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This paper is a study of the water wave problem in a two-dimensional domain of infinite
depth in the presence of non-zero constant vorticity. A goal is to describe the effects of
uniform shear flow on the modulation of weakly nonlinear quasi-monochromatic surface
gravity waves. Starting from the Hamiltonian formulation of this problem and using
techniques from Hamiltonian transformation theory, we derive a Hamiltonian Dysthe
equation for the time evolution of the wave envelope. Consistent with previous studies,
we observe that the uniform shear flow tends to enhance or weaken the modulational
instability of Stokes waves depending on its direction and strength. Our method also
provides a non-perturbative procedure to reconstruct the surface elevation from the wave
envelope, based on the Birkhoff normal form transformation to eliminate all non-resonant
triads. This model is tested against direct numerical simulations of the full Euler equations
and against a related Dysthe equation derived recently by Curtis, Carter & Kalisch
(J. Fluid Mech., vol. 855, 2018, pp. 322–350) in the context of constant vorticity. Very
good agreement is found for a range of values of the vorticity.

Key words: Hamiltonian theory, surface gravity waves, shear-flow instability

1. Introduction

The water wave problem refers to the motion of a free surface over a body of water
of finite or infinite depth. Its classical formulation usually assumes that the fluid is
inviscid and irrotational. It is well known since the seminal work of Zakharov (1968)
that in this setting, the water wave equations can be written as a Hamiltonian system
with a standard Darboux symplectic structure whose Hamiltonian is the total energy. The
canonical conjugate variables are given by (η, ξ), where η(x, t) is the surface elevation,
and ξ(x, t) denotes the boundary values of the velocity potential on the free surface. With
introduction of the Dirichlet–Neumann operator G(η) that maps the Dirichlet boundary
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condition for a harmonic function in the fluid domain to its Neumann boundary condition,
this Hamiltonian takes an explicit lower-dimensional form

H(η, ξ) = 1
2

∫
R

[
ξ G(η) ξ + gη2

]
dx, (1.1)

in terms of surface variables alone (Craig & Sulem 1993). Moreover, the operator G(η)
is analytic with respect to η for Lipschitz functions η, and this provides an expansion
of the Hamiltonian near the stationary solution w = (η, ξ) = 0, which corresponds to a
fluid at rest (Coifman & Meyer 1985). The solution w = 0 is an elliptic stationary point
in dynamical systems terms. In this Hamiltonian framework, perturbation calculations can
be performed following general rules from Hamiltonian transformation theory, including
canonical transformations and reduction to normal forms, to derive asymptotic models for
weakly nonlinear water waves while preserving the Hamiltonian character of the original
system (see Craig, Guyenne & Sulem (2021b) for a review).

Recently, a number of theoretical investigations have been devoted to the water
wave problem with non-zero vorticity due to its relevance to oceanography and coastal
engineering, where the influence of currents on waves may play an important role
(Constantin 2001; Steer et al. 2019). Unlike the irrotational case, a full-dimensional
computation is in general required to solve for the vorticity field. This has prompted efforts
to propose simplified models for rotational waves in the long-wave shallow-water regime
(Castro & Lannes 2014; Richard & Gavrilyuk 2015). Of special interest is the case of
non-zero constant vorticity, which corresponds to vertically shear flow with a linear profile.
The direction of the underlying current can be that of wave propagation (co-propagating)
or opposite (counter-propagating). Similar to the irrotational water wave problem, this
particular case allows for a lower-dimensional reformulation of the governing equations.
As a consequence, it has received much attention in both mathematical and numerical
studies, regarding e.g. the existence and stability of steadily progressing wave solutions
(Teles Da Silva & Peregrine 1988; Vanden-Broeck 1996; Segal et al. 2017; Dyachenko &
Hur 2019; Hur & Wheeler 2020; Blyth & Părău 2022), the flow structure beneath waves
(Ribeiro, Milewski & Nachbin 2017), or the focusing of transient waves by an adverse
current (Choi 2009; Moreira & Chacaltana 2015).

Furthermore, as an extension of Zakharov’s idea, a Hamiltonian formulation for
nonlinear water waves with constant vorticity has been derived by Wahlén (2007) (see
also Constantin, Ivanov & Prodanov 2008). The associated symplectic structure in terms
of (η, ξ) is not canonical, but a change of variables reduces the system to a canonical one.
Based on this formulation, recent work has been conducted involving long-wave modelling
in the Korteweg–de Vries regime (Wahlén 2008), rigorous mathematical analysis on the
existence of quasi-periodic travelling wave solutions (Berti, Franzoi & Maspero 2021),
and direct numerical simulation of unsteady waves on deep or shallow water (Guyenne
2017, 2018). In particular, the reduction to surface variables makes it possible to solve the
full equations via efficient and accurate numerical solvers such as the boundary integral
method, the conformal mapping technique or the high-order spectral method.

This paper is devoted to the effects of constant vorticity in the setting of weakly
nonlinear surface gravity waves, for which modulation theory is a classical tool.
Under consideration is the asymptotic scaling regime where approximate solutions are
constructed as slow modulations of monochromatic waves in two space dimensions. For
this problem, Thomas, Kharif & Manna (2012) derived a cubic nonlinear Schrödinger
(NLS) equation governing the envelope of surface gravity waves on finite depth using
the method of multiple scales. Their analysis was extended to gravity–capillary waves by
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Hamiltonian Dysthe for water waves with constant vorticity

Hsu et al. (2018), and to hydroelastic waves by Gao, Wang & Milewski (2019). Similarly,
Curtis, Carter & Kalisch (2018) carried out the perturbation calculations up to an order
higher, and obtained a Dysthe equation for gravity–capillary waves with constant vorticity
on infinite depth. We also point out the earlier work of Baumstein (1998), who proposed
an NLS equation for gravity waves in the presence of linear shear confined to a finite-depth
layer near the free surface.

The classical theory for modulational analysis that describes the long-time evolution and
stability of fast oscillatory solutions of nonlinear dispersive partial differential equations
(PDEs) is based on the so-called modulational ansatz for solutions in the form of a
weakly nonlinear narrowband wave train. In the context of gravity water waves, the leading
non-trivial terms give rise to the NLS equation for the evolution of the slowly varying wave
envelope (see Zakharov (1968) for the original derivation in the irrotational case). Dysthe
(1979) later proposed a higher-order approximation for waves on deep water, which has
since been extended to many other settings. The Dysthe equation and its variants are widely
used in the oceanographic community because of their efficiency and ability to describe
waves of moderately large steepness. It has been observed that numerical solutions of
the Dysthe model provide a better agreement with laboratory experiments than the NLS
equation, and are able e.g. to emulate the asymmetry of propagating wave packets, a feature
not captured by the NLS equation (Lo & Mei 1985; Guyenne et al. 2021).

Unlike the NLS equation, which is a canonical Hamiltonian PDE, earlier versions
of the Dysthe equation do not preserve the Hamiltonian character of the primitive
equations. Gramstad & Trulsen (2011) used a Zakharov four-wave interaction model
obtained by Krasitskii (1994) to derive a Hamiltonian version of Dysthe’s equation for
three-dimensional gravity waves on finite depth. Craig, Guyenne & Sulem (2021a) and
Guyenne, Kairzhan & Sulem (2022) considered the modulational regimes for the two-
and three-dimensional problems of gravity waves on deep water, respectively, and derived
the corresponding Dysthe equations directly from the Euler equations for potential flow
through a sequence of canonical transformations. By construction, the resulting Dysthe
equations preserve the Hamiltonian character of the original problem. The main objective
of the present paper is to extend this approach to the modulation of weakly nonlinear wave
trains in the presence of constant vorticity, and derive a Dysthe equation that conforms
with the Hamiltonian nature of the water wave system in this setting. We focus on the
two-dimensional problem of wave propagation over infinite depth.

From a modelling viewpoint, it is desirable that such important structural properties as
energy conservation are inherited by the approximation. Aside from interest in the Dysthe
equation as an asymptotic model for water wave applications, this question is particularly
relevant considering the successful and widespread use of the Hamiltonian formalism in
physical sciences, including the field of fluid mechanics and free-surface flows (Benjamin
& Olver 1982; Krasitskii 1994). The associated mathematical tools as applied to this
physical problem are thus also of interest. Throughout our derivation, care is taken to
perform both the expansion of the Hamiltonian functional and the canonical change of
symplectic structure in a systematic manner, starting from the basic formulation introduced
by Wahlén (2007). Our calculations are facilitated by the fact that the Dirichlet–Neumann
operator admits an explicit Taylor series expansion (Craig & Sulem 1993). This property
has been used extensively in previous studies on irrotational water waves (Lannes 2013),
and can also be exploited here.

In modulation theory, reliance on a modulational ansatz implies that an additional step
is required to reconstruct physical quantities such as the surface elevation from the solution
of the envelope equation. This step is determined as part of the asymptotic analysis, and
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in classical approaches like the method of multiple scales, this reconstruction is typically
carried out perturbatively via a Stokes-type expansion. It is an important computation that
also influences the model’s performance, as shown e.g. in comparisons with experimental
data on extreme waves (Zhang, Guedes Soares & Onorato 2015). In the present context,
the reconstruction procedure is associated with the Birkhoff normal form transformation
to eliminate all non-resonant triads. It is a non-perturbative computation but requires
solving an auxiliary system of PDEs for the surface variables. In this way, higher-order
harmonic contributions to the wave spectrum are generated automatically from the carrier
wave component through nonlinear interactions according to these PDEs. We provide a
detailed derivation of this auxiliary system for non-zero constant vorticity, noting that the
resulting equations are significantly more complicated than in the irrotational case. By
definition, these equations also take the form of a Hamiltonian evolutionary system with
a canonical symplectic structure. As a consequence, the entire solution process fits within
a Hamiltonian framework. Based on this approximation, we conduct a linear stability
analysis and examine the dependence on vorticity. We then test analytical and numerical
predictions from our model against direct numerical simulations of the full system, by
inspecting the time evolution of perturbed Stokes waves and their possible instability. We
also compare our results to numerical solutions of the related Dysthe model by Curtis et
al. (2018), and discuss the performance of the different reconstruction methods. Previous
observations on the focusing (resp. defocusing) effects of negative (resp. positive) vorticity
associated with a counter-propagating (resp. co-propagating) current are recovered.

The starting point of our approach is the water wave system in its Hamiltonian
canonical form in terms of the surface elevation and a modified velocity potential. In
§ 2, the Taylor expansion of the Hamiltonian is presented and then expressed in terms
of the complex symplectic coordinates that diagonalize its quadratic terms. Unlike the
irrotational case, the linear dispersion relation is not an even function of wavenumber.
In § 3, we introduce elements of transformation theory and Birkhoff normal form
transformations. A third-order Birkhoff normal form transformation that eliminates all
non-resonant cubic terms from the Hamiltonian is calculated explicitly. It is defined
as an auxiliary Hamiltonian flow from the original variables to transformed variables.
In § 4, we propose the new Hamiltonian truncated at fourth order, and in § 5, we
use the modulational ansatz together with a homogenization technique to derive the
resonant quartic contributions. In § 6, the Hamiltonian Dysthe equation is obtained for
the wave envelope. Section 7 is devoted to a validation of our approximation through
numerical simulation and comparison with other models. First, a theoretical prediction on
modulational stability of Stokes waves in the presence of constant vorticity is established.
We then explain the procedure to reconstruct the surface variables by inverting the
third-order Birkhoff normal form transformation, and we describe the numerical methods
to solve the equations involved in the various models. Finally, we present a numerical
investigation where predictions from our Hamiltonian Dysthe equation are compared to
those from the envelope model by Curtis et al. (2018) and to direct simulations of the full
water wave system.

2. The water wave system

2.1. Governing equations
We consider the evolution of a free surface {y = η(x, t)} on top of a two-dimensional fluid
of infinite depth

S(η) = {x ∈ R,−∞ < y < η(x, t)} , (2.1)
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Hamiltonian Dysthe for water waves with constant vorticity

under the influence of gravity. Assuming that the flow is incompressible and inviscid, the
velocity field, denoted by u(x, y, t) = (u(x, y, t), v(x, y, t))T, satisfies the Euler equations

∂tu + (u · ∇)u + 1
ρ

∇P − g = 0,

∇ · u = 0,

⎫⎬⎭ (2.2)

where ρ is the (constant) fluid density, P(x, y, t) is the pressure, and g = (0,−g)T is the
acceleration due to gravity. Hereafter, the symbol ∇ denotes the spatial gradient (∂x, ∂y)

T

when applied to functions, or the variational gradient when applied to functionals. The
vorticity, defined as

γ = ∂xv − ∂yu, (2.3)

satisfies

∂tγ + (u · ∇)γ = 0, (2.4)

which expresses the well-known fact that in two dimensions, the vorticity is conserved
along particle trajectories. In particular, if the initial vorticity is constant throughout the
fluid domain, then it remains constant. The present study is devoted to flows with the
property of having non-zero constant vorticity.

