, such that

$$
J=-P^{-1} \int_{C}(A-\beta I-z I-\bar{z} Q)^{-1}(I d z+Q d \bar{z})
$$

for some circle C about the origin which lies in $\operatorname{res}_{Q}(A-\beta I)$.
Proof. Choose a scalar β such that $0 \notin \operatorname{sp}(A-\beta I)$ and then apply Theorem 1 to $A-\beta I$.

A generalization of Theorem 1 now follows.
Theorem 3. Let \mathscr{B} be a complex Banach algebra with identity I, and let A be an invertible element in \mathscr{B}. Suppose that

$$
J_{1}+J_{2}+\ldots+J_{n}=I
$$

is a finite resolution of the identity in \mathscr{B}; that is, each J_{i} is a nontrivial idempotent, and $J_{i} J_{j}=0$ for $i \neq j$. Further suppose that each J_{i} commutes with A. Then there exists an element Q in \mathscr{B} which commutes with A and each J_{i}, with no points in $\operatorname{sp} Q$ of unit magnitude, and a sequence of concentric circles $C_{1}, C_{2}, \ldots, C_{n}$, of decreasing radii and each centered at 0 , such that

$$
\begin{aligned}
& J_{i}=-P^{-1} \int_{C_{i}-C_{i+1}}(A-z I-\bar{z} Q)^{-1}(I d z+Q d \bar{z}), \\
& \quad i=1,2, \ldots, n-1, \\
& J_{n}=-P^{-1} \int_{C_{n}}(A-z I-\bar{z} Q)^{-1}(I d z+Q d \bar{z}) . \\
& \text { Proof. Let } \\
& Q=q_{1} J_{1}+q_{2} J_{2}+\ldots+q_{n} J_{n}
\end{aligned}
$$

for fixed scalars $q_{1}, q_{2}, \ldots, q_{n}$, with no q_{i} having unit magnitude. Then, as in the proof of Theorem 1 ,

$$
S(\lambda):=A-\lambda I-\bar{\lambda} Q=A-\lambda I-\bar{\lambda}\left(q_{1} J_{1}+\ldots+q_{n} J_{n}\right)
$$

Let \mathscr{B}^{*} be a maximal commutative subalgebra of \mathscr{B} containing A and J_{1}, J_{2}, \ldots, J_{n}, and again let $\Phi_{\mathscr{F}^{*}}$ denote the set of all algebra homomorphisms of \mathscr{B}^{*} onto \mathbf{C}. For each σ in $\Phi_{\mathscr{B}^{*}}$ we have

$$
1=\sigma(I)=\sigma\left(J_{1}+\ldots+J_{n}\right)=\sigma\left(J_{1}\right)+\ldots+\sigma\left(J_{n}\right)
$$

moreover, since each J_{i} is idempotent, $\sigma\left(J_{i}\right)=0$ or 1 for each J_{i}. Thus for any σ in $\Phi_{\mathscr{D}^{*}}, \sigma$ is 1 at one and only one J_{i}, and is 0 at all other J_{i} 's. Since each J_{k} is nontrivial, there exists for each k in $1 \leqq k \leqq n$ at least one σ_{k} in $\Phi_{\mathscr{B}^{*}}$ such that

$$
\sigma_{k}\left(J_{k}\right)=1 \quad \text { and } \quad \sigma_{k}\left(J_{i}\right)=0 \quad \text { for } i \neq k
$$

Furthermore, for such $\sigma_{k}, \sigma_{k}(S(\lambda))=0$ if and only if

$$
\begin{aligned}
& \sigma_{k}(A)-\lambda-\bar{\lambda} q_{k} \sigma_{k}\left(J_{k}\right)=0, \\
& \lambda=\frac{\sigma_{k}(A)-q_{k} \overline{\sigma_{k}(A)}}{1-\left|q_{k}\right|^{2}}
\end{aligned}
$$

Recall that

$$
\left\{\sigma(A) \mid \sigma \in \Phi_{\mathscr{B}^{*}}\right\}=\operatorname{sp} A
$$

and that $\operatorname{sp} A$ is compact and bounded away from 0 since A is invertible. We now look at mappings $F_{k}, k=1, \ldots, n$, from \mathbf{C} into \mathbf{C}, defined by

$$
F_{k}(a):=\frac{a-q_{k} \bar{a}}{1-\left|q_{k}\right|^{2}}
$$

We would like to choose the scalars q_{1}, \ldots, q_{n} so that $F_{1}(\mathrm{sp} A)$, $F_{2}(\mathrm{sp} A), \ldots, F_{n}(\mathrm{sp} A)$ lie in disjoint annuli centered at 0 .

