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Abstract. Let F be a finitely generated discrete subgroup of the isometries of the
hyperbolic plane H2 with at least one parabolic element. We prove that, if Fi is a
subgroup of F with F/Fi abelian, the 'critical exponent' of Fi is the same as that of F.
We give necessary and sufficient conditions - in terms of the rank of F/Fi, the critical
exponent of F, and the image of parabolic elements of F in F/Fi - for the Poincare
series of Fi to diverge at the critical exponent.

Introduction
The aim of this paper is to determine when a subgroup Fi of a finitely generated
discrete group of isometries F of 2-dimensional hyperbolic space H2, with F! -o F,
F/Fi abelian, is of divergence type [8], i.e. whether or not the series

X exp{-a(x,yx)}

diverges at a = S(Fi), for S(Fi) the supremum of the a for which the series diverges,
where x e H2 is any fixed point and (x, yx) denotes hyperbolic distance between x
and yx. Equivalently (for S(Ti) > \), we wish to determine whether the geodesic flow
{</>,} on the unit tangent bundle UT (H2/Yi) of H2/Yi is ergodic with respect to
certain natural measures [8]. We restrict our discussion to the case of H2/Y having
cusps. The case of H2/Y without cusps was dealt with in [6].

Recently, Lyons & McKean [2] proved that, if F is the fundamental group of the
thrice-punctured sphere, and Fi is the commutator subgroup of F, then hyperbolic
Brownian motion on H2/Y\ is not recurrent, and that Fi is not of divergence type
(equivalent conditions by [8]) (see also [3]). This is the sort of example we have in
mind. However, we do not restrict the critical exponent of Fi to be 1 (as in the cited
example). The main results are summarized in theorem 1.

THEOREM 1. Let F be a discrete finitely generated group of isometries of H2. Let
Fi<3F, Y/Y^T, and let 0: F > T\ <t>: F >Z"2 (v = Vi + v2) be two

onto onto

homomorphisms with Fi = Ker (9©<|>), where, ifxf-xr are parabolic elements of F
corresponding to the r cusps of H2/Y {x\ • • • xr are unique up to taking inverses, and
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210 M. Rees

conjugation), then <J>(x,) = 0 for all i, and (9(*i),. . . , 6(xr)) is syndetic in Z"1. {Clearly
any homomorphism onto Z" can be put in the form 0©<f>.) Then 5(F) = 5(Fi) = 8, say.

If 8 < 1, Fi is of divergence type if and only if vi = 0 and v2 ̂  2. / / 8 = 1, Fi is of
divergence type if and only if either vi ̂  1 and vz = 0, or v\ = 0 and v2 ̂  2.

The proof uses symbolic dynamics and the same general method, with
modification, as in [6]. Because there is no developed theory of symbolic dynamics
for cusped manifolds in higher dimensions, the methods only work in dimension 2.
However, as in [6], the results can be extended to 'finitely determined sub-abelian'
subgroups of F. We do not give the details here (nor the definitions) - the analogue
with § 5 of [6] is fairly exact. But, for example, if H2/Y is a 1-cusped surface of genus

K

g > 1, with «i • • • ag, bi • • • bg the free generators of F and Y[ [a*. b{\ representing

the cusp, where [a,, bi] = atbia71b71, and if

Fi = {words in {ah bt, ai1, bj1; i = 1,..., g}:sum of ai-powers
= sum of b i -powers = 0},

so that

^=U{a,,ft,,ar1,*r1}u U (aTb1aimbr, biaTbrax"1}
1=2 m,neZ\{0}

is a set of free generators and inverses of generators of Fi, and if

F2 = {words in the elements of ?F: sum of [a\, £i]-powers = 0},

then the generalized theorem 1 gives F2 is of divergence type with 8(T) = 5(F2) = 1.

Formulation of the symbolic dynamics
In some ways, the presence of a cusp on H2/T actually makes things easier.
Throughout this paper, we assume without loss of generality that no y e F fixes any
points of H2, so that H2/T is a manifold with F as its fundamental group. Since we
assume H2/Y has at least one cusp, H2/T is topologically either a fc-holed sphere
(k > 3) or a &-holed surface of genus > 1 (k > 1). So F must be a free group, and H2/T
has a geodesic triangulation - i.e. the edges of the triangulation are geodesies - with
vertices only at the holes. (Note that, besides one or more cusps, some of the 'holes'
may be ends of infinite volume.) The point of this is that H2IT has a fundamental
region F on H2, bounded by geodesic arcs and arcs on the boundary of H2 (possibly)
with all corners on the boundary, and the images of F under F which are adjacent to F
are a\F, a2F,..., asF, a^F,..., aJ1F, for some free generating set {ax • • • as} of F.
For instance, in the example in figure 1, F is the fundamental region of a 3-holed
sphere with 2 cusps and 1 infinite volume end.

