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Abstract. Let T" be a finitely generated discrete subgroup of the isometries of the
hyperbolic plane H? with at least one parabolic element. We prove that, if I'; is a
subgroup of I with I'/T"; abelian, the ‘critical exponent’ of I, is the same as that of I".
We give necessary and sufficient conditions —in terms of the rank of I'/T'y, the critical
exponent of I, and the image of parabolic elements of I" in I'/T"; — for the Poincaré
series of I'; to diverge at the critical exponent.

Introduction

The aim of this paper is to determine when a subgroup I'; of a finitely generated
discrete group of isometries I' of 2-dimensional hyperbolic space H>, with I'; <aT,
T'/T'; abelian, is of divergence type 8], i.e. whether or not the series

Y. exp{-—alx, yx)}

vel'l
diverges at a = 8(I';), for 6(I'1) the supremum of the « for which the series diverges,
where x € H” is any fixed point and (x, yx) denotes hyperbolic distance between x
and yx. Equivalently (for §(I"y) > 3), we wish to determine whether the geodesic flow
{¢;} on the unit tangent bundle UT (H 2/Ty) of H*)T, is ergodic with respect to
certain natural measures [8). We restrict our discussion to the case of H>/T having
cusps. The case of H>/T without cusps was dealt with in [6].

Recently, Lyons & McKean [2] proved that, if I is the fundamental group of the
thrice-punctured sphere, and I'; is the commutator subgroup of I', then hyperbolic
Brownian motion on H?/T is not recurrent, and that Ty is not of divergence type
(equivalent conditions by [8]) (see also [3]). This is the sort of example we have in
mind. However, we do not restrict the critical exponent of I'y to be 1 (as in the cited
example). The main results are summarized in theorem 1.

THEOREM ‘1. Let T" be a discrete finitely generated group of isometries of H 2, Let
i<, T/Ty=2Z", and let 0O: I‘——t-> %, o: F——I>Z"2 (v=vi+v2) be two

homomorphisms with T'1 =Ker (0@ &), where, if x1- - x, are parabolic elements of T
corresponding to the r cusps of H>/T' (x1-+* x, are unique up to taking inverses, and
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conjugation), then &(x;) =0 for alli, and (0(x,), . . ., 0(x,)) is syndetic in Z**. (Clearly
any homomorphism onto Z" can be put in the form 0@ d.) Then §([) = 8(T,) = 6, say.

If 8 <1, Ty is of divergence type if and only if v1=0 and v,<2. If§=1, T, is of
divergence type if and only if either vi<1 and v, =0, or v1=0 and v,<2.

The proof uses symbolic dynamics and the same general method, with
modification, as in [6]. Because there is no developed theory of symbolic dynamics
for cusped manifolds in higher dimensions, the methods only work in dimension 2.
However, as in [6], the results can be extended to ‘finitely determined sub-abelian’
subgroups of I'. We do not give the details here (nor the definitions) — the analogue
with § 5 of [6]is fairly exact. But, for example, if H>/T is a 1-cusped surface of genus
g=1,with a, * - - ag, by - - - b, the free generators of I' and ﬁ [a;, b;] representing

. i=1
the cusp, where [a;, b;] = aba;'b;’, and if

[, ={wordsin{a, b,a; ', b;";i=1,..., g} :sum of a,-powers
=sum of b;-powers = 0},
so that
4
F=U{asb,a:',b:'Y0 U (aTblai™bi", blaThi"ai™}
i=2

m,neZ\{0}
is a set of free generators and inverses of generators of I'y, and if

I'; = {words in the elements of &: sum of [a;, b;]-powers = 0},

then the generalized theorem 1 gives I'; is of divergence type with 6(I') =6(I'z) = 1.

Formulation of the symbolic dynamics

In some ways, the presence of a cusp on H 2T actually makes things easier.
Throughout this paper, we assume without loss of generality that no y € I’ fixes any
points of H?, so that H>/T is a manifold with T as its fundamental group. Since we
assume H>/T has at least one cusp, H”/T is topologically either a k-holed sphere
(k =3) or a k-holed surface of genus =1 (k = 1). So I' must be a free group, and H*/T
has a geodesic triangulation — i.e. the edges of the triangulation are geodesics — with
vertices only at the holes. (Note that, besides one or more cusps, some of the ‘holes’
may be ends of infinite volume.) The point of this is that H */T has a fundamental
region F on H?, bounded by geodesic arcs and arcs on the boundary of H? (possibly)
with all corners on the boundary, and the images of F under I" which are adjacent to F
are a\F, a,F, ..., a,F,ai'F,..., a;'F, for some free generating set {a,---a,} of .
For instance, in the example in figure 1, F is the fundamental region of a 3-holed
sphere with 2 cusps and 1 infinite volume end.

