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Summary

Amplified fragment length polymorphisms (AFLPs) are a widely used marker system: the

technique is very cost-effective, easy and rapid, and reproducibly generates hundreds of markers.

Unfortunately, AFLP alleles are typically scored as the presence or absence of a band and, thus,

heterozygous and dominant homozygous genotypes cannot be distinguished. This results in a

significant loss of information, especially as regards mapping of quantitative trait loci (QTLs). We

present a Monte Carlo Markov Chain method that allows us to compute the identity by descent

probabilities (IBD) in a general pedigree whose individuals have been typed for dominant markers.

The method allows us to include the information provided by the fluorescent band intensities of

the markers, the rationale being that homozygous individuals have on average higher band

intensities than heterozygous individuals, as well as information from linked markers in each

individual and its relatives. Once IBD probabilities are obtained, they can be combined into the

QTL mapping strategy of choice. We illustrate the method with two simulated populations: an

outbred population consisting of full sib families, and an F
#

cross between inbred lines. Two

marker spacings were considered, 5 or 20 cM, in the outbred population. There was almost no

difference, for the practical purpose of QTL estimation, between AFLPs and biallelic codominant

markers when the band density is taken into account, especially at the 5 cM spacing. The

performance of AFLPs every 5 cM was also comparable to that of highly polymorphic markers

(microsatellites) spaced every 20 cM. In economic terms, QTL mapping with a dense map of

AFLPs is clearly better than microsatellite QTL mapping and little is lost in terms of accuracy of

position. Nevertheless, at low marker densities, AFLPs or other biallelic markers result in very

inaccurate estimates of QTL position.

1. Introduction

Microsatellites are the state-of-the-art markers due to

their high information content. Nevertheless, a micro-

satellite genetic map is expensive to develop, and

mapping efforts have been concentrated on the

economically most important species. Dense genetic

maps for microsatellites are thus available for these

species but are unlikely to be developed for all species.

More recently, single nucleotide polymorphisms

(SNPs) have tended to be favoured for humans as a

systematic effort to uncover all genetic variation

(Wang et al., 1998). Such analysis requires large-scale
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genotyping systems. Alternatively, other techniques

can provide markers ; among them fragment length

polymorphisms (AFLPs; Vos et al., 1995) is a very

cost-effective, easy and rapid technique that repro-

ducibly generates hundreds of markers. Unlike micro-

satellites it needs no prior knowledge of the genome

under study nor prior development. Moreover, since

AFLP is a multilocus technique (a single PCR reaction

allows the genotyping of several markers), it is a cheap

alternative to microsatellites : genotyping cost per

individual per marker is lowered by 10- to 20-fold.

AFLPs are used for broad applications (for a

review see Mueller & Wolfenbarger, 1999), including

establishing or enriching maps, mainly in plants

(Kuiper, 1998; Alonso-Blanco et al., 1998; Cho et al.,
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1998; Vuylsteke et al., 1999; Klein et al., 2000) but

also in animal species (Ajmone-Marsan et al., 1997;

Herbergs et al., 1999; Knorr et al., 1999), and for

quantitative trait locus (QTL) studies (Vanhaeringen

et al., 2001).

The main drawback of AFLPs is their biallelic and

dominant nature. Thus, in addition to a much lower

information content than microsatellites due to the

small number of alleles, new methodological problems

are posed due to their dominant behaviour. AFLPs

have been used to identify loci affecting traits of

interest, but they have primarily been concerned with

dichotomous traits, mainly disease resistance, where

presence or absence of bands was correlated with

phenotype category (e.g. Cervera et al., 1996; Jin et

al., 1998; Lu et al., 1998). The fact of markers being

dominant makes the analysis of quantitative traits

more problematic, because the trait cannot be cat-

egorized into discrete classes. For instance,Nandi et al.

(1997) identified QTLs related to submergence tol-

erance in rice using AFLPs but they divided a 9-

category trait into two groups and they used recom-

binant inbred lines, where no heterozygous individuals

are expected. Otsen et al. (1996) also used recombinant

inbred lines in a QTL mapping project via AFLPs.

Jiang & Zeng (1997) derived a method to map QTLs

in crosses between inbred lines, assuming that all

markers have alternative fixed alleles in each line. To

our knowledge, there is no statistically sound method

that allows us to carry out a QTL analysis with

dominant markers in a general pedigree and uses all

linkage and marker information.

Here we present a Bayesian Monte Carlo Markov

Chain (MCMC) method that allows us to compute

the identity by descent probabilities (IBD) in any

general pedigree in which individuals have been typed

for dominant markers. The method allows us to

include the information provided by the fluorescent

band intensities of the markers, the rationale being

that homozygous individuals have on average higher

band intensities than heterozygous individuals. Piepho

& Koch (2000) and Jansen et al. (2001) also studied

how peak density can be applied to discriminate

between dominant homozygous and heterozygous

genotypes, but they did so by considering only the

distribution of peak densities within each marker.

Here we show how to combine peak density with

linkage and pedigree information using all markers

simultaneously. We illustrate the method with simu-

lated data. The simulated data are also employed to

compare the performance of QTL mapping with

AFLPs versus codominant markers such as SNPs or

microsatellites. This work was inspired by a continuing

project in quail aimed at identifying genes with an

effect on tonic immobility, and in which AFLPs have

been chosen because there is no published genetic map

for that species.

