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On a toroidal method to solve the sessile-drop
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We present a fully analytical solution for the natural oscillation of an inviscid sessile drop
with small Bond number (surface tension dominates gravity) and a fixed contact line on
a flat horizontal plate. The governing equations are expressed in terms of the toroidal
coordinate system which yields solutions involving hypergeometric functions. Resonant
frequencies are identified for zonal, sectoral and tesseral vibration modes. The predictions
show excellent agreement with experimental data reported in the literature, particularly
for flatter drops (lower θc, but not so low as to incur significant viscous dissipation) and
higher modes of vibration.
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1. Introduction

The study of natural oscillations of a drop dates back over a century to the seminal work
of Rayleigh (1879), who found analytical expressions for oscillation frequencies of an
inviscid, spherical free drop. Lamb (1932) extended the analysis to include azimuthal mode
shapes, using spherical harmonics Ym

l (θ, ϕ) of degree l and order m. Chandrasekhar (1959)
subsequently considered the contribution of viscosity to explain the damping in a viscous
drop. Other studies in this area have included the effects of (i) viscosity, such as those of
Miller & Scriven (1968) and Prosperetti (1980) and (ii) moderate-amplitude oscillations,
such as Tsamopoulos & Brown (1983).

In recent times research in this area has shifted from the case of a free drop to a pendant
drop supported on a solid rod, e.g. Wilkes & Basaran (see Wilkes & Basaran 1994, 1997,
2001). The case of the sessile drop has been studied by many, for example Lyubimov,
Lyubimova & Shklyaev (2006), who considered natural oscillations of a hemispherical,
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inviscid drop. While the free drop is generally assumed to be spherical, a sessile drop
takes the form of a spherical cap when surface tension dominates gravity (i.e.

√
γ /ρg � c,

where γ is the surface tension, ρ is the density and c is the contact radius of the drop).
To find natural frequencies of the latter, analytical models in the literature either converted
the geometry to a simplified form (replacing the planar substrate by a spherical one, Strani
& Sabetta 1984) or developed a solution using spherical coordinates (Bostwick & Steen
2014). Although the former approach leads to a highly simplified physical model, the
latter requires hybrid analytical-numerical schemes: neither is then suitably accurate and
accessible for use by an experimentalist.

Bostwick & Steen (2016), Steen, Chang & Bostwick (2016) have presented a detailed
account of the underlying physics and mechanics of this problem. The contact angle θc
(and shape) of the drop is established at static equilibrium by balancing the liquid–gas,
liquid–solid and solid–gas interfacial tensions. The drop stability is determined by the
behaviour of the contact line (CL), via its speed uCL. Stick-slip behaviour of the CL
(Shaikeea et al. 2017) gives rise to hysteresis, which is captured using a CL model.
In the ‘Hocking condition’ presented by Davis (1980), contact-angle deviations are
expressed in the form Δθc ∝ uCL, with a constant of proportionality Λ which quantifies
the CL resistance. This phenomenological parameter characterises the CL mobility;Λ = 0
corresponds to a fully mobile CL and Λ = ∞ to a pinned CL. In the current work, the
toroidal framework imposes the pinned CL condition on the problem (see § 2.4).

We present here an analytical solution to this long-standing problem by using a toroidal
coordinate system. The liquid–vapour and liquid–solid boundaries of a spherical cap, δDf
and δDs (cf. figure 1a), correspond to a pair of β-coordinate curves in this system, where
the boundary conditions can be directly expressed without any geometric conversions or
complex computations. Solving the hydrodynamic equations in this framework requires
the use of hypergeometric functions, which ultimately yield a fully analytical solution in
the form of (2.18). The importance of choosing this framework to solve the sessile-drop
evaporation problem was first presented by Popov (2005) and we believe this is the
first time it has been extended to the oscillating sessile drop. Bostwick & Steen (2014)
(hereafter referred to as Bo–St) presented a hybrid analytical–numerical model which
solves the same problem and employs inverse operators to find the solution. Theirs is
the most comprehensive investigation of the sessile-drop oscillation problem to date. They
considered different types of vibration mode shapes, namely zonal, sectoral and tesseral,
which were subsequently validated experimentally by Chang et al. (2015). In the current
work, the resonant frequencies for the mode shapes discussed by Bo–St are calculated and
compared with the experimental data reported in the literature.