Patterson [5] proves that any finitely generated group I' is of divergence type. By
[1] the presence of a cusp means the critical exponent 5(I') satisfies 3<8(I")=<1.
Equivalently to the divergence type condition, the geodesic flow
(UT (H?/T), {$.}, w,) is ergodic, where u, is the geodesic-flow invariant measure on
UT (H?/T) naturally corresponding to the (unique) I'-invariant conformal density v
of dimension §(I') on the limit set L of I' [8].
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FIGURE 1

We now describe a ‘subshift of finite type’ (Y, o) on an infinite set of symbols
XK =X ' =T such that (UT (H?*/D), {¢.}, u.) is measure-theoretically isomorphic to
the suspension under a positive (unbounded) function of a Gibbs o-invariant
probability measure (also denoted u,) on Y. o is defined on Y < %7 by o({x;}) =
{x:+1). Y is also invariant under 7, where 7({x;}) ={x_}}, and 7 o = .

The symbols of I are obtained as follows. Each cusp vertex Z; of F is fixed by a
unique (up to taking its inverse) parabolic element of I', which is a word of minimal
length n; in{a, - - as, ai'+--a;'}. Choose N >1 such that nN, i=1---r (if r is the
number of cusps on F). Let ¢, -¢,, ¢c1' *--c;' denote the parabolic elements of
length N fixing the cusps of F,and d;**-d,, d7' ---d;" the other words of length N.
Suppose a geodesic in H? passes successively through

gn'gn-1 - g1'F gn'gn1 - 82'F, ..., gN'F, F, aF, hihoF, ... hihs - - - hyF,
where g1+ gn, hy -+ hy are words of length N in{a, * - - a;, ail-ra;'}(so g # g,
h;#h7}). Then g;,l # hy;. Moreover, the geodesic has endpoints a Euclidean
distance apart bounded away from zero (in the disk model for H?) unless g; - - - N =
hy-++hny =c, where ¢ =¢; or c;!, some i=1,...,r. Then
a=U U {ctofdi-d,di’ -+ di"}

i=1 nez\{0}

Y ={{x;}e ¥%: xx;+, is admissible}
where admissibility is defined by the following: ¢f is admissible if and only if

(i) thelastelementof{a,- -a,,ai'--+a; }inthe word e is not the inverse of the

first element of the word f;
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(ii) if e =c%, some k, n, then f# ¢y, any m.

The realization of (UT (H>/T), {#.}, w.) as a suspension of (Y, o, w,) is as follows.
. -almost all geodesics in H %/T have a unique lift in H> passing through a bi-infinite
sequence of fundamental regions

Z1f23F, f2AF F, foF, fofiF, fofofoF, -+

where fic{ai--a;, ai' ~-*a;'} and fi #f;' foranyi.

These symbols - f_4, fo, f1- -+ can be uniquely grouped into words of length N in
{a1-+-as, a1’ -+ a;'}such that f, is the first element of its word. The symbols of one
of the new sequences {g;} come from {c;***¢,, ¢1'-+-¢; ' }u{di - d,, dit--d').
Now the symbols {g;} can be uniquely regrouped to give a bi-infinite sequence of
elements of 7. The set of sequences thus obtained is residual in Y and, of course, has
full u,-measure in Y. See also Series [7].

The measure w, on Y is Gibbs in the sense of [6]. The proof is the same as in [6],
using the fact stated here that if a geodesic passes successively through ¢ 'F, F, fF,
where, in the regrouping, ¢ is the last symbol of a word of % and f the first symbol of
another word of J, then the endpoints are a Euclidean distance apart bounded away
from zero. Also lemma 2 is used to show finiteness of the measure i, on Y (and also
something more, to be used later). Since u, is Gibbs, it has a very good approxima-
tion by Markov measures and the same general method as [6] might work.

