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Abstract. McCoy proved that for a right ideal A of S = R[x1, . . . , xk] over a ring
R, if rS(A) �= 0 then rR(A) �= 0. We extend the result to the Ore extensions, the skew
monoid rings and the skew power series rings over non-commutative rings and so on.
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Over a commutative ring R, McCoy [4, Theorem 2] obtained the following in 1942:
f (x) is a zero divisor in R[x] if and only if f (x)c = 0 for some non-zero c ∈ R, where
R[x] is the polynomial ring with indeterminate x over R. But Weiner [9] showed that
this theorem fails in non-commutative rings.

Based on these results, Nielsen [6] called a ring R right McCoy when the equation
f (x)g(x) = 0 implies f (x)c = 0 for some non-zero c ∈ R, where f (x), g(x) are non-zero
polynomials in R[x]. Left McCoy rings are defined similarly. If a ring is both left and
right McCoy then the ring is called a McCoy ring. Nielsen [6, Theorem 2] proved that
if a ring R is reversible (i.e. for a, b ∈ R, ab = 0 implies ba = 0) then R is McCoy.

As stated above, McCoy’s theorem fails in non-commutative rings. However
McCoy [5] proved the following result.

THEOREM †. Let R be a ring and A a right ideal of S = R[x1, . . . , xk]. If rS(A) �= 0
then rR(A) �= 0.

In 2002, Hirano [3, Theorem 2.2] proved independently that if for f (x) ∈ R[x],
rR[x](f (x)R[x]) �= 0 then rR(f (x)R[x]) �= 0.

On the other hand, McCoy’s theorem fails in the formal power series ring R[[x]]
over a commutative ring R by [1, Example 3] in general. However, Gilmer [2] provided
several conditions that are sufficient in order that the analogue of McCoy’s theorem
should be valid in a commutative R[[x]]. Such conditions include the reducedness
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and the von Neumann regularity of the total quotient ring, etc. Moreover, Fields [1,
Theorem 5] proved that if R is a commutative Noetherian ring in which Q1 ∩ Q2 ∩ · · · ∩
Qn = 0 is a shortest primary representation of 0, then f (x)g(x) = 0 implies f (x)c = 0
for some non-zero c ∈ R.

We extend, in this paper, Theorem † to the Ore extensions of several types, the
skew monoid rings and the skew power series rings over non-commutative rings, and
so on.

Throughout this paper, R denotes associative ring with identity. We denote the
right annihilator of A in R by rR(A), where A is a subset of an extension of R. We
assume that σ is an automorphism of R and δ is a σ -derivation of R. Recall that the
Ore extension R[x; σ, δ] of a ring R is the ring obtained by giving the polynomial ring
over R with the new multiplication xr = σ (r)x + δ(r) for any r ∈ R.

THEOREM 1. Let R be a ring and and A a right ideal of S = R[x; σ, δ]. If rS(A) �= 0
then rR(A) �= 0.

Proof. Let g(x) = b0 + b1x + · · · + bnxn be a non-zero element in rS(A) with
minimal degree. Then Ag(x) = 0 and so f (x)Sg(x) = 0 for any f (x) = a0 + a1x + · · · +
amxm ∈ A. Note that for any r ∈ R,

rxi = xiσ−i(r) −
( ∑

s+t=i−1

σ sδσ t(σ−i(r))

)
xi−1

− · · · −
( ∑

s+t=i−1

δsσδt(σ−i(r))

)
x − δi(σ−i(r)).

Then we can rewrite f (x) = c0 + xc1 + · · · + xmcm. Thus we have the following:

(c0 + xc1 + · · · + xmcm)R(b0 + b1x + · · · + bnxn) = 0. (∗)

We will show that f (x)bj = 0 for any 0 ≤ j ≤ n. If n = 0, then we are done. Suppose
that n ≥ 1. From equation (∗), we have cmbn = 0. Then f (x)R(cmg(x)) ⊆ f (x)Rg(x) = 0
and so equation (∗) becomes

(c0 + xc1 + · · · + xmcm)R(cmb0 + cmb1x + · · · + cmbn−1xn−1) = 0.

By the choice of g(x), we have cmb0 + cmb1x + · · · + cmbn−1xn−1 = 0 and so cmbj = 0
for any 0 ≤ j ≤ n. Assume that cibj = 0, where i = t + 1, . . . , m and 0 ≤ j ≤ n and that
for each 0 ≤ i ≤ t, cibj �= 0 for some j. Then equation (∗) becomes

0 = f (x)Rg(x) = (c0 + xc1 + · · · + xtct)R(b0 + b1x + · · · + bnxn).

