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Abstract

This study examines the performance of low-cost, low-power GNSS positioning systems for
glacier monitoring in high-latitude environments. We compare the positioning performance of
co-located low-cost u-blox ZED-F9P GNSS units (a few hundred USDs) and survey-grade
Trimble R10 units (> $10,000 USD) under stationary (on land) and dynamic (on glacier) condi-
tions near Terra Nova Bay, Antarctica. Low-cost and survey-grade systems yield almost identical
error magnitudes under short (3 m), medium (34 km) and long (390 km) baseline kinematic-
positioning scenarios. We further examined the efficacy of low-cost GNSS for glaciological appli-
cations by installing four u-blox and two Trimble receivers on Priestley Glacier to observe tide-
modulated ice flexure. All receivers successfully detected subtle tidal oscillations with amplitudes
< 3 cm, consistent with the predicted phasing from a tide model. These experiments offer a strong
rationale for the widespread use of low-cost receivers to expand and densify GNSS monitoring
networks, both in Antarctica and in glaciated regions worldwide.

1. Introduction

Ice displacement and velocity are fundamental observations used in glaciology to investigate
ice mechanics and to constrain ice flow models. Measurements of ice displacement are
often obtained in situ using Global Navigation Satellite Systems (GNSS), which can provide
high-precision horizontal and vertical positioning and precise timing information.
Applications in Antarctica include the observation of ice velocity and strain rate (Hulbe and
Whillans, 1994; Minowa and others, 2019; Klein and others, 2020), observation of vertical
land motion (Thomas and others, 2011; Zanutta and others, 2017; King and others, 2022),
validation of satellite and radar ice altimetry data (Schröder and others, 2017; Brunt and
others, 2019), and mapping of ice surface topography and surface elevation change (Hulbe
and Whillans, 1997; Spikes and others, 2003; Richter and others, 2014). GNSS positioning
is used to provide location and contextual information for transmitters and receivers used
for geophysical surveys, including radar sounding (Horgan and others, 2017; Pratap and
others, 2022), passive and active-source seismic sounding (Minowa and others, 2019;
Huang and others, 2022), and gravity measurements (Zanutta and others, 2018). It is used
to locate sample collection sites, including ice cores and ice-anchored moorings (Arzeno
and others, 2014; Thomas and others, 2021). Many of these applications require (or could
benefit from) a network of multiple GNSS devices deployed, yet this is costly and logistically
challenging in polar environments.

Glaciological applications typically use geodetic or survey-grade GNSS receivers and anten-
nas (e.g., Siegfried and others, 2016; Brunt and others, 2019; Cooley and others, 2019; Still and
others, 2022). These systems are robust, reliable, and can provide dual or triple frequency,
multi-GNSS data at a high rate (≥ 1 Hz), leading to centimetre-level horizontal and vertical
precision under ideal conditions. However, these systems are also expensive. State-of-the-art
survey-grade GNSS receiver and antenna systems can retail for ∼$30,000 USD, and refur-
bished last-generation systems were available for ∼$5,000 to $10,000 USD at the time of writ-
ing (AllTerra, 2023). High equipment costs can be prohibitive to scientific discovery, limiting
the concurrent deployment of multiple GNSS receivers over large areas of interest and restrict-
ing access to users with well-financed research programmes (e.g., Chagas, 2018; Oellermann
and others, 2022). Additional limitations of survey-grade receivers for deployment in remote
environments include high rates of power consumption, the size and weight of receivers
and antennas, and the weight of battery banks needed for multi-day installations (Willis,
2008; Jones and Rose, 2015; Jones and others, 2016).

Low-cost, mass-market GNSS chip devices—a relatively new and rapidly developing tech-
nology—are a promising alternative to the GNSS units typically used in glacier studies. These
low-cost systems retail for less than 10% of the cost of survey-grade alternatives (AllTerra,
2023; U-blox, 2023). Coupled with a low-cost antenna and data logger, low-cost GNSS recei-
vers are light and compact, with relatively low power consumption (e.g., den Ouden and
others, 2010; Jones and others, 2016). The key difference between low-cost and survey-grade
hardware lies in the quality of the receiver electronics. Electronic components generate internal
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receiver noise that affects the continuous tracking of satellite sig-
nals and ambiguity fixing, particularly when GNSS signals are
weak. Nonetheless, low-cost receivers and antennas can achieve
centimetre-level precision by tracking multiple GNSS satellite
constellations (e.g., GPS, GLONASS, Galileo, BeiDou, QZSS) at
two or more carrier frequencies (Odolinski and Teunissen,
2016, 2020). The low-cost u-blox ZED-F9P GNSS receiver, for
example, has a specified real time kinematic (RTK) positioning
accuracy of 1 cm + 1 ppm CEP over a 1 km baseline in optimal
conditions (U-blox, 2022a). In practice, positioning performance
depends on baseline length (the distance between a reference sta-
tion and moving GNSS receiver), satellite–receiver geometry,
antenna and receiver hardware design, atmospheric conditions,
and multipath interference errors (Odijk and Wanninger, 2017,
pg. 770–773), all of which are relevant to polar applications.
The performance of readily available u-blox ZED-F9P receivers
is investigated here as a low-cost solution for glacier monitoring.