The boundary conditions at the free surface are composed of the dynamical condition

P = P0, (2.5)

where P0 is the atmospheric constant, and the kinematic condition

v = ∂tη + u ∂xη. (2.6)

The divergence-free condition implies the existence of a stream function ψ such that

u = ∂yψ, v = −∂xψ, (2.7a,b)

satisfying

−�ψ = γ. (2.8)

By construction, ψ̃ = ψ + γ y2/2 is a harmonic function. Introducing the generalized
potential ϕ, defined as the harmonic conjugate of ψ̃ , we have

∂xϕ = ∂yψ̃ = u + γ y,

∂yϕ = −∂xψ̃ = v.

}
(2.9)

The presence of constant vorticity induces a horizontal background shear current that has
a linear profile in the vertical direction. We associate γ > 0 with a co-propagating current
because it contributes positively to the horizontal fluid velocity u = ∂xϕ − γ y for y < 0
(along most of the water column), while γ < 0 is associated with a counter-propagating
current.

949 A50-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.747


P. Guyenne, A. Kairzhan and C. Sulem

In the variables ϕ and ψ̃ , (2.2) takes the form

∇
[
∂tϕ + 1

2

(
(∂xϕ)

2 + (∂yϕ)
2
)

+ γ ψ̃ − γ y ∂xϕ + P + gy
]

= 0, (2.10)

and after integration, it reduces to

∂tϕ + 1
2

(
(∂xϕ)

2 + (∂yϕ)
2
)

+ γ ψ̃ − γ η ∂xϕ + gη = 0, (2.11)

at the free surface y = η, with P0 = 0 without loss of generality. The Euler system can
then be written as

�ϕ = 0 in S, (2.12)

∂tη − ∂yϕ + (∂xϕ)(∂xη)− γ η ∂xη = 0, on y = η(x, t), (2.13)

∂tϕ + 1
2

(
(∂xϕ)

2 + (∂yϕ)
2
)

+ γ ψ̃ − γ η ∂xϕ + gη = 0, on y = η(x, t), (2.14)

with the condition that ϕ, ψ̃ → 0 uniformly in x as y → −∞.

2.2. Hamiltonian formulation
It is well known since the seminal paper of Zakharov (1968) that the irrotational (γ = 0)
water wave system has a Hamiltonian formulation in the variables (η, ξ), where ξ(x, t) =
ϕ(x, η(x, t), t) is the trace of the velocity potential on the free surface.

Wahlén (2007) (see also Constantin et al. 2008) observed that in the presence of constant
vorticity, the water wave system in (η, ξ) can still be expressed as a Hamiltonian system
but in non-canonical form, namely

∂t

(
η

ξ

)
=
(

0 1
−1 γ ∂−1

x

)(
∂ηH
∂ξH

)
. (2.15)

The Hamiltonian H(η, ξ) is the total energy:

H(η, ξ) = 1
2

∫
R

[
ξ G(η) ξ − γ η2 ∂xξ + γ 2

3
η3 + gη2

]
dx , (2.16)

where G(η) is the Dirichlet–Neumann operator in the fluid domain, which associates to
the Dirichlet data ξ on y = η(x) the normal derivative of the harmonic function ϕ with an
additional normalized factor, namely

G(η) : ξ �−→
√

1 + (∂xη)2 ∂nϕ
∣∣
y=η. (2.17)

Other invariants of motion are the volume (or mass)

V =
∫

R

η dx, (2.18)

and the momentum (or impulse)

I =
∫

R

(
η ∂xξ − 1

2γ η
2
)

dx. (2.19)

Wahlén (2007) found that under the change of variables

(η, ξ) →
(
η, ζ = ξ − γ

2
∂−1

x η
)
, (2.20)
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Hamiltonian Dysthe for water waves with constant vorticity

system (2.15) can be transformed into canonical form

∂t

(
η

ζ

)
= J ∇H(η, ζ ) =

(
0 1

−1 0

)(
∂ηH
∂ζH

)
, (2.21)

where the Hamiltonian H(η, ζ ) = H(η, ξ) in the new variables is

H(η, ζ ) = 1
2

∫
R

[(
ζ + γ

2
∂−1

x η
)

G(η)
(
ζ + γ

2
∂−1

x η
)

− γ η2 ∂xζ − γ 2

6
η3 + gη2

]
dx.

(2.22)
In the above formulas, ∂−1

x η is defined as ∂−1
x η(x) = ∫ x

−∞ η(s) ds. We assume that η → 0
as x → ±∞. Furthermore, we assume that

∫∞
−∞ η dx = 0 at t = 0, which implies that it

remains so for all t. Indeed, integrating (2.13) in x over R, we get

∂t

∫
R

η dx −
∫

R

(
G(η) ξ − γ

2
∂xη

2
)

dx = 0. (2.23)

The second term on the left-hand side rewrites as
∫

R
G(η) ξ dx = ∫

∂S ∂nϕ dσ = ∫
S �ϕ dx

dy = 0, leading to
∫

R
η dx = 0 for all t.

Denoting by f̂k = (1/
√

2π)
∫

R
e−ikx f (x) dx the Fourier transform of a function f (x), we

have in particular

∂−1
x η(x) = − i√

2π

∫
R

1
k
η̂k eikx dk, ∂xζ(x) = i√

2π

∫
R

kζ̂k eikx dk. (2.24a,b)

From the above assumption,

η̂0 = 0, η̂k = O(k) for small k. (2.25)

In the following, we will drop the hat notation. Since η(x) and ζ(x) are real-valued
functions, we have the relation (η−k, ζ−k) = (η̄k, ζ̄k) where the overbar stands for complex
conjugation.

2.3. Taylor expansion of the Hamiltonian near equilibrium
It can be shown that the Dirichlet–Neumann operator is analytic in η (Coifman & Meyer
1985) and admits a convergent Taylor series expansion

G(η) =
∞∑

m=0

G(m)(η) (2.26)

about the quiescent state η = 0. For each m, the term G(m)(η) is homogeneous of degree
m in η, and can be calculated explicitly via recursive relations (Craig & Sulem 1993).
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Denoting D = −i ∂x, the first three terms are

G(0)(η) = |D|,
G(1)(η) = DηD − G(0)ηG(0),

G(2)(η) = −1
2

(|D|2η2G(0) + G(0)η2|D|2 − 2G(0)ηG(0)ηG(0)
)
.

⎫⎪⎪⎬⎪⎪⎭ (2.27)

In Fourier variables, substituting the expansion for G(η) into the Hamiltonian (2.22), we
get

H = H(2) + H(3) + H(4) + · · · , (2.28)

where each term H(m) is homogeneous of degree m in (η, ζ ). In particular, we have

H(2) = 1
2

∫
R

[
|k|
(
ζk − iγ

2k
ηk

)(
ζ̄k + iγ

2k
η̄k

)
+ g|ηk|2

]
dk,

H(3) = 1

2
√

2π

∫
R3

[
(−k1k3 − |k1| |k3|)

(
ζ1 − iγ

2k1
η1

)
η2

(
ζ3 − iγ

2k3
η3

)
−iγ k1ζ1η2η3 − γ 2

6
η1η2η3

]
δ123 dk123,

H(4) = − 1
8π

∫
R4

|k1| |k4| (|k1| + |k4| − 2|k3 + k4|)
(
ζ1 − iγ

2k1
η1

)
η2η3

×
(
ζ4 − iγ

2k4
η4

)
δ1234 dk1234.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.29)

In the above expressions, we use the compact notations (ηj, ζj) = (ηkj, ζkj), dk1...n =
dk1 . . . dkn and δ1...n = δ(k1 + · · · + kn), where δ(k) = (1/2π)

∫
R

e−ikx dx is the Dirac
distribution. Hereafter, the domain of integration is omitted in integrals and is understood
to be R for each xj or kj.

2.4. Linearization near equilibrium
The linearized water wave system about still water, written in terms of (η, ζ ), is

∂t

(
η

ζ

)
= J ∇H(2)(η, ζ ) =

⎛⎜⎝g − γ 2

4
∂−1

x |D| ∂−1
x −γ

2
∂−1

x |D|
γ

2
∂−1

x |D| |D|

⎞⎟⎠(ηζ
)
. (2.30)

We now introduce the symplectic complex coordinate

z := 1√
2

(
a(D) η + i a(D)−1 ζ

)
, (2.31)

where a2(D) := ω(D)/|D|, and ω(D) :=
√
γ 2/4 + g |D|. The mapping (η, ζ ) → (z, z̄) is

canonical, and in these variables, the water wave system becomes

∂t

(
z
z̄

)
=
(

0 −i
i 0

)(
∂zH
∂z̄H

)
:= J1

(
∂zH
∂z̄H

)
. (2.32)
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Hamiltonian Dysthe for water waves with constant vorticity

Equivalently, in the Fourier space,

zk := 1√
2

(
akηk + i a−1

k ζk

)
, (2.33)

where a2
k = ωk/|k| and ωk =

√
γ 2/4 + g |k|. Since the functions η(x) and ζ(x) are

real-valued in the physical space, we also have

z̄−k = 1√
2

(
akηk − i a−1

k ζk

)
. (2.34)

We can express ηk and ζk in terms of zk as

ηk = 1√
2

a−1
k (zk + z̄−k), ζk = 1

i
√

2
ak(zk − z̄−k). (2.35a,b)

The quadratic term H(2) given in (2.29) diagonalizes as

H(2) =
∫
Ωk |zk|2 dk, (2.36)

where

Ωk = Ω(k) = γ

2
sgn(k)+ ωk (2.37)

is the linear dispersion relation for deep-water gravity waves with constant vorticity (Berti
et al. 2021). The linearized system with H replaced by H(2) in (2.32) reduces to the scalar
equation ∂tzk = −iΩkzk.

We define the Poisson bracket of two functionals K(η, ζ ) and H(η, ζ ) of real-valued
functions η and ζ as

{K,H} =
∫ (

∂ηH ∂ζK − ∂ζH ∂ηK
)

dx. (2.38)

Assuming that K and H are real-valued, and using the Plancherel formula, it is written in
terms of the Fourier variables as

{K,H} =
∫ (

∂ηk H ∂ζk K − ∂ζk H ∂ηk K
)

dk =
∫ (

∂ηk H ∂ζ̄k
K − ∂ζk H ∂η̄k K

)
dk

=
∫ (

∂ηk H δζ−k K − ∂ζk H∂η−k K
)

dk =
∫ (

∂ηk1
H ∂ζk2

K − ∂ζk1
H ∂ηk2

K
)
δ12 dk12.

(2.39)

In terms of the complex symplectic coordinates, it becomes

{K,H} = 1
i

∫
(∂zk1

H ∂z̄−k2
K − ∂z̄−k1

H ∂zk2
K) δ12 dk12. (2.40)

3. Birkhoff normal form transformations

3.1. Third-order term in the Hamiltonian
The cubic term H(3) given in (2.29) can be simplified further due to symmetries. We first
state a simple identity that will be useful throughout the paper.
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P. Guyenne, A. Kairzhan and C. Sulem

LEMMA 3.1. For any (k1, k2, k3) ∈ R
3 with k1 + k2 + k3 = 0 and kj /= 0, we have

sgn(k1) sgn(k2)+ sgn(k1) sgn(k3)+ sgn(k2) sgn(k3) = −1. (3.1)

Proof . Consider the different sectors of the (k1, k2)-plane, and check that the equality is
satisfied in each sector. �

LEMMA 3.2. The cubic term H(3) in (2.29) can be written as

H(3) = − 1

2
√

2π

∫
(1 + sgn(k1) sgn(k3))

(
|k1| |k3| ζ1η2ζ3 + i

γ k2

2
η1ζ2η3

)
δ123 dk123.