The purpose of this work is to show that our model, based on toroidal coordinates,
yields fully analytical solutions for the case of an inviscid drop with fixed CL in the
shape of a spherical cap. Stating the hydrodynamic equations with boundary conditions,
we perform an eigenmode analysis to find the solution (§ 2). This model is then used to
identify resonant frequencies for zonal, sectoral and tesseral vibration modes (§ 3). Its
predictions are compared with experimental data reported in the literature. Future work
and possible extensions of this model are discussed in (§ 4).

2. Theory

2.1. Sessile-drop geometry
The liquid–vapour interface of a sessile drop with contact angle θc ∈ (0,π) can be
expressed in toroidal coordinates as r′ = r′(α, β, ϕ) (figure 1a). Variable α ∈ [0,∞)

919 A39-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

41
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.419


Toroidal analysis of an oscillating sessile drop
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Figure 1. (a) Three-dimensional schematic of toroidal coordinate system r′ = r′(α, β, ϕ) overlaid on a sessile
drop. Based on Li, Kar & Kumar (2019). (b) Diametral section of the drop (blue shaded region) with toroidal
gridlines embedded into it. On a red circle, β is constant, on a purple circle, α is constant. Defining expressions
for α and β are also displayed.

varies along the surface ∂Df , where β ∈ [0,π] is the angle subtended by foci F1,F2 on
∂Df and ϕ ∈ [0, 2π] varies in the azimuthal direction. The equilibrium (base) state Γ of
the drop can be defined as

β = β0, α ∈ [0,∞], ϕ ∈ [0, 2π]. (2.1)

A small perturbation η′(α, ϕ, t) on Γ (with the CL being fixed) leads to a competition
between the drop’s inertia and capillarity, and the resulting motion is oscillatory in nature
(cf. figure 1b). These disturbances are often expressed in terms of

h′
α = h′

β = c
coshα − cosβ

, h′
ϕ = c sinhϕ

coshα − cosβ
, (2.2a,b)

where c is the drop contact radius and h′
α , h′

β and h′
ϕ are the scale factors of the toroidal

system. Here the prime notation indicates that the variables are dimensional. In the
following text, prime notation will be dropped from dimensionless variables, except for
density ρ, surface tension γ and contact radius c of the drop. The scale factor quantifies
the change in position of a point on changing one of its coordinates, so a Δα change in α
(keeping other coordinates constant) corresponds to a change in distance along α̂ of h′

αΔα
(cf. figure 1a).

2.2. Equations and boundary conditions
The flow is assumed to be incompressible and irrotational. The velocity field v′ is
described as v′ = ∇ψ ′, where the velocity potential ψ ′ satisfies Laplace’s equation

∇2ψ ′ = 0 [D], (2.3)

in the drop domain D. The equation becomes closed form when subject to the
no-penetration condition

∇ψ ′ · β = 1
h′
β

∂ψ ′

∂β
= 0 [∂Ds := β = π], (2.4)
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at the substrate ∂Ds, and a free-surface kinematic boundary condition

∇ψ ′ · β = 1
h′
β

∂ψ ′

∂β
= ∂η′

∂t′
[∂Df := β = π − θc], (2.5)

at the interface ∂Df , where the normal velocity is set equal to the time derivative of
perturbation. For an inviscid fluid, applying linear wave theory, the pressure field is
described by the momentum equation

p′ = −ρ ∂ψ
′

∂t′
[D]. (2.6)

A small disturbance η′ to the equilibrium surface Γ causes a deviation from the initially
spherical shape which is described by the modified Laplace equation

p′

γ
= −(k2

1 + k2
2)η

′ −ΔTη
′, (2.7)

where k1, k2 are the principal curvatures,ΔT is the Laplace–Beltrami operator; definitions
are given in Appendix A. In subsequent sections, we have replaced the term coshα − cosβ
with b(α, β) while simplifying the terms involving scale factors h′

α , h′
β and h′

ϕ .