Patterson [5] proves that any finitely generated group F is of divergence type. By
[1] the presence of a cusp means the critical exponent 5(F) satisfies |<5 (F )<1 .
Equivalently to the divergence type condition, the geodesic flow
(UT {H2/Y), {<j>,}, (!.„) is ergodic, where /*„ is the geodesic-flow invariant measure on
UT (H2/F) naturally corresponding to the (unique) F-invariant conformal density v
of dimension 8(T) on the limit set Lr of F [8].
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FIGURE 1

We now describe a 'subshift of finite type' (Y, a) on an infinite set of symbols
% = X~l c r such that (UT (H2/T), {</>,}, (iv) is measure-theoretically isomorphic to
the suspension under a positive (unbounded) function of a Gibbs a-invariant
probability measure (also denoted /*„) on Y. a is defined on FsJif2 by a-({xt}) =
{xi+i}. Y is also invariant under T, where T({JC,}) = {*!,*}, and T* ju.,, = ixv.

The symbols of X are obtained as follows. Each cusp vertex Z, of F is fixed by a
unique (up to taking its inverse) parabolic element of Y, which is a word of minimal
length «, in {a\ • • • as, a\x • • • aj1}. Choose N> 1 such that n(\N, i = 1 • • • r (if r is the
number of cusps on F). Let ci• • • cr, cT1 •••c71 denote the parabolic elements of
length N fixing the cusps of F, and d\ • • • dt, di1 • • • d~t

x the other words of length N.
Suppose a geodesic in H2 passes successively through

g ^ g j v - i • • • g^F, gjv^AT-i • • • gi 1F, . . . , gJ^F, F, hiF, hih2F, . . . , h\h2 • • • hsF,

where gi • • • gN, hx • • • hN are words of length N in {a\ • • • as, a T1 • • • aj1} (so g,,^ gi+i,
hi^hj+i). Then gif&hi. Moreover, the geodesic has endpoints a Euclidean
distance apart bounded away from zero (in the disk model for H2) unless gi • • • gN =
hi • • • hN = c, where c = c, or cT1, some / = 1 , . . . , r. Then

5 s r = U U { c 7 } u t f i • • • < / „ d S - ' - d T 1 }

y = {{*,}€ Xz: X,JC,+I is admissible}

where admissibility is defined by the following: ef is admissible if and only if
(i) the last element of {a i • • • as, a \l • • • a 7 *} in the word e is not the inverse of the

first element of the word / ;
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(ii) if e = c||, some it, n, then / ^ cJT, any m.
The realization of (UT (H2/Y), {<£,}, /*„) as a suspension of (Y, a, ixv) is as follows.

/*„ -almost all geodesies in H2/Y have a unique lift in / / 2 passing through a bi-infinite
sequence of fundamental regions

• • • fZ\fZlF, fl\F, F, f0F, fofrF, fofifzF • • •

where ft^{a\- • -as, a!1 • ••a71} and fi+i^fi1 for any i.

These symbols •••f-ufo,f\'" can be uniquely grouped into words of length N in
{ai- • • as, al"1 •• • a71} such that/0 is the first element of its word. The symbols of one
of the new sequences {g,} come from {ci • • • cr, cT1 • • • c^^u i^ i • • • d,, d\l • • • di1}.
Now the symbols {g,} can be uniquely regrouped to give a bi-infinite sequence of
elements of 3C. The set of sequences thus obtained is residual in Y and, of course, has
full /*„ -measure in Y. See also Series [7].

The measure /nv on Y is Gibbs in the sense of [6]. The proof is the same as in [6],
using the fact stated here that if a geodesic .passes successively through e~1F, F, fF,
where, in the regrouping, e is the last symbol of a word of 3C and / the first symbol of
another word of 3tC, then the endpoints are a Euclidean distance apart bounded away
from zero. Also lemma 2 is used to show finiteness of the measure fiv on Y (and also
something more, to be used later). Since /*„ is Gibbs, it has a very good approxima-
tion by Markov measures and the same general method as [6] might work.