LEMMA 2. There exists a constant b; >0 such that

uolletD =1 ,28(1+0( ),

In|

where v is a T-invariant conformal density of dimension 8-on Ly (i.e. dy,v(£€)/dv =
l¥'(£)I°, £€ Lr, where yyv(f)=v(foy™") and [c]]1={{x;}e Y:xo=c/}.
Proof. Y can be identified measure-theoretically with the set of (£, n)e Lr X Lr for
which the geodesic from £ to n passes through the interior of F,and then u, identifies
with the measure dv(£) dv(n)/|é~n/|*® on this subset of Lyx Ly, with » suitably
normalized [8]. [¢]'] then identifies with U x ¢} ™'V as shown, for n =1, in figure 2.
(The case n < —1 is similar. Recall that ¢;F is the N'th region round the cusp from F,
so not next to F, since N>1.)

U is bounded away from | ¢} V. Let o be the fixed point of ¢;. The maximum

n=0
distance between 7o and ¢} V (Euclidean distance for the disk) is O(1/ n?) (since this
is the size of the derivative of ¢} over most of S*). So
_ Av(cf'V
) [ 20| vl V)
v € —mnol

n
(some A). Since v is a conformal density,
Ve V) = [ xvlei ™0 dv©) = [ xv @It YO dv®.

Let x be a conformal map of the disk to the upper half plane, mapping c; to a
parabolic transformation fixing 0, and V to the interval [1, 2]< R, and let »; be the

o ([c?D—wlc?
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FIGURE 2

measure on Ru {o0} given by v1(f) =v(f°x). Then
g(x)
———=d
, Tratn-Dx® @)
for some a >0 and some smooth positive function g. Then

1 1qr?
vicl” V)=;l—2;{ L (%—%dul(xnou/n)}

vl V)=

as required.

213

a

Given the symbolic dynamics, we can now reformulate theorem 1, using the notation

of theorem 1. The proof of (1) of theorem 3 is as in §§1, 2 of [6].

THEOREM 3. (1) Let Si, =Y {u.([eo* - ex—1]): e;€ K, [eo - ex—1]= Y and #, and

eoerrex_1€ly ie. 0+ ) eger: - ex_1) =0} where
=T and Jeo ex-1]={xi}eY:x;=¢;, 0=<i<k-—-1}.

Then (UT (H?/T1),{#.}, u.) is ergodic if and only if ¥ Sk =00, where w, is the
k=1

unique measure on UT (H?/T'y) such that local inverses of the natural projection onto
(UT (H?/T), ) are measure-preserving. Equivalently, Ty is of divergence type if and

onlyif ¥ S, =c0.
k=1
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(2) There exist constants A, B >0 such that
B

=S, +8i+1 S_——kv.-/%s“l)** v

k-;,.(2.s—1)+;v2
where 6 = 8().

Note. Since theorem 3 implies Sy +Sis1=c Y exp{-6(x, yx)} for some
yeA =T

= o]
constant ¢ >0, and I'; = | A, a disjoint union with A, ={y: (x, yx) =dk}, some
k=1

constant d (essentially the same proof as 1.10 of [6]), 6(T";) =& = 6(I).
The proof of theorem 3. In modifying the proof of 4.7 in [6] to prove theorem 3, we
have first to recall some notation, and define some new notation.
Notation. (1) Let ¢,, denote the set of non-empty m-cylinders [eo* - en,—1] Of Y,
where

[eo: rem_1]={xi}eY:xi=¢, 0=i=m—1}
for e; € X. &, can be regarded as a subset of I" (by multiplying the symbols) so the
homomorphisms 0, ¢ are defined on ¢,,,

0P b: e, > é% (0.')@2.% (d:).

(2) W,, is arow vector, A,, (0, ¢) is a matrix, V,,(0, ¢) is a column vector, rows and

columns are indexed by &,y,.
W..(e)=1 forallcee,,,

Vo (0, d)e) = u,(c) exp {i(0+ d)(c)},
—expli [mlaend)
An(®, $)(c, d) = exp i@+ $)cn 1)} { ~ }

fore=[co*** Cm-1].
(3) | lli is a norm on column vectors with | Vil =X | Vi| if V =(V)), and also on

thatrices with [|Al; =sup ¥ |a,| if A =(a;).
J i

Note that ” Vm (0, d’)"l’ ”Am(oa ¢)”1 = 1
(4) For any ¢, and 0 # 0 (regarded as real variables now), and 3 < § < 1, define, for
a column vector-valued function V (0, ),

lollzs—l I +1001|28—1

|01 log 64]+- - +|0,,l log 0,,1|

and similarly for a matrix-valued function A (0, ¢).