2.3. Curvatures and Laplace–Beltrami operator for toroidal coordinates
The first and second fundamental forms of a surface allow the calculation of curvature
and Laplace–Beltrami operators, respectively, for a parametric surface x(u1, u2). The
coefficients for first fundamental form are given by the metric tensor

gij ≡ xi · xj =
(

E F
F G

)
, (2.8)

where xi = ∂x/∂ui, xj = ∂x/∂u j and i, j = 1, 2 (Kreyszig 1959). The derivation of the
principal curvatures and the Laplace–Beltrami operator from the coefficients E, F and G
is given in Appendix A.

2.4. Reduction to eigenmode problem
The characteristic length scale assumed in this problem is the contact radius of the
drop, c. Performing a dimensional analysis on the six parameters; p′, ψ ′, t′, ρ, γ and c (or
equivalently η′) involved in (2.6) and (2.7) gives rise to three dimensionless parameters:
ψ ′t′/c2, γ t′2/ρc3 and p′t′2/ρc2, giving characteristic scalings of

√
ρc3/γ (time),

√
γ /ρc

(velocity) and γ /c (pressure).
A drop with pinned CL is subjected to a small perturbation η′(α, ϕ, t′). Resolving

dimensional η′ and ψ ′ into individual components (Drazin 2002), dimensionless
eigenfunctions y(α) and φ(β, α), normal modes (frequency Ω) and azimuthal direction
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(wavenumber l), gives

η′(α, ϕ, t′) = c y (α) eiΩ ′t′eilϕ, ψ ′(r′, t′) =
√
γ c
ρ
φ(β, α) eiΩ ′t′eilϕ. (2.9a,b)

Substituting equation (2.9a,b) into equations (2.3)–(2.7) yields

∂

∂β

(
hϕ
∂φ

∂β

)
+ ∂

∂α

(
hϕ
∂φ

∂α

)
− l2

b(α, β) sinhα
φ = 0 [D], (2.10a)

∂φ

∂β
= 0 [∂Ds := β = π], (2.10b)

∂φ

∂β
= iλy

b(α, β0)
[∂Df := β = π − θc], (2.10c)

iλφ = 2 sin2 βy + b2(α, β0)

[
1

sinhα
∂

∂α

(
sinhα

∂y
∂α

)
− l2y

sinh2 α

]
, (2.10d)

λ2 = ρΩ ′2c3

γ
, (2.10e)

where b(α, β0) means that it is defined on the interface Γ := β = β0. Equation (2.10a)
is Laplace’s equation in separated form, (2.10b) is the no-penetration boundary condition,
(2.10c) and (2.10d) are free-surface kinematic boundary conditions, and (2.10e) gives the
dimensionless frequency λ. It should be noted that all variables in (2.10a)–(2.10d) are
dimensionless, hence without prime notation.

2.5. Solving the eigenmode equations
The solution to (2.10a) in the toroidal system is given by Lebedev (1965) as

φ = a[APl
v−1/2(coshα)+ BQl

v−1/2(coshα)][C cos vβ + D sin vβ], (2.11)

where a = √
2(coshα − cosβ), Pl

v−1/2(coshα) and Ql
v−1/2(coshα) are Legendre

functions of the first and second kind (also called toroidal functions), with v the toroidal
degree and l the azimuthal order. At α = 0, Pl

v(1) = 1 and limz→1+ Ql
v(z) = ∞, which

means that the latter is not defined at the apex of the drop. Thus, setting B = 0 and v = iτ
(see Lebedev 1965, p. 227) gives

φ = aPl
iτ−1/2(coshα)[C cos iτβ + D sin iτβ]. (2.12)

Using (2.10) and substituting β = π in (2.10b) gives C = −iD coth π. Upon further
simplification (2.12) reduces to

φ = aP(coshα)f (τβ), (2.13)

where P(coshα) denotes Pl
iτ−1/2(coshα) and f (τβ) = sinh τβ − coth τπ cosh τβ.