2. Materials and methods

(i) Computation of identity by descent probabilities

The approach employed here is a generalization of

that in Pe! rez-Enciso et al. (2000). In short the method

consists of iterating successively over three steps :

genotype and phase sampling, crossover sampling,

and assessment of the identity by descent status at

predetermined genome positions. In that work, mar-

kers were assumed to be additive and thus only the

phases of genotyped individuals plus the genotypes of

untyped individuals were sampled. Here biallelic

markers with dominant ‘D’ and recessive allele ‘R’

are assumed. We assume that only genotypes ‘RR’

are identified unambiguously, and correspond to no

band amplification. The first step consists of sampling

the ordered marker genotypes. By ordered genotype

we mean that the two heterozygous genotypes, ‘RD’

and ‘DR’, are treated as distinct, corresponding to the

two possible phases. The distances between markers

are assumed to be known, and the Haldane mapping

function is supposed to hold. Let G
ij

be the ordered

genotype of individual i at marker j ; the genotypes are

sampled from

p(G
ij
rM, G, h

ij
)£p(G rG

ij
, M) p(h

ij
rG

ij
) p(G

ij
)

¯ [a]¬[b]¬[c], (1)

where M is the available marker information, consist-

ing of the unordered genotypes of typed individuals.

Typically M consists of records ‘RR’, ‘D0’ and ‘00’,

where ‘0 ’ stands for missing allele. G is the set of

ordered genotypes other than the one considered (G
ij
),

and h
ij

is the band intensity recorded from the

fluorescent reader for individual i (i¯1, n, the number

of individuals) and marker j. The first term [a]

represents the linkage information from current

genotype configurations, as fully described previously

(Pe! rez-Enciso et al., 2000). The sampling algorithm

for dominant markers is presented in the Appendix.

The second term [b]¯p(h
ij
rG

ij
) conveys the in-

formation provided by the band intensities as a result

of PCR amplification. These depend on the indivi-

dual’s genotype, but can also be affected by a number

of systematic environmental effects such as gel, DNA

extraction or PCR amplification, and run conditions.

If we assume that the residual variances are in-

dependent across markers, we can model each marker

band separately. Thus, using a hierarchical Bayesian

approach for marker j, we have:

h
j
¯Z

j
µ
j
­X

j
β
j
­ε

j
, (2)

where h
j
is the vector containing the band intensities

for marker j, µ
j
is a two-dimensional vector with the

mean band intensity of individuals having genotype

‘DD’ (µ
j"
) and ‘DR’ or ‘RD’ (µ

j#
), β

j
is a vector with

the remaining fixed effects, Z
j

is a n¬2 incidence
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matrix where the first column is 1 if G
ij

is equal to

‘DD’, 0 otherwise. Symmetrically, the second column

contains 1’s when G
ij

is ‘DR’ or ‘RD’, 0 otherwise.

Note that the Z
j
are stochastic matrices ; they change

from iteration to iteration for those individuals whose

genotype is uncertain. Finally, X
j

is an incidence

matrix relating band intensities to fixed effects, and ε
j

is the residuals’ vector which are independently

identically distributed as N(0, σ#). Different variances

can be accommodated within genotype, as described

below. Each marker can certainly be influenced by

different factors, e.g. there can be markers whose

bands are more stable and less dependent on en-

vironmental conditions than others. Thus the model

(2) fitted is not necessarily the same for every marker.

For any marker, a model with the minimum number

of parameters affecting band intensities should be

chosen. The Bayes factor between two competing

models in (2) can be computed in order to choose the

more reasonable model, although in practice a visual

inspection of the plot of the residuals ε obtained with

the two models may suffice. Now consider the usual

least square equations (the marker subscript j is

omitted in the following equations for the sake of

clarity) :

A

B

Z«Z Z«X
X«Z X«X

C

D

A

B

µ

β

C

D

¯
A

B

Z«h
X«h

C

D

,

or C r¯ d. It is well established (e.g. Wang et al.,

1993) that the posterior conditional distribution of

any element r
k

of r¯ [µ, β]« is

p(r
k
rZ, X, h, r

−k
, σ#)¯Normal

E

F

d
k
® 3

m

h=",h
1k

c
kh

r
h
,σ#}c

kk

G

H

,

(3)

where m is the dimension of C, c
kh

is the element khth

of C, d
k
is kth d element. In the simplest case, the only

effect included in (2) is the genotype, and the posterior

distribution of µ
"

is

p(µ
"
rZ, h, σ#)¯N[Z!

"
h}(Z!

"
Z

"
), σ#}(Z!

"
Z

"
)],

where Z
"

is the first column of Z, and Z!

"
Z

"
is the

current number of individuals with genotype ‘DD’.

Similarly for µ
#
. The underlying model assumes that

dominant homozygotes have a mean band intensity

that is necessarily higher than heterozygotes, i.e.