(3.2)

Proof . Expanding the brackets in (2.29), we regroup the terms as follows:

H(3) = 1

2
√

2π

∫ [
(−k1k3−|k1| |k3|)ζ1η2ζ3+(k1k3 + |k1| |k3|) iγ

k1
η1η2ζ3 − iγ k1ζ1η2η3

+
(
(k1k3 + |k1| |k3|) γ 2

4k1k3
− γ 2

6

)
η1η2η3

]
δ123 dk123. (3.3)

The term on the second line of (3.3) corresponding to η1η2η3 vanishes because of the
symmetry in η1η2η3 under index rearrangements, and identity (3.1). Indeed, we have∫

(k1k3 + |k1| |k3|) γ 2

4k1k3
η1η2η3 δ123 dk123 = γ 2

4

∫
(1 + sgn(k1) sgn(k3))η1η2η3 δ123 dk123

= γ 2

6

∫
η1η2η3 δ123 dk123. (3.4)

As a result, H(3) simplifies to

H(3) = − 1

2
√

2π

∫ [
(1 + sgn(k1) sgn(k3)) |k1| |k3| ζ1η2ζ3

−iγ |k1| sgn(k3) ζ1η2η3
]
δ123 dk123. (3.5)

The first term in (3.5) identifies to the first term in (3.2), while its second term can be
transformed using index rearrangements and identity (3.1) as follows:∫

|k1| sgn(k3) ζ1η2η3 δ123 dk123 =
∫

|k2| sgn(k3) η1ζ2η3 δ123 dk123

=
∫ |k2|

2
(sgn(k1)+ sgn(k3))η1ζ2η3 δ123 dk123

= −
∫

k2

2
(1 + sgn(k1) sgn(k3)) η1ζ2η3 δ123 dk123.

(3.6)
�

In terms of the complex symplectic coordinates, H(3) is a linear combination of
third-order monomials:

H(3) = 1
8
√

π

∫
1 + sgn(k1) sgn(k3)

a1a2a3

(
ω1ω3 − γω2

2
sgn(k2)

)
× (z1z2z3 + z̄1z̄2z̄3 − 2(z̄−1z̄−2z3 + z−1z−2z̄3)+ z̄−1z2z̄−3 + z−1z̄2z−3) δ123 dk123.

(3.7)
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Hamiltonian Dysthe for water waves with constant vorticity

3.2. Canonical transformations
We are looking for a canonical transformation of the physical variables

τ : w =
(
η

ζ

)
�−→ w′, (3.8)

defined in a neighbourhood of the origin, such that the transformed Hamiltonian
H′satisfies

H′(w′) = H(τ−1(w′)), ∂tw′ = J ∇H′(w′), (3.9a,b)

and reduces to
H′(w′) = H(2)(w′)+ Z(4) + Z(5) + · · · , (3.10)

where each term Z(m) is of degree m, and all cubic terms are eliminated. We construct the
transformation τ by the Lie transform method as a Hamiltonian flow φ from ‘time’ s = −1
to ‘time’ s = 0 governed by

∂sφ = J ∇K(φ), φ(w′)|s=0 = w′, φ(w′)|s=−1 = w, (3.11a–c)

and associated to an auxiliary Hamiltonian K. Such a transformation is canonical and
preserves the Hamiltonian structure of the system. The Hamiltonian H′ satisfies H′(w′) =
H(φ(w′))|s=−1, and its Taylor expansion around s = 0 is

H′(w′) = H(φ(w′))|s=0 − dH
ds
(φ(w′))|s=0 + 1

2
d2H
ds2 (φ(w

′))|s=0 − · · · . (3.12)

Abusing notation, we further use w = (η, ζ )T to denote the new variable w′. Terms in this
expansion can be expressed using Poisson brackets as

H(φ(w))|s=0 = H(w), (3.13)

dH
ds
(φ(w))|s=0 =

∫ (
∂ηH ∂sη + ∂ζH ∂sζ

)
dx

=
∫ (

∂ηH ∂ζK − ∂ζH ∂ηK
)

dx = {K,H}(w), (3.14)

and similarly for the remaining terms. The Taylor expansion of H′ around s = 0 now has
the form

H′(w) = H(w)− {K,H}(w)+ 1
2 {K, {K,H}}(w)− · · · . (3.15)

Substituting this transformation into the expansion (2.28) of H, we obtain

H′(w) = H(2)(w)+ H(3)(w)+ · · ·
− {K,H(2)}(w)− {K,H(3)}(w)− {K,H(4)}(w)− · · ·
+ 1

2 {K, {K,H(2)}}(w)+ 1
2 {K, {K,H(3)}}(w)+ · · · . (3.16)

If K is homogeneous of degree m, and H(n) is homogeneous of degree n, then {K,H(n)}
is of degree m + n − 2. Thus in order to get the Hamiltonian as in (3.10), we need to
construct, if possible, an auxiliary Hamiltonian K = K(3) that is homogeneous of degree
3 and satisfies the relation

H(3) − {K(3),H(2)} = 0, (3.17)

which would eliminate all cubic terms from the transformed Hamiltonian H′. In the
following, we will show that it is possible to do this, and that there are no resonant cubic
terms in the Hamiltonian.
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P. Guyenne, A. Kairzhan and C. Sulem

3.3. Third-order Birkhoff normal form
To find the auxiliary Hamiltonian K(3) from (3.17), we use the following diagonal property
of the coadjoint operator coadH(2) := {·,H(2)} when applied to monomial terms (Craig &
Sulem 2016). For example, taking I := ∫

z1z2z̄−3 δ123 dk123, we have

{I,H(2)} = i
∫
(Ω1 +Ω2 −Ω−3)z1z2z̄−3 δ123 dk123, (3.18)

where Ω±j := Ω±kj .

PROPOSITION 3.1. The cohomological equation (3.17) has a unique solution K(3) that in
complex symplectic coordinates is

K(3) = 1
8i

√
π

∫
1 + sgn(k1) sgn(k3)

a1a2a3

(
ω1ω3 − γω2

2
sgn(k2)

)
δ123

×
(

z1z2z3 − z̄1z̄2z̄3

Ω1 +Ω2 +Ω3
+ 2

z̄−1z̄−2z3 − z−1z−2z̄3

Ω−1 +Ω−2 −Ω3
− z̄−1z2z̄−3 − z−1z̄2z−3

Ω−1 −Ω2 +Ω−3

)
dk123.

(3.19)

Alternatively, in the (η, ζ ) variables, K(3) has the form

K(3) = 1

4i
√

2π

∫
(1 + sgn(k1) sgn(k3)) δ123

×

⎡⎢⎢⎣−
γ 4

8
+ γ 2

2
g |k2| + g2 |k1| |k3|

g2 |k1| |k3|
(
−γ

2
sgn(k2) η1η2η3 + i |k2| η1ζ2η3 − 2i |k3| η1η2ζ3

)
+ γ sgn(k2)

g2 |k1| |k3|
(

2ω2
3 |k1| |k2| ζ1ζ2η3 − ω2

2 |k1| |k3| ζ1η2ζ3

+ i
γ sgn(k2)

2
|k1| |k2| |k3| ζ1ζ2ζ3

)⎤⎥⎥⎦ dk123. (3.20)

Proof . Using (3.7) and diagonal properties of the coadjoint operator as in (3.18), we solve
(3.17) uniquely for K(3), and derive (3.19).

To obtain (3.20), we first need to rewrite (3.19) as a linear combination of third-order
terms in zj and z−j only (j = 1, 2, 3). This can be done by applying the change of indices
(k1, k2, k3) → (−k1,−k2,−k3) to monomials z̄1z̄2z̄3, z−1z−2z̄3 and z−1z̄2z−3. Then (3.20)
is obtained in terms of (ηk, ζk) using (2.33) and (2.34). �

REMARK 3.1. The auxiliary Hamiltonian K(3) obtained in Proposition 3.1 is well-defined.
There are no singularities due to the denominators k1, k3 since ηk = O(k) as k → 0.
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Hamiltonian Dysthe for water waves with constant vorticity

Below, we write an alternative representation of the auxiliary Hamiltonian K(3) that will
be useful later when we compute the Poisson bracket {H(3),K(3)}. Introduce the coefficient
functions

S123 := 1+sgn(k1) sgn(k3)

a1a2a3

(
k1k3a2

1a2
3 − γ

2
k2a2

2

)
, A123 := 1

8
√

π
(S123+S312 − S231).

(3.21a,b)
Note that S123 = S321.

LEMMA 3.3. We have

H(3) =
∫

A123(z1z2z3 + z̄1z̄2z̄3 − z−1z−2z̄3 − z̄−1z̄−2z3) δ123 dk123,

K(3) = 1
i

∫ [
A123(z1z2z3 − z̄1z̄2z̄3)

Ω1 +Ω2 +Ω3
− A123(z−1z−2z̄3 − z̄−1z̄−2z3)

Ω−1 +Ω−2 −Ω3

]
δ123 dk123.

⎫⎪⎪⎬⎪⎪⎭
(3.22)

Proof . From (3.7), using that k1k3 = |k1| |k3| whenever 1 + sgn(k1) sgn(k3) /= 0, we have

H(3) = 1
8
√

π

∫
S123 ((z1z2z3 + z̄1z̄2z̄3)− 2(z−1z−2z̄3 + z̄−1z̄−2z3)

+ (z̄−1z2z̄−3 + z−1z̄2z−3)) δ123 dk123. (3.23)

By symmetry, the first term on the right-hand side in (3.23) becomes

1
8
√

π

∫
S123(z1z2z3 + z̄1z̄2z̄3) δ123 dk123 =

∫
A123(z1z2z3 + z̄1z̄2z̄3) δ123 dk123. (3.24)

The second term in (3.23) has two copies of (z−1z−2z̄3 + z̄−1z̄−2z3). We keep one copy
as it is, and apply two index rearrangements to the second copy. First, (k1, k2, k3) →
(k3, k2, k1) gives∫

S123(z−1z−2z̄3 + z̄−1z̄−2z3) δ123 dk123 =
∫

S123(z̄1z−2z−3 + z1z̄−2z̄−3) δ123 dk123,

(3.25)
where we use that S123 = S321. Second, (1, 2, 3) → (3, 1, 2) implies∫

S123(z̄1z−2z−3 + z1z̄−2z̄−3) δ123 dk123 =
∫

S312(z−1z−2z̄3 + z̄−1z̄−2z3) δ123 dk123.

(3.26)
For the third term in (3.23), we apply (k1, k2, k3) → (k2, k3, k1) and leave details to the
reader. Combining all the transformations above, we obtain

1
8
√

π

∫
S123 (−2(z−1z−2z̄3 + z̄−1z̄−2z3)+ z̄−1z2z̄−3 + z−1z̄2z−3) δ123 dk123

=
∫

A123(−z−1z−2z̄3 − z̄−1z̄−2z3) δ123 dk123, (3.27)

which together with (3.24) implies the first relation of (3.22). The second equation in
(3.22) is derived from (3.17) by using the diagonal properties (3.18). �
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The third-order normal form transformation defining the new coordinates is obtained as
the solution map at s = 0 of the Hamiltonian flow

∂s

(
η

ζ

)
=
(

0 1
−1 0

)(
∂ηK(3)

∂ζK(3)

)
, (3.28)

with initial conditions at s = −1 being the original variables.
To write K(3) in the physical space, it is convenient to introduce η̃ = Hη, ζ̃ = Hζ ,

where H = −i sgn(D) is the Hilbert transform. In the following, we will use the identities
H |D| = −∂x, H |D|−1 = ∂−1

x , and similar ones.