Substituting (2.13) into (2.10c) (after multiplying both sides by b(α, β0)) gives

iλy = b(α, β0)
∂φ

∂β
= Pb(α, β0)

(
f
a

sinβ0 + τa f1

)
= PT, (2.14)

where T(α, β0) = b(α, β0)((f /a) sin β0 + τa f1) and f1 = cosh τβ0 − coth τπ sinh τβ0.
Functions T(α, β0), f (τβ0), f1(τβ0) and P(coshα) are written without arguments for
clarity.
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An important consequence of (2.14) is that y = 0 at the CL, which arises because P → 0
as α → ∞, and so use of the toroidal coordinate system imposes the fixed CL condition
on the problem. The mobility of the CL is defined as 1/Λ by Bo–St, which is zero for an
immobile CL and infinite for a fully mobile CL. Only the immobile CL case, Λ = 0, is
considered in the current work.

Substituting the above equation into (2.10d) gives, at β = β0,

− λ2φ = 2 sin2 β0PT + b2(α, β0)

[
1

sinhα
∂

∂α

(
sinhα

∂

∂α
(PT)

)
− l2

sinh2 α
PT

]
. (2.15)

This can be rearranged as

− λ2φ = 2 sin2 β0PT + b2(α, β0)[IT + II], (2.16)

where I and II are, respectively,

I = 1
sinhα

∂

∂α

(
sinhα

∂P
∂α

)
− l2

sinh2 α
P, (2.17a)

II = ∂T
∂α

∂P
∂α

+ 1
sinhα

∂

∂α

(
sinhαP

∂T
∂α

)
. (2.17b)

The term I is equivalent to (v2 − 1
4 )P (see Lebedev 1965, p. 224). In fact, an analogous

simplification is performed while deriving an expression for the eigenfrequencies of a
free spherical drop in Rayleigh’s derivation (see Landau & Lifshitz 1987, p. 246). Further
simplification of the right-hand side of (2.16) gives

−λ2 =
[

2 sin2 β0−b2(α, β0)

(
τ 2+ 1

4

)]
T
af

+ b2(α, β0)

af

[
Tα

(
2Pα

P
+ cothα

)
+ Tαα

]
,

(2.18)

where a single or double subscript α on a function denotes single or double derivative of
the function with respect to α. The expressions for Tα, Tαα,P and Pα (which fall under
the class of hypergeometric functions) are given in Appendix B.

3. Results

The variation of dimensionless frequency λ with contact angle θc = π − β0 is determined
by solving (2.18). Previous studies such as Bo–St classified the vibrational modes as zonal
(l = 0), sectoral (τ = l) and tesseral (l /= 0, τ /= l). Results are presented for each type of
mode in turn.

3.1. Zonal (l = 0) modes
When the disturbance of the interface is axisymmetric, the mode shapes are termed zonal.
For a sessile drop of fixed contact radius c, increasing the contact angle θc increases the
volume of the drop (inertia) and thus decreases the frequency λ (cf. figure 2a). There is
excellent agreement between the model and the data of Chang et al. (2015) in this figure,
particularly at higher mode numbers. For instance, for τ = 10 and θc = 40◦, our model
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Figure 2. Results for zonal modes, m = 0. (a) Effect of contact angle θc on dimensionless frequency λ for
toroidal mode number τ . Solid lines are solutions to (2.18) and symbols are the experimental values reported
by Chang et al. (2015). Inset shows the comparison of same experiments with Bo–St model (dashed lines).
Effect of τ on λ (b) and Ω ′ (c). Symbols show experimental values reported by (b) Chang et al. (2013) and
(c) Mettu & Chaudhury (2012) for a water drop. Loci show model predictions for different contact angles:
(b) solid line, θc = 68.6◦; dashes, θc = 63.6◦; dots, θc = 73.6◦; (c) solid line, θc = 79.5◦; dashes, θc = 68◦;
dots, θc = 91◦. Inset in (b) shows interface shape y plotted on Γ using (2.18) for τ = 10 (not to scale).