µ
"
&µ

#
. This is accomplished within the sampling

process simply by setting µ
"
¯µ

#
if µ

"
is sampled to be

smaller than µ
#
. This is equivalent to disregarding

band information in that iteration. An alternative is to

discard the whole iteration. Usual Bayesian theory

dictates that the posterior distribution of the residual

variance is an inverted chi-squared when we assume

conditional normal distributions in (2). Assuming a

non-informative prior of the type 1}σ for scale

parameters (Wang et al., 1993),

p(σ# rZ, X, h, b, µ)¯ (h®Zµ®Xb)«

(h®Zµ®Xb) χ−#
n

, (4)

where χ−#
n

stands for an inverted chi-squared dis-

tribution with n degrees of freedom, the number of

band observations. It is not necessarily implicit in

model (2) that the variance σ# is the same within both

dominant and heterozygote individuals. In fact, it has

been commonly observed that the variance within

heterozygous individuals is smaller than within the

dominant homozygote (Jansen et al., 2001). A

heteroskesdastic model can be accommodated and the

sampling should be carried out from

p(σ#

"
rZ

"
, X, h, β, µ)¯ (h®Z

"
µ®Xβ)«

(h®Z
"
µ®Xβ) χ−#

n"

p(σ#

#
rZ

#
, X, h, β, µ)¯ (h®Z

#
µ®Xβ)«

(h®Z
#
µ®Xβ) χ−#

n#
,

with σ#
k

being the error variance within genotype k,

and n
k
¯Z!

k
Z

k
. This strategy avoids the need for a

square root transformation as proposed by Jansen et

al. (2001) to allow for heterogeneous variances within

genotypic classes.

Finally, the third term in (1), [c], is the prior

probability of the genotypes. They should be supplied

by the user ; in some instances they will be known, as

in crosses between inbred lines, or they can be

estimated from the data assuming Hardy–Weinberg

frequencies, i.e. p(R) can be set equal to the square

root of the frequency of recessive individuals identi-

fied. It can be shown that this term vanishes for non-

founder individuals, as the sampling is conditional on

parents’ genotypes.

Once the ordered genotypes (G) are obtained,

crossover locations are generated according to flank-

ing genotype information as described previously

(Pe! rez-Enciso et al., 2000). In short, first it is identified

whether the number of recombination events is odd or

even. An even number of crossovers (including zero)

must have occurred between consecutive informative

markers if both alleles in the offspring have the same

paternal haplotype origin, and an odd number of

crossovers must have occurred if each allele in the

offspring comes from different parental haplotypes,

i.e. at least one crossover must have occurred during

the meiosis. In the absence of interference, as assumed

throughout this study, the number of recombinants

follows a censored Poisson distribution. The location

of the crossovers is assigned at random within the

appropriate marker interval. Subsequently, the IBD

state between all individuals is assessed at any desired

number of genome positions. The method iterates and

the IBD probabilities are computed as the frequency
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of the IBD states over replicates. In practice, the IBD

states at the predefined genome positions are added

up by the program in a matrix of dimension

n¬n¬number of positions ; once the MCMC chain

ends, the IBD probabilities are obtained dividing by

the number of iterations.

In summary, once all variables have been initialized

a complete MCMC round consists of sampling G
ij

for

all i and j using (1), sampling µ, β and σ# from (3) and

(4) for those markers whose band intensities are

considered, and finally sampling crossover locations

and computing IBD status.

(ii) QTL mapping

A systematic assessment of the usefulness of AFLP

markers for QTL detection is beyond the scope of this

paper, but we consider it useful at least to compare in

a limited setting the performance of AFLP versus

SNP and microsatellite mapping. Computing the IBD

probabilities is the cornerstone of any QTL mapping

procedure. Once these probabilities are obtained, a

number of QTL mapping strategies can be followed,

depending on the genetic material available or on the

statistical procedure of choice. For the outbred data

set simulated (see below), it seems appropriate to

model the founder QTL effects as random effects.

Suppose the following linear model for a quantitative

trait y applies,

y¯Wb­q­u­e,

where b is the vector containing the fixed effects

affecting the trait, q is a vector containing the random

QTL effects (dimension n ), u is an infinitesimal genetic

effect, e is vector with residuals, and W is an incidence

matrix. Further assume qCN(0, Qσ#
q
), uCN(0, Aσ#

u
),

and eCN(0, σ#
e
), where Q is the n¬n matrix contain-

ing the IBD probabilities at the QTL position, A is

the usual additive relationship matrix, I is the identity

matrix, σ#
q
is the QTL variance, σ#

u
is the infinitesimal

genetic variance and σ#
e
is the environmental variance.

Bink et al. (1998) used a Bayesian analysis con-

ditional on the IBD matrix Q to estimate σ#
q
. Here we

have preferred to include Q in the IBD likelihood

approach described by Goldgar (1990) and as imple-

mented by Pe! rez-Enciso & Varona (2000). The

frequentist strategy provides an estimate of the QTL

position at a reasonable computing cost by fitting and

maximizing the likelihood every few centimorgans. In

contrast, the estimation of the QTL position by the

IBD Bayesian approach requires the computation of

the posterior probability of the QTL position (Sillan-

paa et al., 1998; Bink et al., 2000) or that the Bayes

factor be obtained at each position analysed. Any of

these options is far more computer-intensive than the

likelihood profile. Varona et al. (2001, their Fig. 5)

showed that there was a very good correlation between

the Bayes factor profile and the likelihood ratio profile

along the chromosome. The likelihood maximized

here was

L¯®1}2 [Constant­log rV r

­(y®Xb)«V−" (y®Xb)], (5)

where V¯Qσ#
q
­Aσ#

u
­Iσ#

e
. A simplex algorithm was

employed for maximization; Q consisted of the means

of the posterior distributions of the relationship

coefficients between individuals. Note that this is a

two-step approach: first we obtain Q, and then we use

Q in the linearized likelihood (5). We have found that

this approach is quite robust in a variety of settings

but more sophisticated and theoretically sound

methods exist, where the IBD state and the QTL

position are estimated jointly (e.g. Yi & Xu, 2000).