PROPOSITION 3.2. The auxiliary Hamiltonian K(3) in (3.20) can be written in the physical
space as

K(3) =
∫ [

1
2
η̃2 ∂xζ̃ − γ

4g
(gη2η̃ − ζ 2 ∂xη + 2ζ η̃ ∂xζ̃ )

− γ 2

4g2

(
g(∂−1

x η)(∂xη)ζ + gηη̃ζ̃ − gη̃(∂xζ̃ ) ∂
−1
x η − 1

2
ζ 2 ∂xζ̃

)
− γ 3

16g2

(
ζ 2η̃ + 2ζ(∂xζ̃ )∂

−1
x η − 2g(∂−1

x η)(∂xη̃)(∂
−1
x η̃)

)
− γ 4

16g2 (ηζ̃ − η̃ζ ) ∂−1
x η − γ 5

64g2 η̃(∂
−1
x η)2

]
dx. (3.29)

Proof . The main idea is to expand the brackets in the expression (3.20) for K(3), identify
terms and combine them appropriately. We decompose K(3) as

K(3) = I + II + III + IV, (3.30)

where I is the part of K(3) associated with ηηη-type terms, namely

I = 1

4i
√

2π

∫
(1 + sgn(k1) sgn(k3))

⎛⎜⎜⎝
γ 4

8
+ γ 2

2
g |k2| + g2 |k1| |k3|

g2 |k1| |k3|

⎞⎟⎟⎠ γ

2

× sgn(k2) η1η2η3 δ123 dk123. (3.31)

The part II is associated with ηηζ -type terms, III is associated with ηζζ -type terms, and IV
is associated with ζ ζ ζ -type terms. Below, we give the computations for I. The remaining
terms can be computed in a similar way. We further decompose I into a sum of three terms
I = I1 + I2 + I3 based on the power of γ involved:

I1 = γ 5

64ig2
√

2π

∫
(1 + sgn(k1) sgn(k3))

1
|k1| |k3| sgn(k2) η1η2η3 δ123 dk123,

I2 = γ 3

16ig
√

2π

∫
(1 + sgn(k1) sgn(k3))

|k2|
|k1| |k3| sgn(k2) η1η2η3 δ123 dk123,

I3 = γ

8i
√

2π

∫
(1 + sgn(k1) sgn(k3)) sgn(k2) η1η2η3 δ123 dk123.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.32)
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Hamiltonian Dysthe for water waves with constant vorticity

Writing sgn(k2) = k2/|k2| in I1, we get

I1 = γ 5

64ig2
√

2π

∫
k2

|k1| |k2| |k3| η1η2η3 δ123 dk123

+ γ 5

64ig2
√

2π

∫
sgn(k1) sgn(k2) sgn(k3)

|k1| |k3| η1η2η3 δ123 dk123 = I(1)1 + I(2)1 . (3.33)

Using the index rearrangements (k1, k2, k3) → (k2, k1, k3) and (k1, k2, k3) → (k1, k3, k2),
we see that I(1)1 = 0 since the integration is over k1 + k2 + k3 = 0. The part I1 thus reduces
to

I1 = γ 5

64ig2
√

2π

∫
sgn(k2)

k1k3
η1η2η3 δ123 dk123 = − γ 5

64g2

∫
(∂−1

x η)2η̃ dx. (3.34)

Similar steps imply

I2 = γ 3

8g

∫
(∂−1

x η)(∂xη̃)(∂
−1
x η) dx, I3 = −γ

4

∫
η2η̃ dx. (3.35a,b)

Combining (3.34)–(3.35a,b),

I = −γ
4

∫
η2η̃ dx + γ 3

8g

∫
(∂−1

x η)(∂xη̃)(∂
−1
x η̃) dx − γ 5

64g2

∫
(∂−1

x η)2η̃ dx, (3.36)

which are the second, eleventh and fourteenth terms in (3.29). Terms II, III and IV are
calculated in a similar fashion and identify to the remaining terms in (3.29). �

We now apply the variational derivatives ∂η and ∂ζ on K(3) to obtain the third-order
normal form transformation defining the Hamiltonian flow (3.28).

PROPOSITION 3.3. The Hamiltonian system that defines the third-order normal form
transformation has the form of a system of two partial differential equations:

∂sη = ∂ζK(3) = 1
2

H ∂xη̃
2 + γ

2g

(
ζ ∂xη − η̃ ∂xζ̃ − |D| (ζ η̃)

)
+ γ 2

4g2

(
ζ ∂xζ̃ + 1

2
|D| ζ 2

)
+ γ 2

4g

(
−(∂−1

x η)(∂xη)+ H(ηη̃)+ |D| (η̃ ∂−1
x η)

)
− γ 3

8g2

(
ζ η̃ + (∂xζ̃ )(∂

−1
x η)+ |D| (ζ ∂−1

x η)
)

+ γ 4

16g2

(
H(η ∂−1

x η)+ η̃ ∂−1
x η

)
,

(3.37)
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∂sζ = −∂ηK(3) = H(η̃ ∂xζ̃ )+ γ

2

(
ηη̃ − 1

2
H(η2)

)
+ γ

2g

(
ζ ∂xζ − H(ζ ∂xζ̃ )

)
− γ 2

4g

(
∂x(ζ ∂

−1
x η)+ ∂−1

x (ζ ∂xη)− ζ̃ η̃ + H(ηζ̃ )

−H
(
(∂xζ̃ )(∂

−1
x η)

)
− ∂−1

x

(
(∂xζ̃ )η̃

))
+ γ 3

8g

(
∂−1

x

(
(∂xη̃)(∂

−1
x η̃)

)
− |D|

(
(∂−1

x η)(∂−1
x η̃)

)
+ |D|−1

(
(∂xη̃)(∂

−1
x η)

))
− γ 3

16g2

(
H(ζ 2)+ 2 ∂−1

x (ζ ∂xζ̃ )
)

+ γ 4

16g2

(
ζ̃ ∂−1

x η − ∂−1
x (ηζ̃ )+ H(ζ ∂−1

x η)+ ∂−1
x (ζ η̃)

)
− γ 5

64g2

(
H
(
(∂−1

x η)2
)

+ 2 ∂−1
x

(
η̃ ∂−1

x η
))
. (3.38)

In the absence of vorticity (γ = 0), the equation for η simplifies to ∂sη = 1
2 H ∂x(η̃)

2, or
equivalently, to the inviscid Burgers equation for η̃,

∂sη̃ + η̃ ∂xη̃ = 0, (3.39)

as obtained by Craig & Sulem (2016), while ζ̃ satisfies

∂sζ̃ + η̃ ∂xζ̃ = 0, (3.40)

which is its linearization along the Burgers flow. These equations were tested in Craig et
al. (2021a) and Guyenne et al. (2021, 2022) in the context of irrotational gravity waves on
deep water.

Due to the complexity of the formulas for ∂ηK(3) and ∂ζK(3), we have checked a
posteriori that the cohomology equation (3.17) is indeed satisfied.

4. Reduced Hamiltonian

In this section, we analyse the new Hamiltonian H′ obtained after applying the third-order
normal form transformation given by the flow of the auxiliary Hamiltonian system (3.28).
By construction, such a transformation removes all cubic homogeneous terms based on
(3.17). For simplicity, we now drop the primes from all new quantities. From (3.16), the
new Hamiltonian becomes

H(w) = H(2)(w)+ H(4)(w)− {K(3),H(3)}(w)+ 1
2 {K(3), {K(3),H(2)}}(w)+ R(5)

= H(2)(w)+ H(4)
+ (w)+ R(5), (4.1)

where R(5) denotes all terms of order 5 and higher, and H(4)
+ is the new fourth-order term

H(4)
+ =H(4) − 1

2 {K(3),H(3)}. (4.2)

Our approximation is based on the quadratic and quartic homogeneous terms of H. The
quadratic term is given by (2.36) in terms of new complex symplectic coordinates. The
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Hamiltonian Dysthe for water waves with constant vorticity

quartic term H(4)
+ is more complicated and requires careful computations. Since the

latter is homogeneous of degree 4 in η and ζ , every monomial appearing in H(4)
+ is of

type A1A2A3A4, with Aj being η or ζ . Equivalently, in terms of the complex symplectic
coordinates (2.33), it has the form of a sum of integrals with all possible combinations of
fourth-order monomials in zk and z̄−k:

H(4)
+ =

∫ [
T+z1z2z3z4 + T±z1z2z3z̄−4 + T+

− z1z2z̄−3z̄−4 + T∓z1z̄−2z̄−3z̄−4

+ T−z̄−1z̄−2z̄−3z̄−4
]
δ1234 dk1234, (4.3)

where T+, T±, T+
− , T∓ and T− are coefficients depending on k1, k2, k3 and k4. In view

of the subsequent modulational ansatz and homogenization process, it is not necessary to
calculate explicitly all the coefficients above. As shown in Guyenne et al. (2022), under
the modulational ansatz, only the third term in (4.3) is relevant as the other terms are
negligible due to scale separation. Therefore, we will calculate only the term

H(4)
+R =

∫
T+

− z1z2z̄−3z̄−4 δ1234 dk1234, (4.4)

which is, after index rearrangement (k1, k2, k3, k4) → (k1, k2,−k3,−k4),

H(4)
+R =

∫
Tz1z2z̄3z̄4 δ1+2−3−4 dk1234. (4.5)

Denoting

H(4)
R =

∫
T1z1z2z̄3z̄4 δ1+2−3−4 dk1234, {K(3),H(3)}R =

∫
T2z1z2z̄3z̄4 δ1+2−3−4 dk1234,

(4.6a,b)
the contributions from zzz̄z̄-type monomials to H(4) and {K(3),H(3)}, respectively, we have

T = T1 − 1
2 T2. (4.7)

The precise formulas for the coefficients T1 and T2 are given in the next two
propositions.

PROPOSITION 4.1. We have T1 = T(1)1 + T(2)1 + T(3)1 , where

T(1)1 = −D(1)12(−3)(−4) − D(1)
(−4)(−3)21 − D(1)1(−3)2(−4) − D(1)

(−4)2(−3)1 + D(1)1(−4)(−3)2 + D(1)
(−4)21(−3),

T(2)1 = D(2)12(−3)(−4) − D(2)
(−4)(−3)21 + D(2)1(−3)2(−4) − D(2)

(−4)2(−3)1 + D(2)1(−4)(−3)2 − D(2)
(−4)21(−3),

T(3)1 = D(3)12(−3)(−4) + D(3)
(−4)(−3)21 + D(3)1(−3)2(−4) + D(3)

(−4)2(−3)1 + D(3)1(−4)(−3)2 + D(3)
(−4)21(−3),

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(4.8)

with

D(1)1234 = a1a4

32πa2a3
|k1| |k4| (|k1| + |k4| − 2|k3 + k4|),

D(2)1234 = γ a1

32πa2a3a4
|k1| sgn(k4) (|k1| + |k4| − |k3 + k4| − |k3 + k1|),

D(3)1234 = γ 2

128πa1a2a3a4
sgn(k1) sgn(k4) (|k1| + |k4| − 2|k3 + k4|).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.9)
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P. Guyenne, A. Kairzhan and C. Sulem

Proof . Expanding the brackets in the expression (2.29) of H(4), we have

H(4) = − 1
8π

∫
|k1| |k4| (|k1| + |k4| − 2|k3 + k4|)

×
(
ζ1η2η3ζ4 − iγ

2k1
η1η2η3ζ4 − iγ

2k4
ζ1η2η3η4 − γ 2

4k1k4
η1η2η3η4

)
δ1234 dk1234.

(4.10)

The terms associated with η1η2η3ζ4 and ζ1η2η3η4 can be combined by using the index
rearrangement (k1, k2, k3, k4) → (k4, k2, k3, k1), and we obtain

H(4) = − 1
8π

∫
|k1| |k4| (|k1| + |k4| − 2|k3 + k4|)ζ1η2η3ζ4 δ1234 dk1234

+ 1
8π

∫
|k1| |k4| (|k1| + |k4| − |k3 + k4| − |k3 + k1|) iγ

k4
ζ1η2η3η4 δ1234 dk1234

+ 1
8π

∫
|k1| |k4| (|k1| + |k4| − 2|k3 + k4|) γ 2

4k1k4
η1η2η3η4 δ1234 dk1234

:= I + II + III. (4.11)

We then write (η, ζ ) in terms of (z, z̄), and retain only monomials of type zzz̄z̄. Denoting
IR, IIR, IIIR the corresponding terms in (4.11), we find

IR =
∫

D(1)1234(−z1z2z̄−3z̄−4 − z1z̄−2z3z̄−4 + z1z̄−2z̄−3z4

+ z̄−1z2z3z̄−4 − z̄−1z2z̄−3z4 − z̄−1z̄−2z3z4) δ1234 dk1234. (4.12)

We turn all monomials in the above expression into z1z2z̄3z̄4 by transforming indices in an
appropriate way, leading to

IR =
∫

T(1)1 z1z2z̄3z̄4 δ1+2−3−4 dk1234, (4.13)

as well as

IIR =
∫

T(2)1 z1z2z̄3z̄4 δ1+2−3−4 dk1234, IIIR =
∫

T(3)1 z1z2z̄3z̄4 δ1+2−3−4 dk1234.