overpredicts slightly, by a factor of 1.05, while the Bo–St model overpredicts by a factor
of 1.25 (see the inset to figure 2a). For the other modes at θc < 60◦, the agreement is
better than the Bo–St model. Higher mode numbers correspond to more points (nodes) of
intersection of the disturbed interface δDf with the undisturbed interface Γ . As there is no
variation in the azimuthal direction, a front view (see the inset to figure 2b) is sufficient to
describe the mode shape. This figure shows the case with 10 nodes (τ = 10).

Further comparisons of predicted zonal mode frequencies with experimental
measurements are shown for the data sets reported by Chang et al. (2013) and Mettu &
Chaudhury (2012) in figures 2(b) and 2(c), respectively. In the former, the experimental
values lie within the range of theoretical frequencies calculated for the range of contact
angles θc involved. For the higher modes, τ = 8 and 10, the frequencies lie at the upper end
of the theoretical span, where there were a limited number of data points as these require
larger droplets (�5μL (see Mettu & Chaudhury 2012, figure 4a), whereas lower modes
(τ = 2, 4, 6) were experimentally accessible for droplets with smaller volume, ≤5μL. In
addition, there is a small increase in slope for τ = 10 (compared to slope at τ = 6); this
feature is also present in figure 2(a) for θc ≈ 65◦. In figure 2(c), the width of the predicted
frequency band is small and lies at the lower end of the range of observed frequencies.
A possible explanation for this mismatch is that the model neglects contributions from
viscous effects. Chang et al. (2013) reported that the bandwidth of predicted frequencies
increased when viscous contributions were added (noting that the dimensional frequency
is plotted here). Chang et al. (2015) subsequently showed that the viscous contribution
is characterised by the Ohnesorge number, Oh = μ/

√
ρcγ , and even at a small value of

Oh = 0.003 for water (instead of Oh = 0 for the inviscid case) the resonant peak changed
from an infinite to a finite value and, thus, increased the bandwidth of predicted frequency
(see Chang et al. 2015, p. 446). The effect of viscosity on a drop undergoing oscillations of
arbitrary amplitude has been discussed both for free drops and sessile/pendant drops (see
Basaran 1992 and Wilkes & Basaran 1997). For the latter case, it has been reported that
as the viscosity increases, the resonant frequency also increases, so that excluding viscous
effects can lead to predicted frequencies lying at the lower end of the observed spectrum.
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Figure 3. Effect of contact angle on dimensionless frequency for sectoral modes, τ = l, for (a) [5, 5], (b) [7, 7]
and (c) [9, 9]. Solid loci show the solutions to (2.18), dashed loci are the results presented by Bostwick & Steen
(2014). Symbols indicate experimental data reported by Chang et al. (2015).
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Figure 4. Effect of contact angle on dimensionless frequencies for tesseral modes with [τ,m] values of
(a) [5, 3], (b) [7, 5], (c) [9, 5] and (d) [9, 7]. Solid loci show the solutions to (2.18)), dashed lines are the results
presented by Bostwick & Steen (2014). Symbols show experimental data reported by Chang et al. (2015). The
shaded region in (d) represents the range of frequencies calculated using VPF theory by Chang et al. (2015)
for water, with substrate forcing and viscosity included.