Further, an F
#
cross between inbred lines was also

simulated (see below). In this instance, the IBD

probabilities of the F
#
or backcross individuals can be

utilized in a regression-type strategy (Haley & Knott,

1992; see Satagopan et al., 1996 for a Bayesian

approach). Here we used the model

y¯Wb­c a­e,

where c is a vector containing the probabilities, for

each individual, of having received both alleles from

one line minus the probability of having received both

alleles from the other line, and a is the additive allelic

effect. As before, we computed the likelihood profile

of the model including the QTL over the model

without the QTL effect.

(iii) Simulated data

We simulated two populations. The first, outbred,

population consisted of 50 full sib families, each

family consisting of 10 full sibs. The second population

was an F
#
cross between divergent lines, with 10 male

and 20 female founders and 500 F
#

individuals in

total. In both populations, a single chromosome of

60 cM was considered. Several marker configurations

were analysed in the outbred population: (0) 4

microsatellites located every 20 cM; (1) 4 AFLPs at

identical positions ; (2) 4 SNPs at identical positions ;

(3) 13 AFLPs spaced every 5 cM; and (4) 13 SNPs at

the same positions. Only configurations 0, 3 and 4

were studied in the F
#

cross. SNPs provide the

maximum information that can ever be conveyed by

AFLPs and thus provide a useful benchmark to test

AFLP performance. In order to interpret the compari-

sons in a more straightforward manner, we first

simulated a data set with 13 microsatellites, 6 alleles

each. The allele frequencies were equal in the outbred

population. In the F
#

cross, two extreme situations
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were considered: either the allele frequencies were the

same in both parental lines, or they were fixed for

alternative alleles. The data sets with the 13 micro-

satellites were not analysed; they were used for the

sole purpose of generating the corresponding marker

files. Microsatellite alleles coded as ‘1 ’ through ‘3’

(‘4 ’ through ‘6’) were collapsed into SNP allele ‘1 ’

(‘2 ’), and SNP genotypes ‘21 ’ and ‘22’ were collapsed

into AFLP genotype ‘20’, where ‘2 ’ is the dominant

allele and ‘0’ stands for missing allele. Data files for

the first three cases, those with only 4 markers, were

obtained by removing the markers not considered.

Finally, we simulated a ‘peak height ’ file that

contained the band intensities for each individual and

marker. The band intensities were distributed as

N(10, 1) and N(12, 1) for heterozygous and dominant

homozygous genotypes, respectively. The only effect

used to simulate band intensity was the genotype, i.e.

we used the underlying model (2) : h
j
¯Z

j
µ
j
­ε

j
. The

same distribution was used for all markers. A normal

mixture is unimodal when the difference between

means of the two component distributions is less than

or equal to 2 standard deviations, approximately

(Titterington et al., 1985). Some authors (Piepho &

Koch, 2000; Jansen et al., 2001) have studied the case

where the band intensity distribution was clearly

multimodal, making genotype classification relatively

easy. Our own experience (see discussion below and

Fig. 3) is much less optimistic in that respect, and thus

we used here a conservative guess for the underlying

band intensity distributions.

We studied the distribution of the relationship

coefficient between full sib pairs in the first, outbred,

population for each data set at position 12 cM. If we

knew the IBD state with certainty, the relationship

coefficient between full sibs would be distributed with

mean 0±5 and variance 0±125 if the parents are not

inbred and unrelated. When the IBD state is not

known, the mean should be very similar but the

variance will decrease, as the method ‘regresses ’ the

parameter towards the mean, here 0±5. Thus, in

general terms, the larger the variance, the higher the

power of the method to discriminate between alterna-

tive IBD states. The MCMC chain was run 10 times

for each of 2000 iterations; a total of 20000 iterations

was thus employed. Previous work has shown that the

results did not change significantly with larger chains.

Finally, we also simulated a phenotypic data set

using the complete marker information. The trait was

determined by a single QTL at position 12 cM. The

founder allelic effects were sampled from a normal

distribution N(0, 0±25) in the outbred population. In

the F
#

cross, the parental lines had alternative QTL

alleles fixed and the allelic genetic effect was 0±5. In

either population, the genic action was additive, and

there was no polygenic effect. The performance record

was generated adding the two transmitted allelic

effects plus a random normal environmental deviate

N(0, 1). The likelihood was fitted every 2 cM, and the

ratio versus the likelihood maximized under a model

without the QTL effect was obtained at each position.

(iv) Real data

In this work, we have used real data (quail) only to

illustrate the variety of band density distributions that

can be obtained. AFLP markers were generated by

αTaqI}EcoRI (New England Biolabs) restriction of

quail genomic DNA, followed by adapters ligation

using T4 DNA ligase (Appligene). Two selective

amplification steps with Taq polymerase (Gibco BRL)

were then performed on GeneAmp 9700 (Perkin-

Elmer) thermocyclers. Samples were run on DNA

Analyzer 3700 (Perkin-Elmer) and patterns analysed

with Genescan 3±5 and Genotyper 3±6 softwares (Abi

Prism, Perkin-Elmer).