(4.14a,b)
�

To find the explicit expression for the coefficient T2 of {K(3),H(3)}R, we follow the steps
in Appendix B of our recent paper (Guyenne et al. 2022). The main idea is to use (3.22) to
expand the Poisson bracket {K(3),H(3)} according to (2.40), and extract terms of zzz̄z̄-type.

949 A50-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

74
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.747


Hamiltonian Dysthe for water waves with constant vorticity

PROPOSITION 4.2. We have T2 = T(1)2 + T(2)2 + T(3)2 , with

T(1)2 = 1
64π

(
S(−1−2)12 + S2(−1−2)1 + S12(−1−2)

) (
S(−3−4)34 + S4(−3−4)3 + S34(−3−4)

)
×
(

1
Ω1 +Ω2 +Ω−1−2

+ 1
Ω3 +Ω4 +Ω−3−4

)
, (4.15)

T(2)2 = −A(−1)(−2)(1+2) A(−3)(−4)(3+4)

(
1

Ω1 +Ω2 −Ω1+2
+ 1
Ω3 +Ω4 −Ω3+4

)
,

(4.16)

T(3)2 = 4 A(1−3)(−1)3 A(4−2)(−4)2

(
1

Ω3−1 +Ω1 −Ω3
+ 1
Ω2−4 +Ω4 −Ω2

)
. (4.17)

Proof . The Poisson bracket of the cubic Hamiltonian (3.22) contains zzz̄z̄-type terms
given by

i{K(3),H(3)}R =
{∫

A123 z1z2z3

Ω1 +Ω2 +Ω3
δ123 dk123,

∫
A456 z̄4z̄5z̄6 δ456 dk456

}
−
{∫

A123 z̄1z̄2z̄3

Ω1 +Ω2 +Ω3
δ123 dk123,

∫
A456 z4z5z6 δ456 dk456

}
+
{∫

A123 z−1z−2z̄3

Ω−1 +Ω−2 −Ω3
δ123 dk123,

∫
A456 z̄−4z̄−5z6 δ456 dk456

}
−
{∫

A123 z̄−1z̄−2z3

Ω−1 +Ω−2 −Ω3
δ123 dk123,

∫
A456 z−4z−5z̄6 δ456 dk456

}
:= i(R1 + R2 + R3 + R4), (4.18)

where we denote each line of (4.18) by R1, R2, R3, R4, respectively. We obtain

R1 + R2 =
∫

T(1)2 z1z2z̄3z̄4 δ1+2−3−4 dk1234,

R3 + R4 =
∫
(T(2)2 + T(3)2 )z1z2z̄3z̄4 δ1+2−3−4 dk1234.

⎫⎪⎪⎬⎪⎪⎭ (4.19)

We refer to Guyenne et al. (2022) for more details on such computations. �

5. Modulational ansatz

We restrict our interest to solutions in the form of near-monochromatic waves with carrier
wavenumber k0 > 0. In the Fourier space, this corresponds to a narrowband approximation
with ηk and ζk localized near k0. Equivalently, zk and z̄k are also localized around k0. As it
was pointed out earlier, such assumptions allow us to simplify the analysis of the quartic
part H(4)

+ in (4.3), as several of its terms become negligible. This is indeed a problem
of homogenization, which is treated via a scale separation lemma (see Lemma 4.4 of
Guyenne et al. 2022). This homogenization naturally selects the term (4.5) in H(4)

+ , namely
the four-wave resonances, among all the possible quartic interactions as this term involves
fast oscillations that cancel out exactly. Its coefficient T can be found according to (4.7).
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P. Guyenne, A. Kairzhan and C. Sulem

The full expression of this coefficient is given by the combination of results in Propositions
4.1 and 4.2. These expressions, however, simplify in the modulational regime.

We introduce the modulational ansatz

k = k0 + ελ, where
λ

k0
= O(1), ε 	 1, (5.1)

which captures the slow modulation of small-amplitude near-monochromatic waves with
carrier wavenumber k0 > 0. The small dimensionless parameter ε is a measure of the wave
spectrum’s narrowness around k = k0. Accordingly, we define the function U as

U(λ) = z(k0 + ελ), Ū(λ) = z̄(k0 + ελ), (5.2a,b)

in the Fourier space, where the time dependence is omitted. In the physical space,

z(x) = 1√
2π

∫
z(k) eikx dk = ε√

2π

∫
U(λ) eik0x eiλεx dλ = ε u(X) eik0x, (5.3)

where u, as a function of the long spatial scale X = εx, is the inverse Fourier transform
of U. Equation (5.3) indicates that the dimensionless parameter ε may also be related to
some measure of the wave steepness.

To calculate the quartic interactions in the modulational regime, we approximate the
coefficients in Propositions 4.1 and 4.2 under the modulational ansatz (5.1). First, we need
a few simple expansions that are summarized in the lemma below.

LEMMA 5.1. Under the modulational ansatz (5.1), we have the following expansions:

|k| = k0 + ελ+ O(ε4), sgn(k) = 1 + O(ε5), ωk = ω0

(
1 + ε

g

2ω2
0
λ

)
+ O(ε2),

ak =
√
ω0

k0

(
1 + ε

4

(
g

ω2
0

− 2
k0

)
λ

)
+ O(ε2),

a1−3 = a(k1 − k3) =
√|γ |√

2 ε1/2 |λ1 − λ3|1/2
(

1 + εg
γ 2 |λ1 − λ3|

)
+ O(ε3/2),

ω1−3 = |γ |
2

(
1 + 2gε

γ 2 |λ1 − λ3|
)

+ O(ε2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.4)

LEMMA 5.2. Under the modulational ansatz (5.1), we have∫
T1z1z2z̄3z̄4 δ1+2−3−4 dk1234 = ε3

∫ (
cl

0 + εcr
0(λ2 + λ3)

)
U1U2Ū3Ū4 δ1+2−3−4 dλ1234

+ O(ε5), (5.5)

where Uj := U(λj), T1 is given in Proposition 4.1, and the coefficients are

cl
0 = k3

0Ω
2
0

8πω2
0
, cr

0 = 3k2
0Ω

2
0

16πω2
0

− γ gk3
0Ω0

32πω4
0
. (5.6a,b)
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Hamiltonian Dysthe for water waves with constant vorticity

Proof . As given in Proposition 4.1, T1 is the sum of several terms, all involving
coefficients similar to D(1)1234. The latter includes only factors of type |kj| and aj, and
expansion of these factors is given in the lemma above. For D(1)12(−3)(−4), we write

D(1)12(−3)(−4) = − k3
0

16π

(
1 + ε

2k0
(λ2 + 3λ3 + 2λ4)+ εg

4ω2
0
(λ1−λ2−λ3+λ4)

)
+ O(ε2).

(5.7)
The brackets above simplify in the integration due to the symmetry of z1z2z̄3z̄4 under index
rearrangements and the presence of the delta function δ1+2−3−4, yielding

∫
−D(1)12(−3)(−4) z1z2z̄3z̄4 δ1+2−3−4 dk1234

=
∫ (

k3
0

16π
+ 3εk2

0
32π

(λ2 + λ3)

)
z1z2z̄3z̄4 δ1+2−3−4 dk1234. (5.8)

The remaining computations are similar, and we have

∫
T(1)1 z1z2z̄3z̄4 δ1+2−3−4 dk1234 =

∫ (
k3

0
8π

+ 3εk2
0

16π
(λ2 + λ3)

)
z1z2z̄3z̄4 δ1+2−3−4 dk1234,

(5.9)

∫
T(2)1 z1z2z̄3z̄4 δ1+2−3−4 dk1234 =

∫ (
γ k3

0
8πω0

+ εγ k3
0

8πω0

(
3

2k0
− g

4ω2
0

)
(λ2 + λ3)

)
× z1z2z̄3z̄4 δ1+2−3−4 dk1234, (5.10)∫

T(3)1 z1z2z̄3z̄4 δ1+2−3−4 dk1234 =
∫ (

γ 2k3
0

32πω2
0

+ εγ 2k3
0

32πω2
0

(
3

2k0
− g

2ω2
0

)
(λ2 + λ3)

)
× z1z2z̄3z̄4 δ1+2−3−4 dk1234. (5.11)

Using that T1 = T(1)1 + T(2)1 + T(3)1 , we get

∫
T1z1z2z̄3z̄4 δ1+2−3−4 dk1234 =

∫ (
cl

0 + εcr
0(λ2 + λ3)

)
z1z2z̄3z̄4 δ1+2−3−4 dk1234

+ O(ε2). (5.12)

Writing the right-hand side in terms of U given by (5.2a,b), and using that δ(k1 + k2 −
k3 − k4) = ε−1δ(λ1 + λ2 − λ3 − λ4), we obtain the desired result. �
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P. Guyenne, A. Kairzhan and C. Sulem

LEMMA 5.3. Under the modulational ansatz (5.1), we have

∫
T(1)2 z1z2z̄3z̄4 δ1+2−3−4 dk1234 = ε3

∫ (
cl

1+εcr
1(λ2+λ3)

)
U1U2Ū3Ū4 δ1+2−3−4 dλ1234

+ O(ε5), (5.13)∫
T(2)2 z1z2z̄3z̄4 δ1+2−3−4 dk1234 = ε3

∫ (
cl

2+εcr
2(λ2+λ3)

)
U1U2U3U4 δ1+2−3−4 dλ1234

+ O(ε5), (5.14)∫
T(3)2 z1z2z̄3z̄4 δ1+2−3−4 dk1234 = ε3

∫ (
cl

3+εcr,1
3 (λ2+λ3)+ εcr,2

3 |λ1 − λ3|
)

× U1U2Ū3Ū4 δ1+2−3−4 dλ1234 + O(ε5), (5.15)

where

cl
1 = k3

0(2ω
2
0 + γω2k0)

2

16πω2
0ω2k0(2Ω0 +Ω−2k0)

, Ω±2k0 = γ

2
sgn(±2k0)+ ω2k0,

cr
1 = gcl

1

(
2Ω2k0

ω2k0(2ω
2
0 + γω2k0)

− 1
2ω2

0
− 1

2ω2
2k0

+ 3
2gk0

− ω2k0 + ω0

2ω2k0ω0(2Ω0 +Ω−2k0)

)
,

cl
2 = − k3

0(2ω
2
0 − γω2k0)

2

16πω2
0ω2k0(2Ω0 −Ω2k0)

,

cr
2 = gcl

2

(
2Ω−2k0

ω2k0(2ω
2
0 − γω2k0)

− 1
2ω2

0
− 1

2ω2
2k0

+ 3
2gk0

− ω2k0 − ω0

2ω2k0ω0(2Ω0 −Ω2k0)

)
,

cl
3 = γ 2k2

0ω0

2πgΩ0
, cr,1

3 = cl
3

(
1
k0

+ gγ

8Ω0ω
2
0

)
, cr,2

3 = k2
0ω

2
0

2πΩ2
0
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.16)

Proof . The proof is given in Appendix A. �

The leading coefficients in the expansions of Lemmas 5.2 and 5.3 combine together as

cl
0 − 1

2

(
cl

1 + cl
2 + cl

3

)
= k3

0(ω0 − γ )(γ 2 + 4ω2
0)

8πω0Ω0(2ω0 − γ )
. (5.17)

Denoting

β := 8π
[
cr

0 − 1
2

(
cr

1 + cr
2 + cr,1

3

)]
, (5.18)
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Hamiltonian Dysthe for water waves with constant vorticity

where the cr
j (j = 0, 1, 2) and cr,1

3 are given in (5.6a,b) and (5.16), the reduced Hamiltonian

H(4)
+ takes the form

H(4)
+ = ε3 k3

0(ω0 − γ )(γ 2+4ω2
0)

8πω0Ω0(2ω0−γ )
∫

U1U2Ū3Ū4 δ1+2−3−4 dλ1234

+ ε4
∫ (

β

8π
(λ2+λ3)−

k2
0ω

2
0

4πΩ2
0

|λ1−λ3|
)

U1U2Ū3Ū4 δ1+2−3−4 dλ1234+O(ε5).

(5.19)

6. Hamiltonian Dysthe equation

The third-order normal form transformation eliminates all cubic terms from the
Hamiltonian H. In the modulational regime (5.1), the reduced Hamiltonian truncated at
fourth order is

H = H(2) + H(4)
+ . (6.1)

The goal now is to derive an associated Hamiltonian Dysthe equation for deep-water
gravity waves with constant vorticity.