The precision and reliability of low-cost GNSS receivers has
been evaluated for short baseline, static and dynamic positioning
at mid to low latitudes (e.g., Odolinski and Teunissen, 2016; Nie
and others, 2020; Xue and others, 2022). Similar performance
comparisons between low-cost and survey-grade systems have
not been conducted in high-latitude, glaciated environments. Of
relevance to polar environments where permanent GNSS refer-
ence stations are sparse, Odolinski and Teunissen (2020) show
that the positioning performance of u-blox ZED-F9P receivers
is competitive with a survey-grade system in a long-baseline
(112.9 km), kinematic-positioning configuration. Performance
evaluations of u-blox receivers in geophysical monitoring contexts
have also yielded millimetre-level precision for continuous tec-
tonic motion (Tunini and others, 2022) and landslide detection
(Notti and others, 2020; Šegina and others, 2020). In controlled,
short-baseline (<100 m) RTK positioning experiments, u-blox
ZED-F9P receivers paired with low-cost antennas could detect
mechanically-induced horizontal displacements as small as
10 mm (Hamza and others). All of these results suggest that the
measurement precision needed for glacier mechanics studies is
possible with this equipment, and for this reason, u-blox GNSS
hardware is evaluated in the present study.

Polar environments present challenges, limitations, and
sources of error that can affect the positioning performance of
both low-cost and survey-grade GNSS equipment. At high lati-
tudes, maximum satellite elevations are lower in the sky, with
no satellites passing directly overhead (King and others, 2000;
Zhang and others, 2020; Di and others, 2022). This weaker satel-
lite–receiver geometry can lead to an unfavourable vertical dilu-
tion of precision and larger vertical positioning errors
(Hugentobler and Montenbruck, 2017; Alkan and others, 2022).
A second source of error, multipath interference, occurs when
transmitted signals are deflected off objects before reaching the
receiver. Highly reflective snow and ice surfaces may amplify mul-
tipath errors, particularly when satellites are at low elevations
above the horizon (e.g., Wanninger and May, 2001; Nievinski
and Larson, 2014). A third source of error originates from the
degradation of GNSS signals due to geomagnetic and ionospheric
storms. These space weather disturbances have a greater intensity
at high latitudes, near the magnetic poles (Skone and others, 2001;
Doherty and others, 2003; Linty and others, 2018; Nie and others,
2022; Paziewski and others, 2022). Altogether, these error sources
and the presence of low elevation satellites can affect positioning
performance by decreasing the GNSS receiver signal-to-noise
ratio and increasing the frequency of cycle slips, a temporary
loss-of-lock on a satellite (Dabove and others, 2020; Di and
others, 2022).

Performance evaluations of GNSS receivers are often under-
taken in controlled, open-sky environments with favourable

conditions to achieve optimal precision and accuracy. These con-
ditions can include: a satellite–receiver geometry that minimises
positioning errors, calm ionospheric conditions, short baselines
(<50 km), and mitigation of low-elevation multipath errors.
This study evaluates low-cost GNSS positioning performance in
a high-latitude, glaciated environment in Antarctica under chal-
lenging conditions, including medium to long baselines, varying
ionospheric conditions, a glacier-valley site with some loss of
sky view, a highly reflective snow or ice surface, sub-zero tempera-
tures and differing receiver and antenna models for the base sta-
tion and rover. An important objective is to evaluate whether the
performance of low-cost GNSS is suitable for glaciological appli-
cations that require centimetre-level precision (e.g., the detection
of variability in ice velocity over timescales of hours to days).

1.1 Objectives

This study analyses the performance of low-cost, low-power
GNSS positioning for glacier and ice-sheet monitoring applica-
tions in high-latitude environments. We compare the perform-
ance of u-blox ZED-F9P GNSS receivers (< $300 USD) and
survey-grade Trimble R10 receivers (> $10,000 USD) under sta-
tionary (on land) and dynamic (on glacier) conditions near
Terra Nova Bay, Antarctica. In each experiment, u-blox and
Trimble receivers were installed alongside each other to record
positions simultaneously under the same satellite geometry and
environmental conditions. The u-blox receivers were paired
with both low-cost patch antennas and standard surveying anten-
nas while the Trimble R10 receivers were used with their inte-
grated antenna.