Results and discussion

The main results on the performance of the method

proposed are in Figs. 1 and 2. Fig. 1 is a plot of the

relationship coefficient (ρ) between all possible pairs

of full sibs in the simulated outbred population. The

expected profile when the IBD is known is a discrete

distribution with points 0, 0±5 and 1 with frequencies

0·00 0·25 0·50 0·75 1·00
rho

0

1

2

3

4

5

6

SNP
AFLP
AFLP*

SNP
AFLP
AFLP*

0·00 0·25 0·50 0·75 1·00
rho

0

1

2

3

4

(a)

(b)

f(
rh

o)
f(

rh
o)

Fig. 1. Distribution of the mean relationship coefficients
between all possible pairs of full sibs at position 12 cM in
the outbred population. The graph compares the results
with SNPs (thick line), AFLPs (thin line), AFLPs and
using the intensity band information (dashed line). (a)
Four markers at positions 0, 20, 40 and 60 cM; (b ) 13
markers every 5 cM.
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(a)
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T

0 10 20 30 40 50 60
0
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50
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MSAT
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AFLP
AFLP*

MSAT
SNP
AFLP
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QTL

(b)

2 
L

R
T

0 10 20 30 40 50 60
0

10

20

30

40

50

cM

QTL

Fig. 2. Outbred population: likelihood ratio profile at
2 cM steps with different marker types – microsatellites
(crossed line), SNPs (thick line), AFLPs (thin line), and
AFLPs and using the intensity band information (dashed
line). (a) Markers located every 20 cM; (b ) markers
located every 5 cM. In both (a) and (b ) the microsatellite
profile corresponds to a 20 cM spacing. The vertical bar
shows the QTL position (12 cM).

0±25, 0±5 and 0±25 respectively. However, when there is

uncertainty the relationship coefficient between two

individuals is itself a random variable, with its cor-

responding posterior distribution. We used the mean

of the posterior distribution in Fig. 1. It can be seen

that a sparse map of AFLPs provides little discrimi-

nation about the IBD status between individuals if

band density is not utilized. This is illustrated by the

low variance of the relationship coefficients (Table 1),

a consequence of the fact that a large proportion of

the values are centred around the prior value, 0±50

(Fig. 1). In contrast, using band intensities results in

Table 1. Distribution statistics of the relationship coefficient between

pairs of full sibs

Marker spacing

20 cM 5 cM

Mean Variance Mean Variance

Microsatellite 0±501 0±080 – –
SNP 0±501 0±044 0±503 0±094
AFLP 0±502 0±022 0±507 0±053
AFLPa 0±502 0±036 0±506 0±065

a Using band intensity information.

a profile similar to that of SNPs. The ragged profile of

the distributions is due to the different recombination

events and the distance between the point at which the

relationship coefficient is estimated and the closest

markers (for a discussion see Pe! rez-Enciso et al.,

2000). When marker density is higher the influence of

using band intensities decreases (Fig. 1b, Table 1).

This is because adjacent markers provide more

information as the distance between them decreases.

The ability of the method to discriminate between

dominant homozygotes and heterozygotes depends

critically on whether the mean band intensities (µ
"

and µ
#
) and the band error variance (σ#) are correctly

estimated. Table 2 presents the main parameters of

the corresponding posterior distributions. As expect-

ed, the parameter estimates are better at a high

marker density, although the estimates are reasonable

in the two scenarios studied. A more accurate

estimation of the individual band intensity can be

obtained by reamplifying each sample and using the

mean instead of a single measurement. This strategy

should also provide a better estimate of the error

variance and help to assess to what extent genetic

heterogeneity exists across genotypes or experimental

protocol factors. In practice, however, this is a realistic

option only for a limited number of markers in, say,

more detailed mapping after a first genome scan.

Certainly, the most relevant issue for evaluating the

methodproposed is its performance forQTLmapping.

A 2 cM scan was performed using the IBD approach

described above and the results are shown in Fig. 2 for

the two marker spacings studied in the outbred

population. Note that the likelihood ratio would be

significant in all cases, assuming that the statistic is

distributed as a mixture of chi-squared distributions

under the null hypothesis, 1}2χ#

!
­1}2χ#

"
. In conse-

quence, all approaches would be powerful enough to

identify that a QTL is located in the chromosome. Of

course the power is maximum with highly informative

markers (microsatellites) andminimum with dominant

markers when the band intensity information is not

used. Marker informativity and dominance has,

nevertheless, a dramatic impact on the error of the

QTL position estimate at low marker density (Fig.
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Table 2. Main statistics for the posterior distribution of the mean

intensity differences between genotypes, f (µ
"
®µ

#
rM, h), and the error

�ariance f (σ# rM, h). The true �alues were µ
"
®µ

#
¯ 2, and σ#¯1. For

shortness, only the a�erage statistics of all 4 and 13 markers is presented

No. of markers

f (µ
"
®µ

#
rM, h) f (σ # rM, h)

Mean
Standard
deviation Mean

Standard
deviation

4 2±53 0±25 0±72 0±24
13 1±80 0±39 1±02 0±36

1a). If we use the coarse rule of thumb that a 95%

confidence interval corresponds to a drop in likelihood

ratio of about 4 units, the widths of the confidence

interval are 14, 20, 28 and 36 cM when we employ

microsatellites, SNPs, AFLPs using band intensities,

and AFLPs, respectively. Note that these figures are

used only for the sake of comparison between

methods, and are not intended to be the exact

confidence intervals. Rather we argue that the QTL

position confidence interval is proportional to the

curvature of the likelihood ratio profile around the

maxima.