6.1. Hamiltonian in the physical variables
LEMMA 6.1. In the physical variables (u, ū), the Hamiltonian H in (6.1) reads

H = ε

∫
ūΩ(k0 + εDX)u dX + ε3 k3

0(ω0 − γ )(γ 2 + 4ω2
0)

4ω0Ω0(2ω0 − γ )

∫
|u|4 dX

+ ε4 β

2

∫
|u|2 Im(ū∂Xu) dX − ε4 k2

0ω
2
0

2Ω2
0

∫
|u|2 |DX| |u|2 dX + O(ε5), (6.2)

where DX = −i∂X in the slow spatial variable X.

Proof . The first term in (6.2) comes out by applying the change of variables (5.2a,b) to
the quadratic Hamiltonian

H(2) =
∫
Ω(k0 + ελ) |z(k0 + ελ)|2 dk = ε

∫
ūΩ(k0 + εDX)u dX, (6.3)

where we use that u(X) = (1/
√

2π)
∫

eiλX U(λ) dλ is the inverse Fourier transform of
U(λ). Furthermore, ∫

U1U2Ū3Ū4 δ1+2−3−4 dλ1234 = 2π

∫
|u|4 dX. (6.4)

Similarly, ∫
(λ2 + λ3)U1U2Ū3Ū4 δ1+2−3−4 dλ1234 = 4π

∫
|u|2 Im(ū∂Xu) dX, (6.5)

while the remaining term of H(4)
+ identifies to∫

|λ1 − λ3| U1U2Ū3Ū4 δ1+2−3−4 dλ1234 = 2π

∫
|u|2 |DX| |u|2 dX. (6.6)

�
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P. Guyenne, A. Kairzhan and C. Sulem

Expanding the linear dispersion relation in (6.2) around k0 as

Ω(k0 + εDX) = Ω0 + gDX

2ω0
ε − g2D2

X

8ω3
0
ε2 + g3D3

X

16ω5
0
ε3 + O(ε4) (6.7)

gives an alternative form of the Hamiltonian H in the physical variables:

H =
∫ [

ε Ω0 |u|2 + ε2 g
2ω0

Im(u∂Xu)

− ε3 g2

8ω3
0

|∂Xu|2 + ε3 k3
0(ω0 − γ )(γ 2 + 4ω2

0)

4ω0Ω0(2ω0 − γ )
|u|4 − ε4 g3

16ω5
0

Im(u∂3
Xu)

+ ε4 β

2
|u|2 Im(ū∂Xu)− ε4 k2

0ω
2
0

2Ω2
0

|u|2|DX| |u|2
]

dX + O(ε5). (6.8)

6.2. Derivation of the Dysthe equation
Using the relation (5.3) rewritten as(

u
ū

)
= P2

(
z
z̄

)
= ε−1

(
e−ik0x 0

0 eik0x

)(
z
z̄

)
, (6.9)

the Hamiltonian system (2.32) takes the form

∂t

(
u
ū

)
= J2

(
∂uH
∂ūH

)
= ε−1

(
0 −i
i 0

)(
∂uH
∂ūH

)
, (6.10)

where J2 = εP2J1P∗
2 (Craig, Guyenne & Sulem 2010). The additional factor ε in the

definition of J2 reflects the change in symplectic structure associated with the spatial
rescaling X = εx.

Substituting the reduced Hamiltonian (6.8) into (6.10), we get

i ∂tu = ε−1∂ūH

= Ω0u − iε
g

2ω0
∂Xu + ε2 g2

8ω3
0
∂2

Xu + ε2 k3
0(ω0 − γ )(γ 2 + 4ω2

0)

2ω0Ω0(2ω0 − γ )
|u|2u

+ iε3 g3

16ω5
0
∂3

Xu − iε3β |u|2 ∂Xu − ε3 k2
0ω

2
0

Ω2
0

u |DX| |u|2, (6.11)

which is a Hamiltonian Dysthe equation for two-dimensional gravity waves on deep water
with constant vorticity. It describes modulated waves moving in the positive x-direction
at group velocity Ω ′

0 = ∂kΩ(k0) = g/(2ω0) as indicated by the advection term. The
non-local term u |DX| |u|2 is a signature of the Dysthe equation, which reflects the presence
of the wave-induced mean flow. The coefficient β is given by (5.18). The coefficient of the
nonlinear term |u|2u above agrees with that in the NLS equation of Thomas et al. (2012)
and in the Dysthe equation of Curtis et al. (2018) (see (7.15) below) up to scaling factors
consistent with the difference in definition for the wave envelope described in the various
models.

The first two terms on the right-hand side of (6.11) can be eliminated via phase
invariance and reduction to a moving reference frame. The latter is equivalent, in the
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Hamiltonian Dysthe for water waves with constant vorticity

framework of canonical transformations, to subtraction from H of a multiple of the
momentum (2.19), which reduces to

I =
∫
η ∂xζ dx = ε

∫ [
k0 |u|2 + ε Im(ū ∂Xu)

]
dX, (6.12)

while the former is equivalent to subtraction from H of a multiple of the wave action

M = ε

∫
|u|2 dX, (6.13)

which is conserved due to the phase-invariance property of the Dysthe equation. Because
I and M Poisson commute with H, this transformation preserves the symplectic structure
J2 (Craig et al. 2021b). The resulting Hamiltonian is given by

Ĥ = H −Ω ′
0I − (

Ω0 − k0Ω
′
0
)

M, (6.14)

which, after introducing a new long-time scale τ = ε2t, leads to the following version of
the Hamiltonian Dysthe equation:

i ∂τu = g2

8ω3
0
∂2

Xu + k3
0(ω0 − γ )(γ 2 + 4ω2

0)

2ω0Ω0(2ω0 − γ )
|u|2u + iε

g3

16ω5
0
∂3

Xu

− iεβ |u|2 ∂Xu − ε
k2

0ω
2
0

Ω2
0

u |DX| |u|2. (6.15)

This governs the long-time evolution of the envelope of modulated waves in a reference
frame moving in the positive horizontal direction at group velocity Ω ′

0. The non-local
operator |DX| is the Fourier multiplier with symbol |λ|. The associated Hamiltonian reads
more explicitly (after multiplying by ε−3 and dropping the hat)

H =
∫ [

− g2

8ω3
0

|∂Xu|2 + k3
0(ω0 − γ )(γ 2 + 4ω2

0)

4ω0Ω0(2ω0 − γ )
|u|4 − ε

g3

16ω5
0

Im(ū ∂3
Xu)

+ ε
β

2
|u|2 Im(ū ∂Xu)− ε

k2
0ω

2
0

2Ω2
0

|u|2 |DX| |u|2
]

dX. (6.16)

As suggested by Trulsen et al. (2000), retaining the exact linear dispersion relation, rather
than expanding it in powers of ε, may provide an overall better approximation of the
wave envelope. On a related note, Obrecht & Saut (2015) proposed a full-dispersion
Davey–Stewartson system and compared its analytical properties to those of the classical
version. In the present context, the Dysthe equation with full linear dispersion takes the
form

i ∂tu = Ω(k0 + εDX)u + ε2 k3
0(ω0 − γ )(γ 2 + 4ω2

0)

2ω0Ω0(2ω0 − γ )
|u|2u

− iε3β |u|2 ∂Xu − ε3 k2
0ω

2
0

Ω2
0

u |DX| |u|2, (6.17)

and the corresponding Hamiltonian is given by (6.2).
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7. Numerical results

We now present numerical simulations to illustrate the performance of our Hamiltonian
Dysthe equation. We consider the problem of modulational stability of Stokes waves and
examine the influence of vorticity. We compare these results to predictions by another
related envelope model and to direct simulations of the full nonlinear equations. We also
test the capability of our reconstruction procedure against a simpler approach.

7.1. Stability of Stokes waves
We first give the theoretical prediction for modulational or Benjamin–Feir (BF) instability
of Stokes waves. These are represented by the exact uniform solution

u0(t) = B0 exp(−i(Ω0 + ε2β0B2
0)t), (7.1)

for (6.11), where B0 is a positive real constant, and

β0 = k3
0(ω0 − γ )(γ 2 + 4ω2

0)

2ω0Ω0(2ω0 − γ )
. (7.2)

In the irrotational case (γ = 0), such a solution is known to be linearly unstable with
respect to sideband (i.e. long-wave) perturbations.

The formal calculation consists in linearizing (6.11) about u0 by inserting a perturbation
of the form

u(X, t) = u0(t) [1 + B(X, t)], (7.3)

where
B(X, t) = B1 exp(σ t + iλX)+ B2 exp(σ̄ t − iλX), (7.4)

and B1,B2 are complex coefficients. We find that the condition Re(σ ) /= 0 for instability
implies

α = g2

8ω3
0
λ2Γ > 0, (7.5)

with

Γ = 2B2
0 (β0 − εβ3 |λ|)− g2

8ω3
0
λ2, β3 = k2

0ω
2
0

Ω2
0
. (7.6a,b)

This is a tedious but straightforward calculation, for which we skip the details. Similar
calculations can be found in Curtis et al. (2018), Dysthe (1979) and Gramstad & Trulsen
(2011).

Figure 1 depicts the normalized growth rate

|Re(σ )|
ω0

=
√
α

ω0
, (7.7)

delimiting the instability region as predicted by condition (7.5) for (B0, k0) = (0.002, 10)
and various values of γ . The growth rate (and instability region) for γ = 0 is also included
as a reference. Hereafter, all the variables are rescaled to absorb ε back into their definition,
and all the equations are non-dimensionalized by using 1/k0 and 1/

√
gk0 as characteristic

length and time scales, respectively, so that g = 1. For convenience, we retain the same
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/ω

0
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(a) (b)

Figure 1. Regions of modulational instability according to (7.5) for (B0, k0) = (0.002, 10). The blue curves
correspond to γ /= 0, while the red curve corresponds to γ = 0: (a) γ = {−0.5,−1,−1.5,−2,−3.5}
(expanding curves with decreasing γ ); (b) γ = {+0.5,+1,+1.5,+2,+3.5} (shrinking curves with increasing
γ ).

notations for all the dimensionless quantities. We set ε = k0A0 (surface wave steepness),
noting that the envelope amplitude B0 and the surface amplitude A0 are related via

B0 = A0

√
ω0

2k0
, (7.8)

according to (2.31) and (5.3). The graphs in figure 1 correspond to a wave steepness of
about ε = 0.05. Clearly, the vorticity γ (both its magnitude and sign) has an influence on
(7.5). We see that γ < 0 tends to enhance the instability by amplifying the growth rate and
enlarging the instability region to higher sideband wavenumbers. On the other hand, γ > 0
tends to diminish it. Figure 1 even suggests that for sufficiently large γ > 0, instability no
longer occurs. This is confirmed by figure 2, which shows that the factor Γ in (7.5) is no
longer positive at any wavenumber λ when γ > 3.5 for (B0, k0) = (0.002, 10). A positive
vorticity (co-propagating current) therefore has a stabilizing effect on the dynamics of
Stokes waves.

7.2. Reconstruction of the original variables
At any instant t, the surface elevation and velocity potential can be reconstructed from
the wave envelope by inverting the normal form transformation. This is accomplished by
solving the auxiliary system (3.37)–(3.38) backward from s = 0 to s = −1, with ‘initial’
conditions given by the transformed variables

η(x, t)|s=0 = 1√
2

a−1(D)
[
u(x, t) eik0x + ū(x, t) e−ik0x

]
, (7.9)

ζ(x, t)|s=0 = 1

i
√

2
a(D)

[
u(x, t) eik0x − ū(x, t) e−ik0x

]
, (7.10)

according to (2.35a,b) and (5.3). In these expressions, u obeys (6.11) and a−1(D) =√|D|/ω(D). The final solution at s = −1 represents the original variables (η, ζ ). Starting
from the first harmonics (with carrier wavenumber k0) in the initial conditions (7.9)–(7.10),
the evolutionary process in s will generate automatically the next-order contributions from
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–0.010

–0.005

0

0.005

0.010

Γ

λ

Figure 2. Plots of Γ versus λ for (B0, k0) = (0.002, 10) and γ = {0,+1,+2,+3,+4,+5} (falling curves
with increasing γ ). The red curve corresponds to γ = 0.

lower and higher harmonics via nonlinear interactions according to (3.37)–(3.38). Recall
also that the non-canonical velocity potential ξ can be recovered from the canonical one ζ
via the direct relation (2.20).