(Vll1.0.6.5= if §<1,

if §=1,

The first stage in proving (2) of theorem 3, proposition 4, is proved as 3.3 of [6]:

PROPOSITION 4. For any fixed t, u, if m®* <k <m",

2 —m m
Si+ Sk == Wi (A (0, d)"V,.(0,d) d0dd+O(n™),
2m)° J—1/miaym P

some n<1.
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For the next stage, the following analogue of 4.2 of [6] is needed:
PROPOSITION 5. Let F: R X R X C X C*™ - €C* X C be defined by
(A-AnO@+d))(n+y)

2 y(o) ,

ccepm,

F@®,,),y)=

vwhere y=(y(c)) and p=(u,(c)), s0 m=V,(0). Then there exist C° functions
Am(0, &), ¥(8, &) defined for 160]<C/m¥**™P or (if §=1) C/(m*logm), and
|¢:| <= C/m?, with F(8, &, A (0, &), (8, &) =0. Moreover, A, y are C* in &, and
Am "
(1) o
A
Dk( m)
*\y
for constants di, n,. Moreover, if the sequence (2’,") is defined inductively by
(A?..(o, <b)) _ (1)
y’©@, )/ \0/’
(x::’(o, B _(n0. 8
Y0, 4)  \y@®, )

1))

|28—1

=dim™
1,0.4,6

)~ (DFpy) " F (0,6, 1Y),
then

< dm4(|0|28—1 gt |0Vl|28—1)
1,6,0,5
for a constant d, where|0; is replaced by |6; log 0;| if 6 = 1.

Similar results hold for extending the eigenvalue 1, and eigenvector W,, of
(Am(0))7, with | |l norms, by exactly dual methods.

In order to prove proposition 5, we need the following lemma and its corollary:

LEMMA 6.
o : -1
> lxp o)1l _ 4 gpo-1 pics<r

n=1

=Al|6logd| ifé=1.
Proof. For any ¢ >0, if [|¢/6]] denotes the integral part of |e/6)],

© i -1 (le/01] 0
y lexp (";g) l_<_4|0| 5 =240 5 n28
n=1 n n=1 le/0l1+1
< A4|0]-|61° 2+ A,60P° " it s<1
=<A,|6]|log 8] +A,l6] if6=1. O

COROLLARY 7.
" Vin ” 1,0,b,6=Bm

IDsA N1 0.05<Ar (k=0)
for some constants B, A;.
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Proof. This follows from lemmas 2, 6, and also the following property of a Gibbs
measure (see [6], 1.7.2) for the bound on | Vi||1.0.4.5:

Mv([eO e ep—l])SD#'v([eO ce er—l])#v([er ce ep—l])1

some constant D, any r. O
Proof of proposition 5. As in (4.2) of [6],

p+y A —Am>

DF”=( 0 1---1

As in (3.2) of [6],
I - A (0,0) V] = (D' /m)| VI,
some D', if ¥ V(c)=0, and hence (using corollary 7)

I(DF10) li=Dm if |6:|=c/m"?*™",  |¢:i|=c/m for 6<1,
l6l=c/(mlogm), |¢l=c/m if6=1,
for some constants D, ¢. Hence, for (0, &) in this set U say, DF,: .- is invertible if
AL —1|, I¥'l.=1/(2Dm), and then |(DF,.:y) 'h=2Dm, so that A,;', y*' are
defined.
Fix a set %; < %, and let

go= sup [F(0,d,A% YOl (recall A%, y%)=(1,0))
0,b)cU,

= sup |(I—An(®, db)pl:.
(0,d)e U,

So from corollary 7, by suitable choice of %, o can be made arbitrarily small. As
in (4.2) of [6], we have inductively that:

sup [IF(@, &, AL, y)lh =@2Dm)” e’
(0.4)e,
A=Ant
r r—1
y -y
So by suitable choice of %; (in fact, the choice indicated in the statement of the
proposition) we may assume that A}, y’ exist for all r, |A}, — 1| |ly'], = 1/(2Dm), and

r

Am . Am .
the sequence ( ,) converges uniformly to (y) which  solves
y

F(0, d” Am(oa ¢)1 Y(e, ¢)) = 0-
Kk (Am
The bound on Dd,( y )|

Da (') = (DF.) " (DoAAn(®, &)1+, @

sup
CROELS

1 <(2Dmeo)” . (1)

then follows from the repeated differentiation of
1

using corollary 7 and the bound |(DF,,.,) ' =2Dm.
It remains to compute || ||1,0.4,5-Seminorms. First,

+Anll10.6.5
1,0,4.,8

A
\DF anyll1ee.5= "( y )
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r+1

Hence, from the definition of (y'”)

" r+1 A:n)
r+l
-y

<2Dm|IF A Y N1.0.6.5 +NDFasy) " 1.0.6.6lF A ms ¥

1,8,4,5

<2Dm|F(A r, ¥ ) 1.0,6.5

r

A m r r
( r) +||Am||1,e,¢,s) F (A 7y ¥ (3)
y 1,0,b.5

Since F is quadratic in A, y, the Taylor expansion of
A\ (A=At
A 5)
y y-—-y

is particularly simple, and we obtain

+ (2Dm)2(

"F(Afn,y')lll 0.b.5
=CIDF ;1) FARL Y Mhews IDF- -0 FALT, Y Dk

(AI,. —AI,.“)
r r—1
y-—y

Substituting from (1) and (4), (3) becomes

IFAL"y Dl 4)
1,8,0.6

= sz

A r+1 A
Y-y liows
1 AL, A =Aot
< Csm(2Dme,)? (”Am”l.e,«b,s +||( ,) + ‘( Y ) ) (5)
Y 'Me4.8 y -y 1,8,.5
Inductively we can prove:
A ::1 =A :n 3 2r-1 .
( A ) <Com’(2Dmeo " if r=1, ©6)
Yy -y 1,0,4.5

provided that
1

Am
(37)
This can be arranged for C, large enough, and g0 = C/ m?, C small enough, since

(@) |Anll10.4.5 is bounded, by corollary 7;

+2 ¥ Cam>2Dmeo)” =(Cs/C3)m>.

1,0,4,5 r=0

lAnl16.6.5+

AL =2
ey

<2Dm||F(---1,0)||1 6.6.5 + (2Dm)2”DF1,ol|1,o,¢,6"(1—Am (0, d)ullx

1,0.4,5

=|(DF1,0) 'F(--- 1, 0) 1,065

1,8,4.5

®) “(Ayi

=Csm?, by corollar'y 7.
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The bound on|A,, — A 1]|1.6.0.s follows from (6) since, by corollary 7, and the definition
of g, if U; ={(0",0):16;|=|6;]} then

co=Cs(|0/° 1 +--- 46, ]*7") ifs<1
£0=Cs(|0:10g 6]+ - -+]6,, log8,]) ifs=1.

Am m
o3(;) o3(;)
y y

Proposition 5 is used to prove the following corollaries:

As for follow from differentiating (2).

1,0,6,6
O

, the bounds on
1

COROLLARY 8 (analogue of (4.4) of [6]). For any sufficiently large t, independent of m,
if m81+3 < k < mn’

Sk +Sk1=2(1+0(1/m)) = (Am(0, ) " d0 db

=

(2 ) [-1/m‘1/m*]®
+0(n™), some n<l1.
Proof. Exactly as in (4.4) of [6], using the decomposition, for 0, ¢ near 0,
R~ =Im P,,(0, &)@ Ker P,,(0, ¢), where A,.(0, d) has eigenvalue A, (0, P) on
Im P,,(0, d), and [|(A,.(8, d))" "1 <B <1 on the A,.(0, d)-invariant subspace
Ker P,.(0, d), some s, 8 independent of m ((3.2) of [6] is used here). The Holder
continuity of A,,,, P, at 0 established in proposition 5 (the dual results of proposition 5
for A are needed to prove Holder continuity of P,,) are enough for the proof. O
Note. As in (4.1) of [6], A,.(0, &) is real, so the first ¢p-derivatives of A,, vanish at
(0, $)=(0,0).