The picture changes dramatically when we compare

the marker performance at a higher density for the

diallelic markers. Fig. 2b shows the results when

AFLPs and SNPS are located every 5 cM, where the

microsatellite plot is repeated for completeness. It is

clear that power increases and that the confidence

interval is reduced compared with Fig. 2a, but the

most important result is that the plots corresponding

to SNPs and AFLPs when band intensity is used are

very similar. This strongly suggests that AFLPs can

have an almost additive behaviour at moderate to

high marker densities if the information from band

intensities is utilized. This is an important result, as

the difference in the cost of developing AFLPs versus

SNPs or microsatellites is several orders of magnitude.

As a general guideline, it can be conjectured that

only QTLs of moderate to large effect will be detected

using a sparse map of dominant markers, even if band

density is employed. For those QTLs actually identi-

fied, the user should be aware that the position will be

estimated very loosely. In contrast, as marker density

increases and provided that band intensity can be

taken into account, the performance of AFLPs can be

remarkably similar to that of additive markers. In

relative terms, the usefulness of including the band

intensity is larger when markers are sparsely located.

Nevertheless, using band intensity always results in a

sharper QTL position irrespective of the marker

spacing (Fig. 2). A thorough assessment of the power

for QTL mapping at different AFLP spacing and

QTL effects remains to be done.

(a)

2 
L

R
T

0 10 20 30 40 50 60
0

10

cM

MSAT
SNP

AFLP
AFLP*

QTL

20

30

40

50

60

70

80

(b)

2 
L

R
T

0 10 20 30 40 50 60
0

10

cM

MSAT
SNP

AFLP
AFLP*

QTL

20

30

40

50

60

70

80

Fig. 3. F
#

cross population: likelihood ratio profile at
2 cM steps with different marker types – microsatellites
(crossed line), SNPs (thick line), AFLPs (thin line), and
AFLPs and using the intensity band information (dashed
line). (a) The two parental lines do not share any
common allele ; (b ) the two lines have the same allele
frequencies for every marker. The vertical bar shows the
QTL position (12 cM). The microsatellites are spaced
every 20 cM, the remaining markers, every 5 cM.

The results for the F
#

data are in Fig. 3. Micro-

satellites were spaced every 20 cM, and SNPs and

AFLPs every 5 cM. Here we studied the effect of

differences in allele frequencies between lines on QTL

detection. Fig. 3a shows the results in the ideal

situation, when all markers are fixed for alternative

alleles in each breed, whereas Fig. 3b represents the

least favourable case: no difference in allele frequencies

between breeds. A real data set will lie somewhere in

between. Recall that in both cases the two lines did

have different QTL alleles fixed. As expected, the

likelihood ratios were higher when markers were

completely informative with respect to line origin
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(Fig. 3a) than when they were not (Fig. 3b ). But it is

more interesting to observe that the AFLP profile

using band densities is almost indistinguishable from

the SNP profile when marker alleles are fixed (Fig. 3a)

and they are clearly more ‘peaked’ around the QTL

than the microsatellite profile, suggesting a more

accurate QTL localization. This is because, in a

regression-type analysis, we are only interested in the

breed origin of each allele ; if the marker alleles are

fixed, it does not matter whether there are two or more

alleles, so the better performance is due exclusively to

using a more dense map with AFLPs than with

microsatellites. The important result here is that, as in

Fig. 2, the AFLPs using band densities and SNPs had

a very similar behaviour. The most unfavourable case

is shown in Fig. 3b ; here the higher the number of

alleles, the better the ability to always distinguish the

allele origin. Nevertheless, the maximum likelihood

ratio with AFLPs using band density was higher than

that with microsatellites, suggesting at least a similar

power. A more thorough study would be required to

assess this. It can be seen that, in all cases, the

performance of AFLP markers diminishes dramati-

cally if band intensity is not taken into account. In

agreement with the results in Fig. 2, the curves are

very flat as a sign that the QTL will be located rather

loosely.

Despite the evident advantages of the method

presented here, the user should also be aware of the

potential dangers of MCMC methods. The most

common one is that the chain gets ‘stuck‘ in a set of

genotypic configurations such that the whole space of

possible genotypes is not sampled. For instance, if two

parents are sampled to be homozygous, there is only

one possible genotype of offspring, irrespective of

other available information. In this case it is said that

the chain is ‘reducible ’. This risk increases when there

are missing genotypes and when a single genotype is

updated at a time, which was the strategy followed

here. In order to minimize the risk of reducibility, a

simple procedure is to run separate chains with

different starting points and use the results from all

chains. Diagnosing convergence can also be a difficult

issue and a wide number of approaches are available

(Cowles & Carlin, 1996). Here we ran 10 chains of

2000 iterations each. We did not find any noticeable

difference in terms of the distribution of IBD

probabilities compared with when we ran a smaller

number of restarts. We also computed the autocor-

relation in IBD probabilities every successive iterate

for two full sibs. The values varied from 0±01 to 0±15

for most of the full sib pairs studied, suggesting that

the effective number of iterations was close to the

actual number of iterations performed. Nevertheless,

complex pedigreeswith a significant number of missing

genotypes require more sophisticated genotype strate-

gies than the single update used here. The reader is

referred to, for example, Sobel & Lange (1996) or

Heath (1997) for alternative sampling schemes.