LEMMA 2. There exists a constant b{ > 0 such that

where v is a Y'-invariant conformal density of dimension S-on Lp (i.e. dy^y(^)l dv =
\y'(t)\s, £eLr, where yMf) = HM'1)) and [cH = {{*,-} e Y:xo = d}.
Proof. Y can be identified measure-theoretically with the set of (£, Tj)eLrxLr for
which the geodesic from $ to 17 passes through the interior of F,<and then fiv identifies
with the measure dv(g) dv(rj)/\£;-r]\2s on this subset of LrxLr, with v suitably
normalized [8]. [ci1] then identifies with U x c"~l V as shown, for n > 1, in figure 2.
(The case n < - 1 is similar. Recall that cF is the Nth region round the cusp from F,
so not next to F, since N> 1.)

U is bounded away from U c" V. Let TJ0 be the fixed point of c,. The maximum

distance between r\0 and c"V (Euclidean distance for the disk) is O(l/n2) (since this
is the size of the derivative of c" over most of S1). So

(some A). Since v is a conformal density,

n- l f -<n-l) f

n2

Let x be a conformal map of the disk to the upper half plane, mapping c\ to a
parabolic transformation fixing 0, and V to the interval [1, 2]cR, and let v\ be the
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Uc?V

measure on Ru{oo} given by v\(f) = v(f°x). Then

g(x)
v(crlv)= Ji (l + a(n-l)x)2s

for some a > 0 and some smooth positive function g. Then

as required. •
Given the symbolic dynamics, we can now reformulate theorem 1, using the notation
of theorem 1. The proof of (1) of theorem 3 is as in §§1, 2 of [6].

THEOREM 3. (1) Let Sk =X{/*,.(|>o-- -ek-i\: ei&3C,
eoei• • • ek-ieTi i.e. (0 + <J>)(eoei•••ek-i) = 0} where

T ! < r and [eo---ek-i] = {{x,}eY:x,

fc-i]s Yand 5*0, and

oo

Then (UT (H2/Yi), {<p,}, fxv) is ergodic if and only if £ Sk = °°, where ixv is the
k = l

unique measure on UT {H2/Y\) such that local inverses of the natural projection onto
(UT (H2/T), fj.u) are measure-preserving. Equivalently, Fi is of divergence type if and

oo

only if £ Sk= oo.
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(2) There exist constants A, B > 0 such that
A

where S = 5(F).

Note. Since theorem 3 implies Sk+Sk+i>c £ exp{-S(x,yx)} for some

constant c >0, and Fi = U -̂ fc a disjoint union with Ak s{y: (x, •yx)>dfc}, some

constant rf (essentially the same proof as 1.10 of [6]), 5(Fi) = S = S(F).

The proof of theorem 3. In modifying the proof of 4.7 in [6] to prove theorem 3, we
have first to recall some notation, and define some new notation.

Notation. (1) Let em denote the set of non-empty m-cylinders [e0- • • em-i] of Y,
where

[e0• • • em-i\ = {{*,}e Y: x,, = c,, 0< / < m -1}

for et e 3C. em can be regarded as a subset of F (by multiplying the symbols) so the
homomorphisms 6, <t> are defined on em,

1 = 1 1 = 1

(2) Wm is a row vector, Am (8, <J>) is a matrix, Vm (8, <J>) is a column vector, rows and
columns are indexed by em.

Wm(c) = l forallceem,

Vm(8, «|>)(c) = Mv(c) exp {/(8 + <!>)(c)},

d) = exp {/( ( / ' ( 0 "

(3) || ||i is a norm on column vectors with || V\\t = X | Vt\ if V = (V)), and also on
i

matrices with ||A||i = sup X |a,,| if A = (a,7).

Note that || Vm(e, 4>)l|i, l|Am(8, $)\\x = 1.
(4) For any <f», and 8 # 0 (regarded as real variables now), and \ < S :£ 1, define, for

a column vector-valued function V(B, <}>),

tf
|^i log ^ | + . •• + !<?„, log tfOI|

and similarly for a matrix-valued function A (8, <f>).

The first stage in proving (2) of theorem 3, proposition 4, is proved as 3.3 of [6]:

PROPOSITION 4. For any fixed t, u, ifm8l+3<k<m",

Sk+Sk+1 = -^— f Wm(Am(Q,<!>)k-mVm
\LTr) J[-l/m',l/m'T

some TJ < 1.
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For the next stage, the following analogue of 4.2 of [6] is needed:

PROPOSITION 5. Let F: Wl x R ^ x C x Cm -»C' -xC be defined by

I y(c)

where y = (y(c)) and |A = (JLII/(C)), SO |i.= Vm(O). Then there exist C° functions
Am(6,<|>), y(8,<|>) defined for M s C / m 2 7 ' 2 8 ^ or {if 8 = 1) C/(m2 log m), and
\<t>i\ s C/m2, with F(6, <}>, Am(0, <|>), y(9, <J>)) = 0. Moreover, Am, y are C°° in <J>, and

i.e,*,s

for constants dk, «*. Moreover, if the sequence I T) is defined inductively by

^,(e,«|>)\/1\
y°(e,«l>)/ \o)'

then

l ( A m
ii v y

/or a constant d, where\Qi^s~x is replaced by |0, log 0t\ if 8 = 1.
Similar results hold for extending the eigenvalue 1, and eigenvector Wm, of

(Am(0))T, with || ||oo norms, by exactly dual methods.