Thus we also have ctbn = 0. Then f (x)R(ctg(x)) ⊆ f (x)Rg(x) = 0 and so f (x)R(ctb0 +
ctb1x + · · · + ctbn−1xn−1) = 0. By the choice of g(x), we have ctb0 + ctb1x + · · · +
ctbn−1xn−1 = 0 and so ctbj = 0 for any 0 ≤ j ≤ n, which is a contradiction.
Consequently n must be zero. Hence f (x)b0 = 0 and therefore Ab0 = 0 with
b0 �= 0. �

COROLLARY 2. For a ring R, let T be R[x; σ ], R[x, x−1; σ ] or R[x; δ] and A a right
ideal of T. If rT (A) �= 0 then rR(A) �= 0.
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Recall that a monoid G is called a unique product monoid (simply, u.p.-monoid) if
any two non-empty finite subsets A, B ⊆ G there exists c ∈ G uniquely presented in the
form ab where a ∈ A and b ∈ B. The class of u.p.-monoids is quite large and important
(see [7] and [8] for details). For example, this class includes the right or left ordered
monoids, submonoids of a free group, and torsion-free nilpotent groups.

Let R be a ring and G a u.p.-monoid. Assume that G acts on R by means of a
homomorphism into the automorphism group of R. We denote by σg(r) the image of
r ∈ R under g ∈ G. The skew monoid ring R ∗ G is a ring which as a left R-module is
free with basis G and multiplication defined by the rule gr = σg(r)g.

THEOREM 3. Let R be a ring, G a u.p.-monoid and A a right ideal of R ∗ G. If
rR∗G(A) �= 0 then rR(A) �= 0.

Proof. Let β = b0h0 + b1h1 + · · · + bnhn be a non-zero element in rR∗G(A) with
minimal non-zero terms, where bj ∈ R and hj ∈ G. Then Aβ = 0 and so α(R ∗ G)β = 0
for any α = a0g0 + a1g1 + · · · + amgm ∈ A with ai ∈ R and gi ∈ G. Thus we have the
following:

(a0g0 + a1g1 + · · · + amgm)R(b0h0 + b1h1 + · · · + bnhn) = 0. (∗∗)

We will show that aiRσgi (bj) = 0 for any 0 ≤ i ≤ m and 0 ≤ j ≤ n. If n = 0, then

0 = (a0g0 + a1g1 + · · · + amgm)r(b0h0)

= a0σg0 (rb0)g0h0 + a1σg1 (rb0)g1h0 + · · · + amσgm (rb0)gmh0.

By [7, Lemma 1, p.119], gih0 �= gjh0 if i �= j. Thus aiRσgi (b0) = 0. Suppose that n ≥
1. Since G is a u.p.-monoid, there exist gp, hq such that gphq is uniquely presented
by considering two subsets A = {g0, g1, . . . , gm} and B = {h0, h1, . . . , hn} of G. After
reordering if necessary, we may assume that p = m and q = n. Then from equation
(∗∗), we have amRσgm (bn) = 0. Since σgm is an automorphism of R, σ−1

gm
(am)Rbn =

0. Now for any s ∈ R, αR(σ−1
gm

(am)sβ) ⊆ αRβ = 0 and so αR(σ−1
gm

(am)sβ) = 0, where
σ−1

gm
(am)sβ = σ−1

gm
(am)sb0h0 + σ−1

gm
(am)sb1h1 + · · · + σ−1

gm
(am)sbn−1hn−1. By the choice of

β, σ−1
gm

(am)sβ = 0, and hence amRσgm (bj) = 0 for any 0 ≤ j ≤ n. After reordering if
necessary, assume that aiRσgi (bj) = 0, where i = t + 1, . . . , m and 0 ≤ j ≤ n and that
for each 0 ≤ i ≤ t, aiRσgi (bj) �= 0 for some j. Then from equation (∗∗), we have αRβ =
(a0g0 + a1g1 + · · · + atgt)R(b0h0 + b1h1 + · · · + bnhn) = 0. Since G is an u.p.-monoid,
there exist p, q with 0 ≤ p ≤ t and 0 ≤ q ≤ n such that gphq is uniquely presented
by considering two subsets A = {g0, g1, . . . , gt} and B = {h0, h1, . . . , hn} of G. After
reordering if necessary, we may assume that p = t and q = n. Then atRσgt (bn) = 0 and
so σ−1

gt
(at)Rbn = 0. Hence

0 = αR(σ−1
gt

(at)sβ)

= αR(σ−1
gt

(at)sb0h0 + σ−1
gt

(at)sb1h1 + · · · + σ−1
gt

(at)sbn−1hn−1).