Here we have assumed that the genetic map was

known without error for either codominant or AFLP

markers. It can be argued that this is unfair since maps

with codominant markers will be more accurate than

AFLP maps and, as a result, QTL studies will be

necessarily more accurate with codominant markers.

In practice, however, AFLP maps can also be obtained

with reasonable accuracy in a QTL mapping popu-

lation, as the number of individuals required to

construct a genetic map is much smaller than the

number required for localizing QTLs. In fact, a single

family may suffice if the recombinants can be

identified. The key parameter to control is the marker

order, rather than the precision in the recombinant

fraction itself ; thus a series of markers can be discarded

if the lod score between different orders is very similar.

Given the high polymorphism uncovered by the

AFLP system, it is almost guaranteed that a reasonable

coverage of each linkage group will be attained. In

addition, some of the AFLP markers will have an

almost codominant behaviour (e.g. like those in the

bottom row of Fig. 4, described below). These AFLPs

will serve as ‘anchors ’ for the remaining markers. In

our specific experiment, the CRIMAP software is

being used (Green et al., 1990) to build a quail AFLP

map (Roussot et al., in preparation).

The approach presented here improves upon pre-

vious work aimed at rendering codominant the AFLPs

markers (Piepho & Koch, 2000; Jansen et al., 2001).

The main, but fundamental, advantage of our work is

that all information is taken into account simul-

taneously as shown in equation (1). The probability of

an individual‘s genotype is modified not only by its

band intensity as in Piepho & Koch (2000) or in

Jansen et al. (2001) but also by the adjacent markers

of the individual and its relatives. As shown in Fig. 2,

there can be an important gain for the practical

purpose of QTL mapping when closely linked markers

are considered. Furthermore, by using an MCMC

Bayesian approach, the uncertainty about all para-

meters is considered jointly and the misclassification

error is built into the model. Here there is no need to

classify genotypes, as Jansen et al. (2001) suggested,

in categories like ‘no dominant homozygote’ or ‘no

recessive homozygote’. Nevertheless, these can be

incorporated into the model by constraining the

sample space to a subset of genotypes without much

change in the method. In some cases, the improvement

by using pedigree information may be dramatic. For

instance, consider the case that two parents with

dominant genotype produce a recessive genotype

offspring; it follows immediately that both parents are

necessarily heterozygotes. This allows, in turn, para-

meters σ# and µ in (3) and (4) to be accurately

estimated. If, in contrast, a family produces only
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Fig. 4. Representative examples of AFLP marker density distributions for six markers in quail, with 360 individuals.
Markers are generated by αTaqI}EcoRI restriction of quail genomic DNA, followed by adapters ligation and two
selective amplification steps with various primer combinations. Patterns are analysed with Genotyper 3.6 software, and
the marker density distribution is displayed in the histogram window of Genotyper 3.6. The x-axis (shown along the
top) represents peak density and the y-axis, the number of individuals. The scale on the x-axis varies because of different
peak densities found according to each marker.

offspring with the dominant genotype, at least one of

the parents is likely to be homozygote dominant. The

exact probabilities are taken into account automati-

cally in our method via the algorithm described in the

Appendix.

The performance of the approaches of Piehpo &

Koch (2000) and of Jansen et al. (2001) depend

heavily on the properties of a multimodal distribution,

which clearly facilitates genotype classification by

simply inspecting the distribution. But multimodality

is unlikely to hold for all AFLP markers. Fig. 4

illustrates this point by showing the distribution of six

quail AFLP markers. These graphs are representative

of most of the distribution shapes that we observed

and they provide clues about further statistical

refinements. The first feature worth noticing is the
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wide variety of distributions; in view of this variability

the user should check for each marker whether the

normal mixture is adequate or whether a certain

transformation is warranted. In this work we have

retained the simple mixture of normals but, provided

that other distributions are deemed more appropriate,

these could be incorporated into the model and the

sampling distributions (3) and (4) should be changed

accordingly. If a no standard distribution is obtained,

one needs to resort to Metropolis-Hastings sampling,

instead of the more straightforward Gibbs sampling

employed here. Piepho & Koch (2000), for instance,

explored the Box-Cox transformations. Fig. 4 indi-

cates that modelling AFLP band intensities is indeed

a challenging research topic.

Further notice in Fig. 4 that for a number of

markers there is a continuum between absence and

presence of a band for a number of markers (top two

figures). As a result, it may be appropriate to modify

our model to account also for uncertainty in scoring

homozygote recessive genotypes, as also suggested by

Jansen et al. (2001). In a three-mixture model, some of

the genotypes with a low peak density could in fact be

recessive homozygotes or heterozygotes. The matrix Z

in (2) now becomes a three-column matrix and the

vector h will contain three parameters, corresponding

to the three density means for each genotype.

Nevertheless, most of the markers did exhibit a clear

distinct peak at no band amplification, as shown in

the middle and bottom rows of Fig. 4. The graph in

the left middle row may correspond to the case

simulated here, i.e. a unimodal distribution. The

remaining middle right and bottom row graphs show

different multimodal distributions. Only about 10%

of the markers assayed did exhibit clear distinct peaks

and can be considered to behave as almost codominant

markers (e.g. bottom right graph). In an additional

8% of the markers, the distribution looks multimodal

but genotype classes overlapped so that genotype

assignment cannot be done unambiguously by eye

(e.g. middle right graph).