7.3. Simulations and comparisons
For the comparison, the full nonlinear system (2.15) is solved numerically following a
high-order spectral approach (Craig & Sulem 1993). The corresponding equations read
more explicitly

∂tη = G(η) ξ + γ η ∂xη, (7.11)

∂tξ = −gη − 1
2
(∂xξ)

2 + 1
2

[G(η) ξ + (∂xη)(∂xξ)]2

1 + (∂xη)2
+ γ η ∂xξ + γ ∂−1

x G(η) ξ. (7.12)

These are discretized in space by a pseudo-spectral method based on the fast Fourier
transform (FFT). The computational domain is taken to be 0 � x � 2π with periodic
boundary conditions, and is divided into a regular mesh of N collocation points. The
Dirichlet–Neumann operator is computed via its series expansion (2.26) for which a small
number m of terms is sufficient to achieve highly accurate results by virtue of its analyticity
properties. The value m = 6 is selected based on previous extensive tests (Xu & Guyenne
2009). Time integration of (7.11) and (7.12) is carried out in the Fourier space so that linear
terms can be solved exactly by the integrating factor technique. The nonlinear terms are
integrated in time by using a fourth-order Runge–Kutta scheme with constant step �t.
More details can be found in Guyenne (2017, 2018).

The same numerical methods are applied to the envelope equation (6.11), as well
as to the reconstruction procedure, with the same resolutions in space and time. In
particular, the auxiliary system (3.37)–(3.38) is integrated in s by using the same step size
�s = �t. While this system of equations may look complicated, its numerical treatment
is straightforward and efficient via the FFT. Moreover, because this computation is not
performed at each instant t (only when data on η are required), and because it is performed
over a short interval −1 � s � 0, the associated cost is insignificant. Note that by virtue
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Figure 3. Relative L2 errors on η between fully and weakly nonlinear solutions for
(B0, k0, λ) = (0.002, 10, 1) and γ = {−2,−1, 0,+1,+2}. The red curve corresponds to γ = 0.

of the zero-mass assumption (2.25), indetermination at k = 0 in the evaluation of any
quantity involving a Fourier multiplier such as ∂−1

x or |D|−1 may be lifted by simply setting
its zeroth-mode component to zero.

To examine the stability of Stokes waves in the presence of a shear current, initial
conditions of the form

u(x, 0) = B0 [1 + 0.1 cos(λx)] (7.13)

are specified for (6.11), where λ denotes the wavenumber of some long-wave perturbation.
For the purpose of comparing with the full system (7.11)–(7.12), initial conditions η(x, 0)
and ξ(x, 0) are reconstructed by solving (3.37)–(3.38) from transformed initial data
(7.9)–(7.10) given in terms of (7.13).

The following tests focus on the case (B0, k0, λ) = (0.002, 10, 1) as considered in the
previous stability analysis. The spatial and temporal resolutions are set to �x = 0.012
(N = 512) and �t = 0.005. Figure 3 shows the time evolution of the relative L2 error

‖ηf − ηw‖2

‖ηf ‖2
(7.14)

on η between the fully (ηf ) and weakly (ηw) nonlinear solutions, for various values of
γ ≶ 0. We see that the errors remain under unity (i.e. under 100 %) over the time interval
0 � t � 1000, noting that the validity of the Dysthe equation deteriorates faster as γ is
decreased. This is expected in view of the stability analysis because the solution tends to
become more unstable (and thus more nonlinear) with decreasing γ . Development of the
BF instability is especially apparent for γ = −1 and −2, as indicated by a hump in their
error plots.

Comparison of surface elevations η predicted from the weakly nonlinear equation (6.11)
and the full nonlinear system (7.11)–(7.12) is presented in figure 4 for the same set of
values of γ at their respective times of maximum wave growth. The perturbed Stokes
wave at t = 0 (which is the same initial condition for all cases considered) is depicted
in figure 4(a). These results are consistent with our previous observations from figures 1
and 3. Excitation and growth of the most unstable sideband mode λ = 1 (according to the
stability analysis) are clearly revealed in these plots. A more negative γ promotes the BF
instability (by making it happen sooner with a stronger wave amplification), while a more
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Figure 4. Comparison of surface elevations η between fully and weakly nonlinear solutions for (B0, k0, λ) =
(0.002, 10, 1) with (a) γ = 0 (t = 0), (b) γ = 0 (t = 940), (c) γ = −1 (t = 680), (d) γ = −2 (t = 500), (e)
γ = +1 (t = 1000), (f ) γ = +2 (t = 1000). The blue curve represents the Hamiltonian Dysthe equation, while
the red curve represents the full nonlinear system.

positive γ tends to reduce and even offset it. In all these cases, the Dysthe model is found
to provide a very good approximation up to at least t = 1000. As expected, for γ = −2,
discrepancies are more pronounced due to the higher nonlinearity reached; a slight phase
lag and drop in wave amplitude can be discerned around the main peak at t = 500.

It is suitable to compare our Hamiltonian Dysthe equation (6.11) with another related
model that has recently been derived by Curtis et al. (2018) and Curtis & Murphy (2020) in
the same physical setting. Note that these authors additionally considered surface tension,
but we will only examine the gravity wave version of their model. Moreover, because they
expressed their model in a form that contains a first derivative in time as well as a mixed
derivative in space and time (see (2.37) in Curtis et al. 2018), we find it more appropriate
to rewrite it in a more standard form with a single time derivative (as it is typically so
for the Dysthe equation; Dysthe 1979) to allow for a fairer comparison. We also take into
account the fact that vorticity in the mathematical formulation used by Curtis et al. (2018)
is defined as the opposite of ours. The resulting model for the first-harmonic envelope η1
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Hamiltonian Dysthe for water waves with constant vorticity

is given by

∂tη1 = −cg ∂xη1 − i
c2

g

d0
∂2

x η1 + 2
c3

g

d2
0
∂3

x η1 − i
α̃0

d0
|η1|2η1

− α̃1

d0
|η1|2 ∂xη1 − α̃2

d0
η2

1 ∂xη̄1 + i
α̃3

d0
η1H ∂x|η1|2 , (7.15)

where

d0 = 2Ω0 − γ, cg = 1
d0
, d1 = d0

1 + γ cg
, α̃0 = α0 − γ 2k0d0d1,

α̃1 = α1 − γ 2k0d1(cg + αdγ d1)− γ 2d1(2d0 + 3k0cg)+ 4cg(γ
2k0d1 − α0cg),

α̃2 = α2 + γ 2k0d1(cg + αdγ d1)− γ 2d1(d0 + k0cg)+ 2cg(γ
2k0d1 − α0cg),

α̃3 = α3 − γ k0cgd1(d0 + d1).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(7.16)

The reader is directed to Curtis et al. (2018), where the expressions for αd and αj (j =
0, . . . , 3) can be found. Note that H ∂x = |D| for the non-local term in (7.15). For the
purpose of comparing with the full system (7.11)–(7.12), we have also re-expressed the
Curtis et al. model in a fixed reference frame, hence the additional advection term in (7.15)
as compared to (2.37) in Curtis et al. (2018). In the following discussion, we will refer to
(7.15) as the ‘classical’ Dysthe equation for this problem, because it is not Hamiltonian and
has the same typical form as in the irrotational case. Furthermore, its derivation is based
on a perturbative Stokes-type expansion for the dependent variables η and ξ , which is
similar to the classical derivation by the method of multiple scales (Dysthe 1979). Indeed,
following Curtis et al. (2018), the surface elevation and velocity potential at any instant t
can be reconstructed perturbatively from η1 as

η(x, t) = γ d1 |η1|2 + 2 Re
(
η1 eiθ + �0η

2
1 e2iθ + · · ·

)
,

ξ(x, t) = H
(
Ω0

k0
η − Ω0

k0
ηH ∂xη − γ

2
η2 + Ω0

2k0
H ∂x(η

2)+ · · ·
)
,

⎫⎪⎪⎬⎪⎪⎭ (7.17)

for which the expression of �0 can be found in Curtis et al. (2018), and only contributions
from up to the second harmonics are included here because Curtis et al. (2018) did not
provide expressions for contributions from higher harmonics. The phase function is given
by θ = k0x −Ω0t. The ‘classical’ reconstruction procedure based on (7.17) clearly differs
from the present approach. It is more explicit and thus computationally more efficient, but
it is perturbative. Contributions at each order up to the desired one need to be derived, and
their expressions become increasingly complicated. On the other hand, our Hamiltonian
procedure requires solving an auxiliary system of PDEs to reconstruct η and ζ (or ξ ) from
u, but it is non-perturbative. Indeed, (3.37) and (3.38) constitute an exact representation
of the Birkhoff normal form transformation that eliminates non-resonant triads in this
problem.

As an illustration, figure 5 compares the L2 errors (7.14) on η from the classical and
Hamiltonian Dysthe equations in the large-vorticity cases γ = ±2. For each of these
models, the error is calculated relative to the fully nonlinear solution with respective initial
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Figure 5. Relative L2 errors on η between fully and weakly nonlinear solutions for (B0, k0, λ) = (0.002, 10, 1).
The blue curve represents the Hamiltonian Dysthe equation, while the red curve represents the classical Dysthe
equation: (a) γ = −2, (b) γ = +2.

conditions η(x, 0) and ξ(x, 0). These are provided by (7.17) with

η1(x, 0) = A0

2
[1 + 0.1 cos(λx)] (7.18)

when (7.15) is tested against (7.11)–(7.12). Recall that A0 and B0 are related through (7.8).
We use the same numerical methods as described earlier (and specify the same resolutions
in space and time) to solve (7.15) and evaluate (7.17). For γ = −2, both Dysthe solutions
are found to perform similarly, with the error from the Hamiltonian model being slightly
lower than that from the classical model. The relatively quick loss of accuracy in this
case, which is common to both models (with errors reaching near 50 % at t � 500) should
be attributed to deterioration of the Dysthe approximation during development of the BF
instability, rather than to the reconstruction procedure. By contrast, for γ = +2, the errors
remain small and do not vary much over the time interval 0 � t � 1000, which is expected
considering that the solution is more stable in this case. We see, however, that the present
approach outperforms the classical one by about an order of magnitude. In all these error
plots, the seemingly sharp values near t = 0 are already an indication of the level of
approximation associated with the different equations, as they represent adjustment of
the full system (7.11)–(7.12) to the imposed initial conditions during early stages of the
simulation.

The corresponding surface profiles are depicted in figure 6 for the unstable case γ = −2,
with predictions from each Dysthe model being compared to the fully nonlinear solution.
Snapshots of η at t = 390 (early stage of BF instability), t = 500 (around the time of
maximum wave growth) and t = 1000 (near the end of the quasi-recurrent cycle of
modulation–demodulation) are presented. The satisfactory performance of both Dysthe
solutions as indicated in this figure is consistent with the error plots in figure 5. A
noticeable discrepancy between the weakly and fully nonlinear predictions is a phase
lag that tends to develop over time. Otherwise, salient features of the wave dynamics
(including the shape of the steep wave at t = 500) seem to be well captured, even in this
highly focusing regime. Regarding the comparison of surface profiles for γ = +2, these
look indistinguishable from figure 4(f ) at the graphical scale and thus are not displayed for
convenience.

We point out in passing that the main purpose of these tests is not to show whether one
modulational approach is better than the other. In particular, regarding the reconstruction
procedure for the classical Dysthe equation, we understand that adding contributions from
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Figure 6. Comparison on η between fully and weakly nonlinear solutions for (B0, k0, λ) = (0.002, 10, 1) and
γ = −2 at t = 390, 500, 1000 (from left to right). (a–c) Hamiltonian Dysthe equation in blue; (d–f ) classical
Dysthe equation in red. The black curve represents the full nonlinear system.

higher harmonics to formulas (7.17) would likely improve their accuracy and lead to closer
agreement with the full system. Rather, a goal here is to validate our new Hamiltonian
approach against other existing formulations. As a byproduct of this comparison, given the
overall positive assessment based on figures 5 and 6, we in turn provide an independent
validation of the Curtis et al. model. Such a validation was not conducted in their earlier
study (Curtis et al. 2018; Curtis & Murphy 2020).