In order to prove proposition 5, we need the following lemma and its corollary:

LEMMA 6.

Proof. For any e > 0 , if [\e/d\] denotes the integral part of \e/6\,

sA1\e\-\e\2S~2+A2\e\2S-1

sAx|(9| |log6»|+A2|<9| if 5 = 1. •
COROLLARY 7.

(4 20)

/or some constants B, A&.
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Proof. This follows from lemmas 2, 6, and also the following property of a Gibbs
measure (see [6], 1.7.2) for the bound on HVmllLe,*̂ :

some constant D, any r. •

Proof of proposition 5. As in (4.2) of [6],

As in (3.2) of [6],

some D1, if X V^c) = 0, and hence (using corollary 7)

if Iftlsc/m17'25-1', |<£,|<c/m for S < 1 ,

|6>,| <c/(m log m), |<fc|«=c/m if 5 = 1,

for some constants D, c. Hence, for (0, <|>) in this set °U say, DF^y is invertible if
|Ar

m-l|, ||yr||1<l/(2£>m), and then \\(DF^yT%<2Dm, so that A £ \ yr+1 are
denned.

Fix a set Id c % and let

eo= sup ||F(e,«J>,ALy°)l|i (recall (X°m,y°) = (1,0))

= sup ||(/-AM(e,«|»))|i||i.

So from corollary 7, by suitable choice of °U,\, e0 can be made arbitrarily small. As
in (4.2) of [6], we have inductively that:

I . r _ . r - l i ,

7 r-i ^(2Dmeo) ' • (1)
..., y —y Hi

So by suitable choice of %i (in fact, the choice indicated in the statement of the
proposition) we may assume that A^, yr exist for all r, \\r

m-1| ||yr||i s l/(2Dm), and

the sequence ( 7) converges uniformly to I m) which solves

F(0,«J>,Am(0,<|>),y(e,<|))) = 0.

The bound on Z?i I m) then follows from the repeated differentiation of
II Vy^lli

(2)

using corollary 7 and the bound ||(r>FAm,y)~
1||i s 2Dm.

It remains to compute || ||1>e,*,5-seminorms. First,

,e,<)..s
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Hence, from the definition of ( r + 1 ) ,

A r + 1 - A r

yr + 1-yr

<2Dm\\F(\r
m, yr)lke,*,S

<2£>m||F(Am,yr)||i,e>,8

: ) | | | m | | , e , < ( > > s ) | | ( ^ y ) | | 1 (3)
y /ll '

Since F is quadratic in A, y, the Taylor expansion of

is particularly simple, and we obtain

: ^ ) ! \\F(X'-\y-%. (4)
y - y /iii,e,*,s

Substituting from (1) and (4), (3) becomes

Inductively we can prove:

|(A^1x~Ar)|| s c 4 m 3 (2 f lme o r i f r a l , (6)
IW -y /"i,e,*,«

provided that

r ) | +2 I C4m3(2Dmeo)2'£(C4/C3)m2.

This can be arranged for C4 large enough, and e0 = C/m2, C small enough, since
(a) ||Am||1>e,«i,,s is bounded, by corollary 7;

i,e,*,«

, by corollary 7.
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The bound on ||Am — A l
m|| i.e.o.s follows from (6) since, by corollary 7, and the definition

of eo, if %i = {(81, 0): \$j\^10,|} then

6(\dl\
2s-1 + --- + \dvl\

2s-1) if 5 < 1

« o ^ C6( |«i log 6t\ + --' + \6V1 log 0 j ) if 5 = 1.

A s for £>£( m ) , the bounds on £>*( m ) follow from differentiating (2).
II \ y 'Hi II V y /Ili.e,*,*

n
Proposition 5 is used to prove the following corollaries:

COROLLARY 8 (analogue of (4.4) of [6]). For any sufficiently large t, independent of m,

ir) J[-(2ir)

+ O(i7m), some 17 < 1 .