In conclusion, we have shown that using the band

intensity together with all pedigree and marker

information can decrease most of the disadvantages

of dominant markers, and that their behaviour can be

very much like that of additive biallelic markers

(SNPs), at least for the practical purpose of QTL

mapping. In practice, there exists a mixture of marker

types, say both microsatellites and AFLPs, for most

species. The theory developed allows us to combine all

marker information in an optimum way. Band

intensity information can be included or not, or

included only partially if the user finds that some

marker information is more reliable than others,

depending on the goodness of fit of a mixture of

normals to the real data (e.g. Fig. 4). Finally, other

QTL mapping strategies can be envisaged. Hansen et

al. (2001) argued that a strict linkage disequilibrium

mapping can not be carried out with AFLPs due to its

dominant nature. But the same principles outlined

here can be employed to carry out proper linkage

disequilibrium mapping with dominant markers. For

instance, first the haplotypes can be inferred from

pedigree information, and second a measure of

disequilibrium, say D«, is computed between the

markers and the trait. By iterating on this sampling

scheme a MCMC estimate of D« between dominant

markers and a categorical trait can be obtained.

WethankCatherineBeaumont for encouragement towork
on this topic and discussions, and both referees for their
useful comments. O.R.’s PhD project is funded in part by
Aventis Nutrition Animale ; work was funded by ‘Bureau
des Ressources Ge!ne! tiques ’ (France), project no. 20 (2001–
2002).

Appendix. Pseudocode for genotype sampling

Consider that we are sampling a genotype at marker

j from founder individual i of sex k(¯1, 2) and thus

we condition on haplotype k of each of its n offspring.

Take j« to be the first informative marker to the ‘right ’

of marker j, i.e. the closest upward marker for which

individual i is heterozygous. In the following we

denote the genotype at locus j, individual i by G
ij
, and

the allele at the kth haplotype by G
ijk

. The pseudocode

for sampling the ijth genotype is as follows:

Initialize

p(G
−
rG

ij
¯DD)¯p(G

ij
¯DD)

p(G
−
rG

ij
¯DR)¯p(G

ij
¯DR)

p(G
−
rG

ij
¯RD)¯p(G

ij
¯RD)

p(G
−
rG

ij
¯RR)¯p(G

ij
¯RR)

For o¯1, n ²
If (G

oj«k
¯G

ij«"
) then3 allele G

i, j«, "
transmitted

if (G
ojk

¯D) then

p(G
−
rG

ij
¯DD)¯p(G

−
rG

ij
¯DD)*1

p(G
−
rG

ij
¯DR)¯p(G

−
rG

ij
¯DR)* (1®r)

p(G
−
rG

ij
¯RD)¯p(G

−
rG

ij
¯RD)* r

p(G
−
rG

ij
¯RR)¯ 0

elseif (G
ojk

¯R) then

p(G
−
rG

ij
¯DD)¯ 0

p(G
−
rG

ij
¯DR)¯p(G

−
rG

ij
¯DR)* r

p(G
−
rG

ij
¯RD)¯p(G

−
rG

ij
¯RD)* (1®r)

p(G
−
rG

ij
¯RR)¯p(G

−
rG

ij
¯RR)*1

endif

elseif (G
oj«k

¯G
ij«#

) then3 allele G
i, j«, #

transmitted

if (G
ojk

¯D) then

p(G
−
rG

ij
¯DD)¯p(G

−
rG

ij
¯DD)*1

p(G
−
rG

ij
¯DR)¯p(G

−
rG

ij
¯DR)* r

p(G
−
rG

ij
¯RD)¯p(G

−
rG

ij
¯RD)* (1®r)

p(G
−
rG

ij
¯RR)¯ 0

https://doi.org/10.1017/S0016672302005645 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672302005645


A method for computing IBD and QTL mappings 257

elseif (G
ojk

¯R) then

p(G
−
rG

ij
¯DD)¯ 0

p(G
−
rG

ij
¯DR)¯p(G

−
rG

ij
¯DR)* (1®r)

p(G
−
rG

ij
¯RD)¯p(G

−
rG

ij
¯RD)* r

p(G
−
rG

ij
¯RR)¯p(G

−
rG

ij
¯RR)*1

endif

endif

´

where o is an offspring subindex, there are n offspring

in total, and r is the recombination fraction between

the marker sampled and the closest informative

marker. The first initialization step is carried out for

each marker independently, without regard to the

linkage information. Information from the closest

right marker is similarly included. Once all offspring

for a given parent are processed, the prior and band

information are combined via (1), the probabilities are

standardized and the genotype is sampled. Offspring

genotypes are subsequently sampled conditional on

parents’ genotypes. Of course, only compatible geno-

types are considered and G
ij

is sampled only if it can

not be ascertained unambiguously, e.g. the probability

p(G
ij
¯RR) is not considered unless that genotype

is missing. If a genotype is missing, it is sam-

pled (simulated) conditionally on current genotypic

configuration from parents and offspring. If an

individual i has parents and offspring genotyped,

its genotype probabilities are modified by both

sources of information, i.e. p(G
i
rG

−
)£p(G

i
rG

parents
)

p(G
offspring

rG
i
).
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