3.2. Sectoral (τ = l, l /= 0) modes
A non-axisymmetric mode with wavenumber pair [τ, l] has l longitudinal intersections and
(τ − l)/2 latitudinal intersections (or τ − l nodes on the interface) with the undisturbed
interface Γ (see Bostwick & Steen 2014, p. 19). A sectoral mode, with τ = l, is a special
case where there are only longitudinal intersections. Figure 3 compares the experimental
frequencies reported by Chang et al. (2015) with our model and the Bo–St model. There
is good agreement with our model for τ = 9. For τ = 5 and 7, the two models bracket the
data.

3.3. Tesseral (τ /= l, l /= 0) modes
A tesseral mode shape with wavenumber pair [τ, l] has non-zero longitudinal and
latitudinal intersections because τ /= l. Figure 4 compares the results for our model and
the Bo–St model in a similar fashion to the sectoral mode. For the τ = 9 cases, our model
agrees with the experimental data quite well for all θc values investigated. For θc ≤ 65◦,
the Bo–St model does not capture the observed trend, for 50◦ and l = 7, it overpredicts by
a factor of 1.17, whereas our model underpredicts slightly by a factor of 1.05. For τ = 7,
there is good agreement between the experimental data and both models as θc decreases
from 140◦ to 70◦, below which our model continues to perform well and Bo–St starts to
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diverge. For τ = 5, our model captures the frequencies at low θc whereas the Bo–St model
works well at higher values.

It should be noted that our model cannot predict the frequencies for small contact angles,
because in this case a larger fraction of the sessile-drop volume lies within the solid–liquid
boundary layer and drop–substrate interactions then cause damping of oscillations. The
range of contact angles suggested to avoid boundary layer viscous dissipation effects,
discussed in Sharp (2012), is 30◦–150◦.

For the lowest mode, [5, 3], there is a slight overprediction for larger contact angles. This
can be attributed to the assumption of a pinned CL in the current work. If the CL is, instead,
assumed to be mobile and not pinned, the slope of the frequency-versus-contact-angle
curve will decrease at larger contact angles (see Bostwick & Steen 2014, figures 10 and
11). This represents a limitation in the current model in that mobile CL behaviour is not
readily incorporated in the toroidal coordinate approach.

4. Discussion and conclusions

The superior performance of our model for lower θc and higher modes is probably the
result of using toroidal coordinates, which fit the sessile drop naturally. An interesting
physical insight from this work is that the slope of the λ versus θc curve decreases as θc
decreases; the curve almost reaching a plateau. This is also suggested by experiments.
The physical models present in literature incorporate bulk dissipation and CL (Davis)
dissipation, e.g. Bostwick & Steen (2016), to account for this plateau. On the one hand,
the current toroidal model, while established on zero viscosity and fixed CL assumptions,
can still predict this plateau with good success. On the other hand, incorporating more
dissipation terms will improve this model and bring more understanding of observations
such as mode mixing and mode competition (Bostwick & Steen 2015). Note that the
strength of this inviscid theory coupled with an appropriate coordinate system points to the
importance of choosing a framework which maps the complicated geometries of physics
problems perfectly, as previously done in Fokas & Nachbin (2012) and Richardson (1992).

There are exceptions, e.g. figures 3(a) and 4(a), and we here consider whether the
mismatch between the predictions of the model and the experimental data could arise from
the assumptions made in our model. The larger error incurred by the Bo–St model can be
attributed to the approach used to enforce the no-penetration condition. Earlier works on
constrained drops (e.g. Ramalingam, Ramkrishna & Basaran 2012 and Prosperetti 2012)
essentially used the Lagrange multiplier method to enforce the no-penetration condition at
the pinning circle and these methods permitted a discontinuity in the interface shape at the
contact point. The Bo–St method does not allow a discontinuity at the pinning sites, which
leads to overprediction of the frequency (see Bostwick & Steen 2015, p. 558).