Three experiments were performed. The first experiment com-
pares and evaluates performance under stationary conditions on
stable ground near Mario Zucchelli Station in Terra Nova Bay,
Antarctica (Fig. 1). This short baseline (3 m) experiment estab-
lishes the optimal expected performance of the receivers at a high-
latitude site. The second experiment compares and evaluates the
performance under dynamic conditions on Priestley Glacier.
Three GNSS units (2 u-blox, 1 Trimble) were installed alongside
each other on an advecting ice surface. We evaluate the kinematic
positioning solutions for both medium (34 km) and long base-
lines (390 km). The third experiment evaluates performance in
a realistic glacier monitoring context: observing the tidal flexure
of Priestley Glacier’s left lateral shear margin. Six GNSS units
(4 u-blox, 2 Trimble) were installed in across- and along-flow
transects near the margin of Priestley Glacier (Fig. 1). GNSS posi-
tioning performance is evaluated in terms of precision, the repeat-
ability or variability of a measured quantity.

Single-baseline kinematic positioning solutions are used in the
present work. That is, we determine the trajectory of a moving
GNSS antenna (the ‘rover’) relative to a single stationary base sta-
tion receiver. This is a relative positioning technique and the
‘baseline’ is the distance between the rover and a base station.
The technique requires simultaneous observations from the two
receivers, one of which is installed on stationary terrain. Relative
positioning eliminates satellite and receiver clock errors, and
reduces errors associated with satellite orbits, ionospheric, and
tropospheric delays. Centimetre-level or better precision is feas-
ible providing that integer ambiguity resolution is achieved.

An alternative positioning method, precise point positioning
(PPP), requires the deployment of only a single GNSS receiver
(Zumberge and others, 1997; Kouba and Héroux, 2001). PPP is
commonly used in remote polar environments where logistical
difficulties or lack of access to stationary terrain are barriers to
the installation of temporary base stations (King and Aoki,
2003; King, 2004). Permanent GNSS reference stations in
Antarctica are sparse, distributed near coastlines, and may be
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located hundreds of kilometres away from field sites. Both single-
baseline kinematic positioning and PPP have produced
centimetre-level precision in Antarctica, using survey-grade
equipment (Hulbe and others, 2016; Schröder and others, 2017;
Brunt and others, 2019; Alkan and others, 2022; Still and others,
2022). The quality of a PPP solution, however, depends on precise
orbit and clock products, and the convergence time (hours rather
than minutes) is significantly longer compared to relative posi-
tioning methods. If the goal is to achieve very precise 3D positions
and velocities, a single-baseline kinematic positioning solution is
expected to be the best-performing technique in a short to
medium baseline configuration (i.e., less than 100 km between
base station and rover).

2. Methods

2.1 Low-cost GNSS instrumentation

Each low-cost GNSS installation includes a receiver, antenna, data
logger and power source (two 10W, 12 V solar panels and a 12 V,
18 A h SLA battery) (Table 1). The u-blox ZED-F9P GNSS
receiver module is capable of tracking GPS (L1/L2), GLONASS
(L1/L2), Galileo (E1/E5b), BeiDou (B1/B2), and QZSS (L1/L2)
systems and frequencies (U-blox, 2022a). The ZED-F9P module
operates over a wide temperature range (−40◦ C to 85◦ C) and
the rate of power consumption is relatively low (0.57W for the
u-blox ZED-F9P module + patch antenna + Arduino Cortex
M0 logger, versus 1.25W for a Trimble R10 system, and 3.67W
for a Trimble NetR9 system). The receiver is configured to log

all available satellites and frequencies at 1 Hz using the software
U-center v22.07 (U-blox, 2022b). RXM-RAWX messages (raw
carrier phase, pseudorange, Doppler and signal quality informa-
tion) and RXM-SFRBX messages (broadcast navigation data)
are enabled and the raw binary u-blox files are stored with an
Arduino data logger to micro SD card.

Two low-cost multiband antenna models are trialled with the
u-blox receivers: the u-blox ANN-MB patch antenna
(U-blox, 2022c) and an Eltehs multiband (ELT0123) standard
surveying antenna (GNSS OEM, 2023) (Table 1). Patch antennas
are designed to attach to flat surfaces and have magnetic bases for
this purpose. We attach our patch antennas to 0.12 m diameter
circular steel plates fabricated for these experiments. The plates
act as a ground plane that reduces multipath interference for
the otherwise exposed antennas (U-blox, 2019; Punzet and
Eibert, 2023). In Experiments 1 and 2, the ground plates are
bolted onto tripods. In Experiment 3, the plates are attached to
uPVC glacier stakes frozen into the ice. The u-blox ANN-MB
patch antenna has the advantage of a light and compact form,
with the limitation of a poorer gain performance (28 dB, versus
50 dB for the Trimble R10 antenna). The gain pattern of a higher-
quality antenna is optimised to suppress low elevation GNSS sig-
nals, including multipath interference (Maqsood and others,
2017).