It is comforting to see that the solution of (3.37)–(3.38) helps to achieve an accurate
computation of the free surface in our Hamiltonian framework, which was not obvious
considering the rather lengthy expressions of (3.37)–(3.38). The good agreement found
also confirms the validity of the zero-mass assumption (2.25) since it is used to
evaluate non-local terms in (3.37)–(3.38). To further demonstrate the effectiveness of
this reconstruction scheme (which we will refer to as full reconstruction by solving
(3.37)–(3.38)), we now test the Hamiltonian Dysthe equation (6.11) by simply using
(7.9)–(7.10) to recover η and ζ from u at any instant t (which we will refer to as partial
reconstruction). This simplified procedure is equivalent to retaining only contributions
from the first harmonics in the representation of η and ζ .

The L2 errors (7.14) associated with these two versions of our Hamiltonian approach are
illustrated in figure 7 for γ = ±2. We have made sure again that suitable initial conditions
are specified for the full system (7.11)–(7.12) when comparing it to each version. These
results confirm that the decline in performance (for partial versus full reconstruction of
η) can be considerable. The difference is found to be by about an order of magnitude for
γ = −2, and by more than two orders of magnitude for γ = +2. In both cases, the errors
grow quickly to exceed 100 % at some point during the time interval 0 � t � 1000.

Examination of the surface profiles obtained from partial reconstruction as compared
to the fully nonlinear solution is provided in figure 8 for γ = ±2. Consistent with the
error plots in figure 7, we see that the discrepancies in wave amplitude and phase tend to
develop faster. The phase lag is clearly noticeable and affects the entire wave train, even in
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Figure 7. Relative L2 errors on η between fully and weakly nonlinear solutions for (B0, k0, λ) = (0.002, 10, 1).
The blue curve represents the Hamiltonian Dysthe equation with full reconstruction, while the red curve
represents the Hamiltonian Dysthe equation with partial reconstruction: (a) γ = −2, (b) γ = +2.
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Figure 8. Comparison on η between fully and weakly nonlinear solutions for (B0, k0, λ) = (0.002, 10, 1) at
t = 390, 500, 1000 (from left to right). The red curve represents the Hamiltonian Dysthe equation with partial
reconstruction, while the black curve represents the full nonlinear system: (a–c) γ = −2, (d–f ) γ = +2.

the stabilizing case γ = +2. It is so severe for γ = −2 that the weakly nonlinear solution
appears completely out of phase at t = 1000 during the near-recurrent stage.

Finally, the time evolution of the relative error

�H
H0

= |H − H0|
H0

(7.19)

on energy (6.8) and on wave action (6.13) associated with the Hamiltonian Dysthe equation
(6.11) is shown in figure 9 for various values of γ . Integrals in (6.8) and in the L2 norm
(7.14) are computed via the trapezoidal rule over the periodic cell [0, 2π]. The reference
value H0 denotes the initial value of (6.8) at t = 0. Overall, H is very well conserved in
all these cases. The gradual loss of accuracy over time, which becomes more pronounced
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Figure 9. Relative errors on (a) M and (b) H for the Hamiltonian Dysthe equation with
(B0, k0, λ) = (0.002, 10, 1) and γ = {−2,−1, 0,+1,+2}. The red curve corresponds to γ = 0.

as γ is decreased, is likely due to amplification of numerical errors triggered by the BF
instability.

8. Conclusion

Starting from the basic Hamiltonian formulation of the water wave problem with
constant vorticity as proposed by Wahlén (2007) and Constantin et al. (2008), we
derive a Hamiltonian version of the Dysthe equation (a higher-order NLS equation)
for the nonlinear modulation of two-dimensional gravity waves on deep water, in the
presence of a background uniform shear flow. The resulting model exhibits a well-defined
symplectic structure and conserves an energy (i.e. the reduced Hamiltonian) over time.
Our methodology, introduced recently for two- and three-dimensional irrotational gravity
waves (Craig et al. 2021a; Guyenne et al. 2021, 2022), consists in performing a sequence of
canonical transformations that involve a reduction to normal form (devoid of non-resonant
triads) and use of a modulational ansatz together with a scale separation lemma. A
novelty of our approach is a direct reconstruction of the surface variables from the
wave envelope through inversion of the third-order normal form transformation. This
reconstruction requires solving an auxiliary Hamiltonian system of PDEs, for which we
provide an explicit derivation. Such a procedure differs from the classical one where
physical quantities like the surface elevation are reconstructed perturbatively in terms of
a Stokes expansion. As a consequence, both steps (solving for the wave envelope and
recovering the surface elevation) fit consistently within a Hamiltonian framework.

To validate our approximation, we perform numerical simulations of this Hamiltonian
Dysthe equation and compare them to computations based on the full water wave system
and another related Dysthe equation recently derived by Curtis et al. (2018) in the same
setting. For a range of values of the vorticity, we examine the long-time dynamics of
perturbed Stokes waves and find very good agreement, thus providing a verification for
both Dysthe models. In particular, the performance of our Hamiltonian model is found
to be quite satisfactory over the entire range considered. We observe that the presence
of vorticity clearly has an effect on the BF instability of Stokes waves on deep water.
Consistent with results from previous studies, a counter-propagating shear flow (negative
vorticity) tends to enhance this instability as it amplifies the growth rate and enlarges
the instability region to higher sideband wavenumbers, while a co-propagating current
(positive vorticity) tends to stabilize it. We hope that this Hamiltonian Dysthe equation
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may serve as an efficient tool to study wave–current interactions in future applications.
As subsequent work, it would be of interest to extend the present method to the situation
of constant finite depth with possibly surface tension. For this problem, the reduction to
normal form is expected to be significantly more complicated.

While the problem under consideration for water waves in the presence of constant
vorticity is inherently two-dimensional, we point out that the Hamiltonian perturbation
method being advocated here to examine this problem is extensible to three dimensions
(Craig et al. 2010, 2021b). In particular, this approach may be used to investigate
short-crested waves as observed in the irrotational case. Approximations to such waves
have been obtained e.g. via reduced models based on the Zakharov equation with a focus
on crescent waves (Shrira, Badulin & Kharif 1996; Craig 2001), or via long-wave models
like the Benney–Luke and Kadomtsev–Petviashvili equations with a focus on hexagonal
waves (Hammack, Scheffner & Segur 1989; Milewski & Keller 1996). Our Hamiltonian
method has been applied to similar asymptotic regimes for three-dimensional waves in
various physical contexts, e.g. irrotational gravity waves on deep water (Guyenne et al.
2022), hydroelastic waves (Guyenne & Părău 2015), and surface waves interacting with
topography (Craig et al. 2005) or with internal waves (Craig, Guyenne & Sulem 2015).
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Appendix A. Proof of Lemma 5.3

We provide here the main steps in the proof of Lemma 5.3.

A.1. Computation of T(1)2
First, we notice that the terms S(−1−2)12, S12(−1−2), S(−3−4)34 and S34(−3−4) in (4.15) are
of order O(ε2). Indeed, under the modulational ansatz (5.1), we have

S(−1−2)12 = 1 − sgn(k1 + k2) sgn(k2)

a1a2a1+2

(
−(k1 + k2)k2a2

1+2a2
2 − γ

2
k1a2

1

)
= O(ε2),

(A1)
where, from (5.4), we have 1 − sgn(k1 + k2) sgn(k2) = O(ε2) and a1, a2, a1+2 = O(1).
The computations of S12(−1−2), S(−3−4)34 and S34(−3−4) are similar. We thus skip such
terms as we approximate T(1)2 up to order O(ε) only. By contrast, the terms S2(−1−2)1 and
S4(−3−4)3 are of order O(1), and they both contribute to the O(ε) expansion of T(1)2 . For
the expansion of S2(−1−2)1, we use (5.4) and obtain

S2(−1−2)1 = (2k0)
3/2(2ω2

0 + γω2k0)

2ω0
√
ω2k0

×
[

1− εg
4

(
1
ω2

0
+ 1
ω2

2k0

− 3
gk0

)
(λ1+λ2)+ εgΩ2k0

ω2k0(2ω
2
0+γω2k0)

(λ1 + λ2)

]
,

(A2)
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with a similar expression for S4(−3−4)3 where (λ1 + λ2) is replaced by (λ3 + λ4). It
remains to get an expansion for the bracket on the second line of (4.15). Using (5.4), we
have

1
Ω1 +Ω2 +Ω−1−2

+ 1
Ω3 +Ω4 +Ω−3−4

= 2
2Ω0 +Ω−2k0

(
1 − εg(ω0 + ω2k0)

4ω0ω2k0(2Ω0 +Ω−2k0)
(λ1 + λ2 + λ3 + λ4)

)
. (A3)

We substitute the above estimates into the expression (4.15) for T(1)2 , and use that∫
(λ1+λ2+λ3+λ4)z1z2z̄3z̄4 δ1+2−3−4 dk1234 = 2

∫
(λ2 + λ3)z1z2z̄3z̄4 δ1+2−3−4 dk1234,

(A4)
to get ∫

T(1)2 z1z2z̄3z̄4 δ1+2−3−4 dk1234

=
∫ (

cl
1 + εcr

1(λ2 + λ3)
)

z1z2z̄3z̄4 δ1+2−3−4 dk1234 + O(ε2), (A5)

which identifies to (5.13) in terms of the variable U. A similar calculation is performed for
T(2)2 .

A.2. Computation of T(3)2

We estimate each term in (4.17) under the modulational ansatz (5.1). Due to dependence on
(k1 − k3), these terms are of different orders compared to the above computations for T(1)2 .
Indeed, we show that A(1−3)(−1)3 and A(4−2)(−4)2 are of order O(ε1/2), and the bracket in
(4.17) is of order O(ε−1).

We start with A(1−3)(−1)3. Using (3.21a,b), we need to compute S(1−3)(−1)3, S3(1−3)(−1)
and S(−1)3(1−3). We immediately rule out the contribution from S3(1−3)(−1) as it is of order
O(ε5/2). The remaining terms are combined using (3.21a,b) as follows:

S(1−3)(−1)3 − S(−1)3(1−3) = 1
a1a3a1−3

(
ω1−3(ω3 − ω1)+ γ

2
sgn(k1 − k3) (ω1 − ω3)

+ γ

2
(ω1 + ω3)+ sgn(k1 − k3) ω1−3(ω1 + ω3)

)
. (A6)

Using expansions (5.4), we obtain

S(1−3)(−1)3 − S(−1)3(1−3)

=
√

2k0ε
1/2 |λ1 − λ3|1/2√|γ |ω0

[
1 − ε

4

(
g

ω2
0

− 2
k0

)
(λ1 + λ3)− g

γ 2 ε |λ1 − λ3|
]

×
[
|γ |ω0(sgn(γ )+ sgn(k1 − k3))+ εg |γ |

4ω0
(sgn(γ )+ sgn(k1 − k3))(λ1 + λ3)

+ εgγ
4ω0

(sgn(k1 − k3)− sgn(γ ))(λ1 − λ3)+ 2εgω0

|γ | (λ1 − λ3)

]
, (A7)
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and a similar expression for A(4−2)(−4)2 with (k1, k3) replaced by (k4, k2). Furthermore,
using that (sgn(k1 − k3)+ sgn(γ ))(sgn(k1 − k3)− sgn(γ )) = 0, several terms in the
product A(1−3)(−1)3A(4−2)(−4)2 vanish, and

A(1−3)(−1)3 A(4−2)(−4)2

= εk2
0γ (λ1−λ3)

16π
(1 + sgn(γ ) sgn(k1 − k3))

(
1+ ε

2k0
(λ1+λ2 + λ3 + λ4)

)
+ O(ε3).

(A8)

In addition, for (4.17), we have

1
Ω3−1 +Ω1 −Ω3

+ 1
Ω2−4 +Ω4 −Ω2

= 2γω0

ε(λ1 − λ3)gΩ0

(
1 + εgγ

16ω2
0Ω0

(λ1 + λ2 + λ3 + λ4)+ εgω0

γ 2Ω0
|λ1 − λ3|

)
. (A9)

We combine these estimates according to (4.17), and (5.13) follows.

REFERENCES

BAUMSTEIN, A.I. 1998 Modulation of gravity waves with shear in water. Stud. Appl. Maths 100, 365–390.
BENJAMIN, T.B. & OLVER, P.J. 1982 Hamiltonian structure, symmetries and conservation laws for water

waves. J. Fluid Mech. 125, 137–185.
BERTI, M., FRANZOI, L. & MASPERO, A. 2021 Traveling quasi-periodic water waves with constant vorticity.

Arch. Rat. Mech. Anal. 240, 99–202.
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