The model considers the sessile drop on a substrate as a mass–spring system, where
viscous effects and substrate–drop interactions are neglected. These assumptions were
also made in the Bo–St model and were subsequently relaxed in their subsequent work,
for example, Bostwick & Steen (2016), where they studied damping for viscous drops
(with fixed CL) undergoing substrate-forced oscillation. To extend our model along the
lines discussed in Chang et al. (2015), viscous contributions could be incorporated by
adding a damping term, iλεC[y], to the right-hand side of (2.15), where C is the dissipation
operator and ε = μ/(ρcγ )1/2 is the Ohnesorge number. Substrate–drop interactions can
be modelled using two main assumptions: (i) constant contact radius; and (ii) modelling
the substrate forcing via the bulk pressure in the drop in the form of Faraday oscillations.
With regard to (i), it should be noted that contact-angle hysteresis on the modes cannot
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be incorporated using the toroidal framework presented here because it requires the
incorporation of a dynamic CL condition (Bostwick & Steen 2014). With (ii), the substrate
contribution is incorporated by adding a term F0eiλt to the right-hand side of (2.15), where
λ is the frequency of substrate forcing (not the natural frequency) and F0 its amplitude.
Chang et al. (2015) used these assumptions and incorporated the aforementioned effects in
their viscous potential flow (VPF) theory. The envelope of solutions which they obtained is
shown as a shaded region in figure 4(d) and it spans Bo–St and our model (both inviscid).
It is, thus, expected that the addition of viscous and substrate contributions to our model
will modify (2.18) and increase the bandwidth of predicted frequencies. This is the subject
of ongoing work, where the aim is to identify the contributions of viscous damping and
substrate forcing, and thereby establish when significant differences will arise from the
inviscid model.

The description of an oscillating drop presented here is not suitable for cases where
the drop shape is influenced by gravity, which is quantified by Bo (ratio of gravity to
surface tension). As the volume of the drop increases, the drop shape changes from that
of a truncated sphere (Bo = 0), towards being ellipsoidal (0 < Bo < 5) until it forms
a flat puddle (Bo > 5), with uniform depth except near the edges (Lubarda & Talke
2011). We believe that it should be possible to model a flattened drop using confocal
ellipsoidal coordinates system in the 0.5 < Bo < 5 regime. Finding resonant frequencies
for a flattened drop will allow us to extend our Bo = 0 theory to 0 < Bo < 5, and
compare the results with the theory for flattened drops presented by Noblin, Buguin &
Brochard-Wyart (2004) where the drop is modelled as a liquid bath and the resonant
frequency is that associated with a standing wave on its interface.

This work introduces, for the first time, an analytical solution to the sessile-drop
oscillation problem. The superiority of this model lies in the fact that its predictions work
well for lower contact angles (<75◦) compared with the existing models. It also predicts
a decrease in slope as θc decreases, which is consistent with experiments. The behaviour
at lower contact angles (<30◦) remains to be experimentally validated (and physically
understood) for all types of modes.

To summarise, our model provides a concise solution to the sessile-drop oscillation
problem which opens a new window to researchers interested in this and related problems.
A clear next step could be to test the θc < 30◦ regime experimentally, model a drop being
vibrated on an inclined plane (see Brunet, Eggers & Deegan 2007) and extend the model
to larger drops by including the effects of gravity.
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Appendix A. Differential geometry of the toroidal system

A general point on the surface β = β0 is x(α, ϕ) = (x, y, z) such that

x = c sinhα cosϕ
b

, y = c sinhα sinϕ
b

, z = c sinβ
b

, (A1a–c)

where b ≡ b(α, β) = coshα − cosβ (see Lebedev 1965, p. 222). Putting i = α, j = ϕ in
(2.8) gives

xα =
(

c cosϕd
b2 ,

c sinϕd
b2 ,−c sinβ sinhα

b2

)

xϕ =
(−c sinhα sinϕ

b
,

c sinhα cosϕ
b

, 0
)