Proof. Exactly as in (4.4) of [6], using the decomposition, for 0, «j> near 0,
Re m=ImPm(0, «j>)©KerPm(8, <|>), where Am(8, <|>) has eigenvalue Am(0, <J>) on
ImPm(e,4»), and ||(Am(8, <f>))m+s||i</3<l on the Am(8, <j>)-invariant subspace
Ker Pm(8, «J>), some s, ft independent of m ((3.2) of [6] is used here). The Holder
continuity of Am, Pm at 0 established in proposition 5 (the dual results of proposition 5
for A £ are needed to prove Holder continuity of Pm) are enough for the proof. •

Note. As in (4.1) of [6], Am(8, <f>) is real, so the first ^-derivatives of Am vanish at

(e,«w = (o,o).
COROLLARY 9 (immediate from proposition 5).

Pi d(f>j

+ • • • + I^J28-1)2) + O ( l
^ i.i

with Kl28"1 replaced by \e\ |log dt\ if 8 = 1.

Note. The aim is to show Ai,(8,0) = 1 - Ofltfil28"1 + • • • + \dVl\
2s~1). For exactly as in

(4.6) of [6], (<J>i • • • (fivj ( — - — ) I : ) is boundedly negative definite of rank v2 (we
\d(f>i d^jiy^vj

can reduce to the case of a finite symbol space by putting 8 = 0 and replacing {c?}n>0,
{cT"}n<o by single symbols). It is then not hard to see that Ai,(8,0) +

\(<f>i---<t>v2){—=^V ) is the dominating part of Am(8,<|>) (in spite of the
\d<f>i dqfj/XipvJ

\dt log 0,| terms when 5 = 1).

Calculation of \i,(B, 0). By definition,

AL(,,»)-i-(DF,.(e>o»rf'-4"o*
O))1').
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I t c a n b e c h e c k e d t h a t ( D F i o ) " 1 is of t h e f o r m ( „ , . , . ) , w h e r e , if M =
\om (B,<|>) | i /

(p. • • • ft) (a matrix with rows and columns indexed by em), then

Bm (8, 4>)(/ - Am (8, 4>)) = (/ - Am (8, <J>))Sm (8, 4>) = / - M
= projection on I (y (c)): £ y (c) = 01 along sp (it.).

(Bm{0, <|>) does exist, since by § 3 of [6] \\Am (8,0)||i < 1 on Im (I-M), hence also for
nearby (8, 40.) So

= 2 1 1 fiA[c?]) cos nQ(d)

(using the fact that »Ac?D = nAcT"])).
Hence, from lemma 2,

A 1.(8,0) = 2 I b, I 4?cosn8(C l) + O(|8(c1)| + --- + 18(^)1),
i = l n = l n

since any cosine series with nth term O(l/n2s+1)(8 >\) is C1 with first derivative at 0
vanishing.

LEMMA 10. / /

n=i n M = i «

/orsome constant C>0 (5> \) .

Proof. This is standard complex analysis. Since, clearly, f(6)=f{—6), we need only
consider the expansion for 6 > 0. If

2j JyA, Z Sin 7T2
yA,

where yN is the contour shown in figure 3. In the limit as N -* oo, the integral vanishes
except on the imaginary axis and half-circle. If 8 = 1, the imaginary axis integral also
cancels out, and the integral around the half-circle, which is a C°° function, has
derivative -\ir at 0. If | < 8< 1,

= g(e)-sinn8\ 1~eXp
2t

y6) dy, where g is C°°.
Jo y

But

f l -exp(-yf l ) 26_! f ° ° l - e x p ( - y )
I ^2s ay = 0 | ^2« dy by change of variable. •y Jo y

Completion of the proof of theorem 3. It has now been proved that

Am(0, 4>) =1- Z ^(c,)!25-1 +£(*i • • • ̂ C-n^il1) + h i 8 h e r order terms,
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- A r t

N+i + Ni

N + i-Ni
FIGURE 3

for constants a , > 0 , where -|(<£i • • • <f>V2)(
 m • )( * ) converges geometrically

• • ̂ uj), where G is boundedly positive definite (from [6],fast to a function
(4.6)). So from corollary 8,

-)) f (expl-(*~m)(i fl,!*^)!2'-1)
m// J[-l/mM/m']» V I \i = l /

), some 17 < 1 .0U2) +higher order terms I j

Change of variable then gives

Sk + Sk+1 ^ k-1 '* [ exp j - ( Z a,-

and theorem 3 is proved.

The author was supported by a junior research fellowship at St Hilda's College,
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