2.2 Low-cost and survey-grade GNSS data processing

The first processing step involves a conversion from the propri-
etary u-blox and Trimble raw data file formats to standard

Figure 1. Site map of GNSS experiments conducted near Terra Nova Bay in the Ross Sea region, Antarctica. Map (a): the location of the stationary GNSS experiment
(Experiment 1) at Mario Zucchelli Station (MZS), and the dynamic GNSS experiments on Priestley Glacier (Experiments 2 and 3). Map (b): the field site near Priestley
Glacier’s left lateral margin, approximately 1 km downstream from the grounding zone. Map (c): the locations of u-blox (U) and Trimble (TR) GNSS stations installed
across the shear margin (Experiment 3). The estimated location of the grounding zone is from Rignot and others (2016) and the basemaps contain modified
Sentinel-2, 10 m resolution imagery acquired on December 18, 2022, courtesy of the European Space Agency.

Journal of Glaciology 3

https://doi.org/10.1017/jog.2023.101 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2023.101


RINEX 3.03 (Receiver Independent Exchange) files. U-blox data
streams are converted using open-source RTKLIB tools (Takasu
and Yasuda, 2009). Trimble observation files were converted
using the Trimble ‘Convert to RINEX’ utility, version 3.1.4.0.
GNSS stationary and dynamic observations are post-processed
using the RTKPOST module within RTKLIB v2.4.3 b34 (Takasu
and Yasuda, 2009; Takasu, 2013).

Multi-GNSS (GPS, GLONASS, Galileo, BeiDou and QZSS)
pseudorange and carrier phase measurements are post-processed
in kinematic mode using RTKLIB. A satellite elevation cut-off
angle of 15◦ is applied to mitigate low-angle multipath or atmos-
pheric errors. Solutions are computed at a 1 second measurement
interval for short baselines (Experiment 1) to demonstrate that
the low-cost system is capable of high-rate (1 Hz) data logging
in this environment. For medium and long baselines
(Experiments 2 and 3), solutions are computed at a 10 second
measurement interval to avoid reported time correlations of sev-
eral seconds in the code observations of u-blox M8T and F9P
receivers (Odolinski and Teunissen, 2017a, 2020), which if
neglected, may affect the positioning results. This is particularly

true for medium and long baselines when relative atmospheric
delays enter the model (Odolinski, 2012).

Base station and rover pairs are listed in Table 2 and kinematic
processing techniques and parameters are summarised in Table 3.
RTKLIB configuration settings aremodified to improve the solutions
for short, medium, or long baselines (e.g., Odolinski and others,
2015a). Identical processing settings are applied to each base–rover
pair within each experiment and are not modified to suit a low-cost
or survey-grade receiver or antenna, ensuring a fair performance
comparison between the different solutions. Antenna phase centre
offset (PCO) and phase centre variations (PCV) from the IGS14
antenna calibration database (IGS14.atx) are defined in RTKLIB
for survey-grade Trimble observations. PCOs and PCVs are ignored
for the low-cost multiband surveying antenna and ANN-MB patch
antenna, although providing these values for low-cost antenna mod-
els may reduce error magnitudes by a few millimetres (Krietemeyer
and others, 2022). Daily multi-GNSS broadcast ephemeris files (the
BRDM00DLR* product) (Steigenberger and Montenbruck, 2020)
from the CDDIS GNSS data archive (Noll, 2010) are used for
short and medium baseline tests. Final multi-GNSS orbit and

Table 1. Specifications of the GNSS receiver and antenna hardware evaluated in each experiment. All frequency bands supported by the GNSS receivers are listed.
Frequencies in bold font are used in the three experiments for a fairer comparison between u-blox and Trimble systems. Power consumption estimates are from
measurements rather than manufacturer specifications. Low-cost equipment prices are from the GNSS OEM Store (https://gnss.store/) and survey-grade equipment
pricing is from AllTerra (2023).