Suppose $\operatorname{sp} A$ is contained in the annulus about 0 with boundaries

$$
z_{1}(\theta)=r_{1} e^{i \theta} \text { and } z_{2}(\theta)=r_{2} e^{i \theta}
$$

and with $0<r_{1}<r_{2}, 0 \leqq \theta<2 \pi$. An analysis of F_{k} shows that the image of such an annulus under the map F_{k} is an elliptical annulus about 0 whose boundaries are the images of the boundaries of the original annulus. Therefore,

$$
\begin{aligned}
F_{k}\left(r_{1} e^{i \theta}\right) & =\frac{r_{1} e^{i \theta}-q_{k} r_{1} e^{-i \theta}}{1-\left|q_{k}\right|^{2}} \\
& =\frac{r_{1}}{1-\left|q_{k}\right|^{2}}\left(e^{i \theta}-q_{k} e^{-i \theta}\right),
\end{aligned}
$$

$$
\begin{aligned}
\left|F_{k}\left(r_{1} e^{i \theta}\right)\right| & =\frac{r_{1}}{\left|1-\left|q_{k}\right|^{2}\right|}\left|e^{i \theta}-q_{k} e^{-i \theta}\right| \\
& \geqq \frac{r_{1}}{\left|1-\left|q_{k}\right|^{2}\right|}\left|1-\left|q_{k}\right|\right|=\frac{r_{1}}{1+\left|q_{k}\right|} .
\end{aligned}
$$

Also, for $q_{k}>1$,

$$
\left|F_{k}\left(r_{2} e^{i \theta}\right)\right| \leqq \frac{r_{2}}{\left|1-\left|q_{k}\right|^{2}\right|}\left(1+\left|q_{k}\right|\right)=\frac{r_{2}}{q_{k}-1} .
$$

We choose $q_{1}=2$ so that $F_{1}(\operatorname{sp} A)$ lies inside the annulus between $\frac{r_{1}}{3} e^{i \theta}$ and $r_{2} e^{i \theta}$ by the above analysis.

Next we choose $q_{2}>q_{1}$ where q_{2} is the smallest positive integer such that

$$
r_{2} /\left(q_{2}-1\right)<r_{1} / 3
$$

then $F_{2}(\operatorname{sp} A)$ lies in an annulus which is closer to 0 than the annulus which contains $F_{1}(\operatorname{sp} A)$. Continuing in this manner we choose $q_{3}>q_{2}$ where q_{3} is the smallest positive integer such that

$$
r_{2} /\left(q_{3}-1\right)<r_{1} /\left(q_{2}+1\right)
$$

We continue this process n times to obtain the desired n annuli about 0 . We name these annuli $A_{1}, A_{2}, \ldots, A_{n}$.

Finally we choose our circles $C_{1}, C_{2}, \ldots, C_{n}$ such that C_{1} lies outside A_{1}, C_{2} lies between A_{1} and A_{2}, C_{3} lies between A_{2} and A_{3}, etc., until C_{n} lies between A_{n-1} and A_{n}. We then have concentric circles C_{1}, \ldots, C_{n} of decreasing radii such that $F_{1}(\mathrm{sp} A)$ lies between C_{1} and $C_{2}, F_{2}(\mathrm{sp} A)$ lies between C_{2} and C_{3}, etc., until $F_{n}(\mathrm{sp} A)$ lies inside C_{n}. Making an analysis of integrals similar to that in the proof of Theorem 1, we arrive at the listed integral formulas for $J_{1}, J_{2}, \ldots, J_{n}$ in terms of integrals around the circles $C_{1}, C_{2}, \ldots, C_{n}$ separating the Q-spectrum of A. We omit the analogous details.

References

1. G. N. Hile and W. E. Pfaffenberger, Generalized spectral theory in complex Banach algebras, Can. J. Math. 37 (1985), 1211-1236.
2. C. E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics (Van Nostrand, Princeton, N.J., 1960).

University of Hawaii,
Honolulu, Hawaii;
University of Victoria,
Victoria, British Columbia

[^0]: Received September 12, 1985 and in revised form May 23, 1986.