E = xα · xα =
( c

b

)2

F = xα · xϕ = 0

G = xϕ · xϕ =
(

c sinhα
b

)2

W =
√

EG − F2 = c2 sinhα
b2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (A2)

where d = 1 − coshα cosβ and W is the determinant of the metric tensor.
The coefficients of second fundamental form of surface are L = xii · n, M = xij · n,

N = xjj · n where n = xi × xj/|xi × xj| and |xi × xj| = W. Again, setting i = α, j = ϕ

gives

L = (xααxαxϕ)
W

= −c sinβ
b2

M = (xαϕxαxϕ)
W

= 0

N = (xϕϕxαxϕ)
W

= −c sinβ sinh2 α

b2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
, (A3)

where the notation (a b c), used in Kreyszig (1959), stands for the triple product a · (b × c)
of vectors a, b and c. In (2.7), the first term in the right-hand side is then

k2
1 + k2

2 =
(

EN − 2FM + GL
W2

)2

− 2
LN − M2

W2 = 2 sin2 β

c2 , (A4)

and the second term (the Laplace–Beltrami operator) becomes

ΔTη = 1
W

[
∂

∂α

(
Gηα − Fηϕ

W

)
+ ∂

∂ϕ

(
Eηϕ − Fηα

W

)]

= b2

c2

[
1

sinhα
∂

∂α

(
sinhα

∂η

∂α

)
+ 1

sinh2 α

∂

∂ϕ

(
∂η

∂ϕ

)]
. (A5)

Another form of (A5) is derived in the notes of Deserno (2004, p. 24).
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Appendix B. Hypergeometric functions

Hypergeometric functions are solutions to the second-order ODE encountered while using
a system of orthogonal curvilinear coordinates to solve Laplace’s equation (see Lebedev
1965, pp. 161–173). In our case, we use the toroidal system to solve Laplace’s equation
and find Legendre functions of the first kind Pv(z) as the solution (hence, referred to as
the toroidal functions). The integral representations of these functions are given below, for
different cases:

(i) When l = 0 (see Lebedev 1965, p. 173)

Pv(coshα) = A1

∫ ∞

0

cosh(v + 1/2)θ√
2 cosh θ + 2 coshα

dθ, (B1)

for α > 0,−1 < Re(v) < 0 and

Pα = d
dα
(Pv(coshα)) = A1 sinhα

∫ ∞

0

− cosh(v + 1/2)θ
(2 cosh θ + 2 coshα)3/2

dθ, (B2)

for α > 0,−1 < Re(v) < 0. A1 = (2/π) cos(v + 1
2 )π.

(ii) When l /= 0 (see Lebedev 1965, pp. 172, 199)

Pl
v(coshα) = A2

∫ α

−α
e−(v+1/2)θTl(cosψ)√

2 coshα − 2 cosh θ
dθ, (B3)

where A2 = Γ (v + m + 1)/πΓ (v + 1), Γ is the gamma function and Tl is the
Chebyshev polynomial.

Other functions used in (2.18) in the main text are

Tα
af

= sinhα
(

2 sinβ0
a1

a
+ τ

f1
f

)
+ b

(
2 sinhα

(
sinβ0

a2

a
+ τ

f1
f

a1

a

))
, (B4)

Tαα
af

= 2 sin2 hα
(

2 sinβ0
a1

a
+ τ

f1
f

)
+ 2 sin2 hα

(
2 sinβ0

a2

a
+ τ

f1
f

a1

a

)

+ 4b sinh2 α

(
2 sinβ0

a3

a
+ τ

f1
f

a2

a

)
+ coshα

(
2 sinβ0

a1

a
+ τ

f1
f

)

+ 2b coshα
(

2 sinβ0
a2

a
+ τ

f1
f

a1

a

)
, (B5)

where we have used the notation a1 = 0.5/a, a2 = −0.25/a3, a3 = 0.375/a5 and f1 =
cosh τβ0 − coth τπ sinh τβ0.
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