Receiver/antenna u-blox ZED-F9P u-blox ZED-F9P Trimble R10
+ multiband patch antenna + multiband surveying antenna (integrated antenna)

Systems and frequencies GPS: L1, L2 GPS: L1, L2 GPS: L1, L2, L5
(receiver) GLO: L1, L2 GLO: L1, L2 GLO: L1, L2, L3

GAL: E1, E5b GAL: E1, E5b GAL: E1, E5b, E5a, E6
BDS: B1, B2 BDS: B1, B2 BDS: B1, B2, B3
QZSS: L1, L2 QZSS: L1, L2 QZSS: L1, L2, L5

Dimensions (receiver) 17.0 × 22.0 × 2.4 mm 17.0 × 22.0 × 2.4 mm 119 × 119 × 136 mm
Dimensions (antenna) 60.0 × 82.0 × 22.5 mm 160.0 × 160.0 × 66.5 mm n/a
Weight (receiver) < 100 g < 100 g 1.12 kg
Weight (antenna) 173 g 400 g n/a
Operating temp (receiver) −40◦C to +85◦C −40◦C to +85◦C −40◦C to +65◦C
Operating temp (antenna) −40◦C to +85◦C −40◦C to +70◦C n/a
Receiver price $187 USD $187 USD > $10,000 USD (used)
Antenna price $90 USD $199 USD n/a
Power usage of GNSS system 0.57 W 0.65 W 1.25 W
Positioning accuracy (horiz) 0.01 m +1 ppm CEP 0.01 m +1 ppm CEP 0.008 m+1 ppm RMS (RTK)
Antenna gain 28 dB 38 dB 50 dB
Experiment 1 (Fig. 2) Rover + base station n/a Rover + base station
Experiment 2 (Fig. 6) Rover (Ub2) Rover (Ub1) Rover (Tr1)
Experiment 3 (Fig. 1c) Rover (Ub3, Ub4) Rover (Ub1, Ub2) Rover (Tr1, Tr2)

Table 2. Summary of GNSS positioning experiments conducted at Mario Zucchelli Station (MZS) and on Priestley Glacier (PG). Experiment sites are mapped in Fig. 1.

Baseline Rover receiver + antenna Base receiver + antenna Duration Rover site Section

Low-cost u-blox versus Trimble comparisons
Experiment 1 (Stationary) 3.5 m u-blox ZED-F9P + patch u-blox F9P + patch 13 hrs MZS 3.1

3.5 m Trimble R10 Trimble R10 13 hrs MZS
Experiment 2 (Dynamic, medium baseline) 34 km u-blox ZED-F9P + patch Trimble NetR9 + Zephyr 15 hrs PG 4.1

34 km u-blox ZED-F9P + surveying Trimble NetR9 + Zephyr 15 hrs PG
34 km Trimble R10 Trimble NetR9 + Zephyr 15 hrs PG

Experiment 2 (Dynamic, long baseline) 390 km u-blox ZED-F9P + patch Trimble Alloy + Zephyr 3 15 hrs PG 4.2
390 km u-blox ZED-F9P + surveying Trimble Alloy + Zephyr 3 15 hrs PG
390 km Trimble R10 Trimble Alloy + Zephyr 3 15 hrs PG

Application: kinematic positioning to monitor tidally-modulated ice flexure
Experiment 3 (Dynamic) 34 km Trimble R10 Trimble NetR9 + Zephyr 8.5 days PG 5

34 km Trimble R10 Trimble NetR9 + Zephyr 7 days PG
34 km u-blox ZED-F9P + patch Trimble NetR9 + Zephyr 4 days PG
34 km u-blox ZED-F9P + patch Trimble NetR9 + Zephyr 4 days PG
34 km u-blox ZED-F9P + surveying Trimble NetR9 + Zephyr 3 days PG
34 km u-blox ZED-F9P + surveying Trimble NetR9 + Zephyr 3 days PG
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clock information (GFZ0OPSFIN* products) from the GFZAnalysis
Centre (Montenbruck and others, 2017; Männel and others, 2020)
are used for the long baseline (390 km) test because satellite orbit
errors enter the single-baseline positioning model as the baseline
increases. Output positions are provided as WGS84 latitude, longi-
tude and ellipsoidal height. Coordinates are transformed to the
Antarctic Polar Stereographic coordinate system (EPSG:3031).
Time series position data are presented with the mean position for
each station removed.

Smoothing or filtering techniques are often applied to pro-
cessed GNSS time series to remove unrealistic peaks and high fre-
quency noise associated with multipath interference. In
Experiment 3 (Fig. 1c), in which the objective is to observe ice
flexure and tidal modulation of ice velocity, outliers are removed
with a three-hour moving median filter to prevent unrealistic
peaks in the horizontal and vertical position time series. This
method defines outliers as points that fall beyond a threshold of
three scaled median absolute deviations from the sliding median.
No filtering, smoothing or outlier detection methods are applied
to the solutions in Experiments 1 and 2 (Section 1.1). GNSS data
are presented ‘as is’ for the comparisons between low-cost and
survey-grade receivers.

3. Experiment 1: Stationary, short-baseline positioning

This experiment quantifies the uncertainty of GNSS positions
obtained with low-cost u-blox systems and directly compares
the performance of u-blox and Trimble receivers under the
same environmental conditions. In a short-baseline positioning
configuration, ionospheric and tropospheric errors, and satellite
clock and orbit errors are negligible. This stationary, short-
baseline experiment therefore demonstrates the optimal
expected performance of the low-cost GNSS devices for polar
applications.