By choice of β, we have σ−1
gt

(at)sb0h0 + σ−1
gt

(at)sb1h1 + · · · + σ−1
gt

(at)sbn−1hn−1 = 0 and
hence atRσgt (bj) = 0 for any 0 ≤ j ≤ n, which is a contradiction. Consequently n must
be zero. Hence we have αb0 = 0, and therefore Ab0 = 0 with b0 �= 0. �

By [1, Example 3], McCoy’s theorem fails in the formal power series ring R[[x]] over
a commutative ring R. However, Gilmer [2] proved that a commutative ring satisfies
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McCoy’s theorem for the formal power series ring case, when it is reduced (i.e. a ring
with no non-zero nilpotent elements).

We here show that Theorem † holds for the skew power series rings and the skew
Laurent power series rings over semi-prime rings, noting that Theorem † does not hold
for the formal power series ring case in general.

LEMMA 4. Let R be a semi-prime ring. Then for f (x) = ∑∞
i=0 aixi, g(x) = ∑∞

j=0 bjxj ∈
R[[x; σ ]], f (x)R[[x; σ ]]g(x) = 0 if and only if aiRσ i+t(bj) = 0 for all t, i, j ≥ 0.

Proof. It is enough to show the necessity. Suppose that f (x)R[[x; σ ]]g(x) = 0,
equivalently, f (x)xtrg(x) = 0 for any r ∈ R and integer t ≥ 0. So we have the following:

a0σ
t(rb0) = 0, (0)

a0σ
t(rb1) + a1σ

t+1(rb0) = 0, (1)

· · ·
a0σ

t(rbn) + a1σ
t+1(rbn−1) + · · · + anσ

t+n(rb0) = 0. (n)

From equation (0), a0σ
t(rb0) = 0. In equation (1), we replace r by rb0s

for any s ∈ R. Then 0 = a0σ
t(rb0sb1) + a1σ

1+t(rb0sb0) = a1σ
1+t(rb0sb0). Thus

a1Rσ 1+t(b0)Rσ 1+t(b0) = 0. Since R is semi-prime, a1Rσ 1+t(rb0) = 0 and so
a1σ

1+t(rb0) = 0 for all r ∈ R. From equation (1), a0σ
t(rb1) = 0 for all r ∈ R. Now

suppose that aiσ
i+t(rbj) = 0 for all t ≥ 0 and 0 ≤ i + j ≤ n − 1. In equation (n), we first

replace r by rb0s. Then anσ
n+t(rb0sb0) = 0 and so anσ

n+t(rb0) = 0 by the same method
as above. So we have

a0σ
t(rbn) + a1σ

1+t(rbn−1) + · · · + an−1σ
n−1+t(rb1) = 0. (n′)

Next, we replace r by rb1s for any s ∈ R in equation (n′). Then an−1σ
n−1+t(rb1) = 0

using R is semi-prime. Continuing this process, we have aiσ
i+t(rbj) = 0 for all t ≥ 0

and 0 ≤ i + j ≤ n. By induction, we have aiσ
i+t(rbj) = 0 and therefore aiRσ i+t(bj) = 0

for all k, i, j ≥ 0. �

We also have the same result as Lemma 4 for the skew Laurent power series ring
R[[x, x−1; σ ]], using a slightly modified method. Now we have the following.

THEOREM 5. Let R be a semi-prime ring and A a right ideal of T = R[[x; σ ]] or
T = R[[x, x−1; σ ]]. If rT (A) �= 0 then rR(A) �= 0.

Proof. It is enough to show the skew power series ring case. Let 0 �= g(x) =∑∞
j=0 bjxj ∈ rT (A). Then Ag(x) = 0 and so f (x)Tg(x) = 0 for any f (x) = ∑∞

i=0 aixi ∈ A.
By Lemma 4, we have aiRσ i+t(bj) = 0 for any integers t, i, j ≥ 0. Then f (x)bj = 0 and
therefore Ac = 0, where c = bj for any non-zero bj. �
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