COROLLARY 9 (immediate from proposition 5).

Am(®, ) =4 1.(8, 0)+3(hs - o) (ZQ, a(;,)) ( ¢v2)

+Om*(6 o 4+ |001|28-1)2)+0<z mn1l0i|28_1|¢f|>
i
+0(L mla | ) + O(L m™lgF)
ij j
with |6,[**~" replaced by |6;||log 6;] if 6 =1.
Note. The aim is to show A (0, 0)=1—0(|6;

(4.6) of [6], (¢1°** du,) (Z(: af,))(fi

can reduce to the case of a finite symbol space by putting @ = 0 and replacing {c }. >0,
{ci"}n<o by single symbols). It is then not hard to see that A 10, 0)+

Loy (EAm(O)
ey ¢.,2)( ey

|6; log ;] terms when & = 1).
Calculation of A ! (8, 0). By definition,
A6, 0)=1-(DF,.0(6,0) ™ (

'28—1 |25—1

+:+++|6,,*°7"). For exactly as in

) is boundedly negative definite of rank v, (we

)( ::1) is the dominating part of A,,(0,d) (in spite of the
v2

(I—-An®, 0))#)
0 .
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1---1
B (6, d)

(i -+ p) (a matrix with rows and columns indexed by ¢,.), then

B (8, 0)I ~An(0, d)) =~ An(0,d))B.(8,d)=1-M

0 .
It can be checked that (DFl,.,)_1 is of the form ( M> , where, if M =

= projection on {(y(c)): Y ylo)= 0} along sp ().

CEEm

(B (0, &) does exist, since by § 3 of [6]]|A.. (0, 0)|; <1 on Im (I — M), hence also for
nearby (0, d).) So

An(0,0)=1—(1:-1)(I—-A.(0,0)n
i E »({ci]) cos nB(c;)

i=1n=1

(using the fact that w,({c; D =w.([c: " D).
Hence, from lemma 2,

Am(8,0)=2 Z b; Z 2s cos n8(c;)+O(|8(c)| +- - - +18(c,)),

since any cosine series with nth term O(1/n%°*")(6 >3) is C' with first derivative at 0
vanishing.
Lemma 10. If

® cos né

f0)= £ 5%, f0)= T —5(1~CloP*+0(o[* ™)

n=1

for some constant C >0 (6 > .
Proof. This is standard complex analysis. Since, clearly, f(8) = f(—8), we need only
consider the expansion for 8 > 0. If
1 cos (m—8)z

=f=< =lim — | ———4d
0=6=2m  f(6)= N 2 Psinmz
where vy is the contour shown in figure 3. In the limit as N - 0o, the integral vanishes
except on the imaginary axis and half-circle. If § = 1, the imaginary axis integral also
cancels out, and the integral around the half-circle, which is a C*® function, has
derivative —37 at 0. If 1< o<1,

1
f(6) = g(8)—sin 7 ___e:;pﬁ?_) y, where g is C*.

But

*®1—exp (~yd - 1
I x;;£ y0) dy = 6% J' —M dy by change of variable. [
) (V]

Completion of the proof of theorem 3. It has now been proved that

8°Am(0)

_ _°° . y|28-1,1
An(®, &) =1~ T ail6(e)*" +3(e1 - ""’2)(a¢, acb;

)( ) + higher order terms,
.
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N +3+Ni
1\
3i
i N+1}
—}i
~Ni N +4—Ni
FIGURE 3

A (P Am (0)\ ( b1 :
for constants a; >0, where —3(¢p; * * - ¢,,2)(——)( ) converges geometrically
0 0;/ \ b,

fast to a function G(é1 - - - ¢,,), where G is boundedly positive definite (from [6],
(4.6)). So from corollary 8,

Sk + Sk = ﬁ(l + O(%)) I{—l/m',l/m‘]" (exp {—(k ~m) (iél a,-lO(c,~)|2a_1)

+G(¢1 - - - ¢,,) +higher order terms}) dodd+0(n™), somen<l.

Change of variable then gives

Sk +Sk+1~

ke~ (01/@8-1rdoy) J'
13

oo cexp{=( £ ailor

+G(@1 )} d0 dd
and theorem 3 is proved.
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