The stationary comparisons of low-cost u-blox and survey-
grade Trimble receivers were conducted at Mario Zucchelli
Station, a coastal research station located on a granite promontory
in Terra Nova Bay (74.6954° S, 164.0962° E). Four GNSS units (2
low-cost u-blox ZED-F9P receivers and 2 survey-grade Trimble
R10 receivers) were deployed in a base station and rover pair,
on stationary ground, with a short baseline of 3.5 m (Fig. 2).
Receivers and antennas were installed approximately 300 m
up-slope from Mario Zucchelli Station to maximise sky view
and avoid interference from buildings. Both u-blox receivers
were equipped with ANN-MB patch antennas and ground plates.
The Trimble R10 hardware consists of a receiver and ultra-
compact Zephyr antenna within a single unit. Positions logged
during the final 12 hours of the experiment, 0600 to 1800
hours (UTC) on 16 November, 2022, are analysed here.
Positioning performance is evaluated in terms of the standard
deviation for each component of position (east, north, up), and

the 2D (horizontal) and 3D (horizontal and vertical) root mean
square (RMS) errors, a collective measure of the difference
between observed and expected positions. Statistics for each
experiment are presented in Table 4.

3.1 Short-baseline positioning performance

Satellite visibility and geometry together affect the precision of
horizontal and vertical positions. Both u-blox and Trimble sys-
tems were configured to track five satellite systems visible in
Antarctica (GPS, GLONASS, Galileo, BeiDou, QZSS). With an
elevation cutoff angle of 15◦, the u-blox system tracked a mean
of 31.8 satellites (minimum = 26, maximum = 39) and the
Trimble system tracked a mean of 30.0 satellites (minimum = 24,
maximum = 35). The difference is due to the improved continuous
signal tracking of BeiDou satellites by the u-blox receiver (Figs. 3g,
h). The positional dilution of precision (PDOP) is a measure of
the strength of the receiver–satellite geometry. Lower PDOP values
indicate a stronger geometry (i.e., satellites are well-distributed
rather than clustered across the sky). The receivers experienced
similar small excursions in PDOP (Fig. 3i–j), which is reflected
as an increase in noise and poorer precision, particularly in the
vertical component (for example, see the epochs at 0745 UTC
for the Trimble solution, column 2). Overall, excellent PDOP
values approaching 1 were observed for both u-blox and
Trimble systems. A PDOP >10 indicates a poor receiver–satellite
geometry (e.g., Teunissen and others, 2014).

The horizontal and vertical precisions of the two systems are
nearly identical (Fig. 3). The horizontal root mean square
(RMS2D) error is 2.4 mm for both the u-blox and Trimble
GNSS stations (Table 4). The u-blox system also provided a

Figure 2. Low-cost u-blox and survey-grade Trimble receivers and antennas in a
short-baseline (3.5 m) configuration near Mario Zucchelli Station in Terra Nova Bay,
Antarctica (Experiment 1).

Table 3. RTKLIB configuration settings for post-processing of u-blox and Trimble position time series.

Setting Short baseline Medium baseline Long baseline

Dynamic model for positions None (kinematic) None (kinematic) None (kinematic)
Constellations G, R, E, C, J G, R, E, C, J G, R, E
Frequencies L1+L2 L1+L2 L1+L2
Filter type Forward Forward Forward
Elevation mask 15◦ 15◦ 15◦

Ionospheric modelling Can be ignored Estimate slant total electron content (STEC) Estimate STEC
Wet tropospheric delay estimation None None Estimate zenith tropospheric delay (ZTD)

(mapping function: Niell)
Satellite ephemeris/clock Broadcast Broadcast Precise
Dynamic model for ambiguities Time constant Time constant Time constant
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marginal improvement in vertical precision in comparison to the
Trimble system (u-blox: σu = 5.6 mm vs. Trimble: σu = 5.9 mm,
Fig. 3). The corresponding 95% confidence ellipses are a 2D
representation of the positional errors associated with the low-
cost receiver (Fig. 4). Positioning errors are of a similar magnitude
for u-blox and Trimble systems (u-blox: length of the ellipse semi-
major axis = 9.4 mm vs. Trimble: 9.2 mm). The approximate
north–south orientations of the ellipse semi-major axes are con-
sistent with fewer positioning satellites traversing the southern

sky at a high latitude site. This geometrical configuration, where
satellite trajectories are less frequent in the southern sky, is
depicted by the skyplots presented in Fig. 5.

High-precision (mm to cm-level) GNSS positions are achieved
by carrier phase integer ambiguity resolution. If the number of
complete carrier phase wavelengths between receiver and satellites
is resolved as an integer value, the solution is fixed. Float solu-
tions, which inherently have poorer precision, are used when inte-
ger ambiguities are not resolved. The probability of correct integer

Table 4. The precision of u-blox and Trimble GNSS observations. σe, σn, and σu denote the standard deviation of the easting, northing and vertical positions. For
Experiment 2, σn is the standard deviation of the detrended northing positions (i.e., the mean downstream flow is removed). For Experiment 3 (dynamic
observations), standard deviations σe, σn, and σu are computed for 30-minute moving windows and presented as the mean for each time series. The 2D
(horizontal) and 3D root mean square (RMS) errors are also computed for 30-minute moving windows and presented as the mean (Experiments 2 and 3). The
mean position is taken as the reference value for each RMS error calculation

Station name Receiver + antenna σe (mm) σn (mm) σu (mm) RMS2D error (mm) RMS3D error (mm)

Experiment 1 (Stationary) Ub u-blox + patch 1.5 1.9 5.6 2.4 6.1
Tr Trimble R10 1.5 1.8 5.9 2.4 6.4

Experiment 2 (Dynamic, medium baseline) Ub1 u-blox + surveying 7.0 9.6 24.4 8.4 20.2
Ub2 u-blox + patch 8.4 9.2 26.9 9.7 23.2
Tr1 Trimble R10 6.5 8.5 26.6 8.3 22.0

Experiment 2 (Dynamic, long baseline) Ub1 u-blox + surveying 5.7 6.9 28.4 6.2 21.2
Ub2 u-blox + patch 9.8 10.7 38.4 9.9 29.7
Tr1 Trimble R10 5.3 7.5 37.4 6.5 22.4

Experiment 3 (Dynamic, medium baseline) Ub1 u-blox + surveying 4.3 5.7 17.0 7.1 18.4
Ub2 u-blox + surveying 4.8 6.4 15.9 8.1 17.8
Ub3 u-blox + patch 5.1 6.7 19.4 8.7 21.1
Ub4 u-blox + patch 5.1 6.3 18.6 8.3 20.3
Tr1 Trimble R10 4.6 6.0 16.7 7.6 18.3
Tr2 Trimble R10 4.0 5.5 15.0 6.9 16.5
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Figure 3. Short baseline, stationary positions recorded with u-blox and Trimble GNSS stations over a 12 hour observation period on 16 November, 2022
(Experiment 1). East and north components of position correspond to the horizontal axes of the Antarctic Polar Stereographic coordinate system (EPSG:3031),
with the mean position removed. n = 43,200 epochs are included in each time series (1 Hz sample rate). σ is one standard deviation. The PDOP is the 3D position
dilution of precision. Note the change in y-axis limits from ±2 cm for the horizontal components to ±5 cm for the vertical component.
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estimation, also referred to as the integer ambiguity success rate, is
88.6% for u-blox and 91.4% for Trimble, suggesting a similar
ambiguity resolution performance between the two receivers.
Solutions were classified as fixed or floating according to a com-
monly used ambiguity ratio test within RTKLIB with a conserva-
tive ratio threshold of three (e.g., Teunissen, 2017, pg. 680). Since
the traditional ratio test is not always robust (Teunissen and
Verhagen, 2009; Verhagen and Teunissen, 2013), we also evaluate
positioning performance by comparing the solutions to precise
benchmark coordinates. With a threshold of ±5 cm in the E/N/
U directions, u-blox and Trimble systems achieved a 100.0%
and 99.9% success rate, respectively, indicating a competitive per-
formance between the two receivers. Therefore, in the following
sections, we will assess the positioning performance based on
solutions where ambiguities are assumed to have converged to
their correct integer values. In other words, we will assess the
positioning performance after convergence time for each solution.

4. Experiment 2: Dynamic, medium and long-baseline
positioning

This experiment evaluates the dynamic performance of the low-
cost systems in a glaciated setting. Two u-blox (Ub1 and Ub2)
and one Trimble R10 (Tr1) GNSS station(s) were installed adja-
cent to each other on the floating left shear margin of Priestley
Glacier (Fig. 6a). Station Ub1 was paired with a low-cost survey-
ing antenna (GNSS OEM, 2023) and Ub2 was paired with a patch
antenna (U-blox, 2022c) (Fig. 6b and c) to assess whether low-
cost antenna type affects positioning performance. The GNSS sta-
tions were aligned in a flow-oriented transect with a 5 m spacing.
Antennas were installed 2 m above the ice surface with antenna
centres positioned at the same elevation to ensure equivalent sky-
view conditions. Positions were logged at a 1-second measure-
ment interval for 15 hours during the neap tide on 21
November, 2022. Maximum windspeeds of 12 knots were
recorded during the experiment.

The dynamic positioning performance of the u-blox and
Trimble systems is evaluated for medium (33.9 km) and long
(390 km) baseline configurations. A temporary base station
(Trimble NetR9 receiver + Zephyr model antenna) was installed
on the roof of a shipping container GNSS laboratory at Mario
Zucchelli Station to support the medium baseline (33.9 km) test.
This receiver tracked GPS, GLONASS, Galileo, BeiDou and
QZSS satellite signals at 1 Hz (Fig. 6e). Existing reference stations
in the Terra Nova Bay region do not record all available constella-
tions and frequencies, and thus were unsuitable for this objective
(Mario Zucchelli and Jang Bogo Station reference stations: both
GPS and GLONASS only). The base station used for the long
baseline test is the International GNSS Service (IGS) ground sta-
tion (SCTB) established near Scott Base, 390 km southeast of

Priestley Glacier (Johnston and others, 2017; LINZ, 2023). This
receiver tracks GPS, GLONASS, Galileo, BeiDou and QZSS satel-
lite signals at a 1 second measurement interval.

4.1 Medium-baseline positioning performance

Low-cost stations Ub1 (surveying antenna) and Ub2 (patch
antenna) provided millimetre-level precision (Fig. 7). Horizontal

 U-blox + patch Trimble R10

95% ellipse 95% ellipse

- - - -

-

-

a b

Figure 4. Horizontal positions and 2D 95% confidence ellipses for the u-blox and
Trimble position time series. Confidence ellipses are computed from n = 43,200 posi-
tions obtained over 12 hours on 16 November, 2022. ‘North’ corresponds to grid
north and the coordinate system is the same as in Fig. 3.

a

b

c

d

Figure 5. Satellite skyplots with carrier-to-noise (C/N0) density ratios associated with
each GNSS unit. Satellite trajectories in each skyplot are shown for 12 hours on 21
November, 2022 with an elevation cutoff of 15◦ . All constellations are included
(GPS L1, GLONASS L1, Galileo E1, BeiDou B1, QZSS L1). The 0◦ azimuth corresponds
to geographic north.
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RMS2D errors were 8.4 mm and 9.7 mm for Ub1 and Ub2,
respectively. The u-blox receivers were competitive with the
Trimble system (RMS2D error: 8.3 mm), irrespective of choice of
low-cost antenna (Table 4, Fig. 7). The almost identical perform-
ance of the low-cost and survey-grade instruments is also shown
by similarities in the derived ice velocity estimates. Based on only
12 hours of observations, ice velocities of 99.9 ± 0.4 ma−1 (Ub1),
103.2 ± 0.4 ma−1 (Ub2), 98.9 ± 0.3 ma−1 (Tr1) are estimated. No
tidal vertical oscillation is observed because positions were
recorded during the neap tide at a site near a glacier margin.

The vertical positioning error is approximately 3 to 4 times
the horizontal error for both u-blox and Trimble observations
from Priestley Glacier (Table 4, Fig. 7). The ratio between the
vertical and horizontal error magnitude is closer to 2 at lower
latitude sites (e.g., Yong and others, 2021; Tidey and
Odolinski, 2023), due to a more favourable receiver–satellite
geometry. While the total number of tracked satellites at the
Priestley Glacier site is relatively high (n = 30 to 32) and com-
parable to a mid-latitude site, the elevation angles of the satel-
lites are lower at higher latitudes (Fig. 5). This geometry leads
to a weaker vertical dilution of precision (VDOP), while the
horizontal dilution of precision (HDOP) remains close to 1. A
similar effect was also observed for the short baseline, stationary
scenario (Experiment 1).

4.2 Long-baseline positioning performance

All GNSS stations (Ub1, Ub2, Tr1) were capable of millimetre-
level horizontal precision in a long baseline (390 km)

configuration (Figs. 8 and 9). Low-cost station Ub1 paired with
the surveying antenna was competitive with the Trimble system
(RMS horizontal errors were Ub1 = 6.2 mm and Tr1 = 6.5 mm).
Of the three stations, the horizontal and vertical positions
acquired with the patch antenna were more susceptible to cycle
slips and measurement noise (Fig. 9). All long baseline solutions
presented here use three satellite constellations only (GPS +
GLONASS + Galileo). Further improvements in long-baseline
positioning performance are expected with the inclusion of
BeiDou and QZSS satellites (e.g., Odolinski and others, 2014;
Odolinski and Teunissen, 2017b).

Vertical positioning errors for all stations increased by
approximately 30% in comparison to the medium baseline errors
(Table 4). Conversely, the long-baseline configuration did not
increase horizontal positioning errors despite the order of magni-
tude increase in baseline length. With all other error sources held
equal, error magnitudes increase with increasing distance between
base station and rover. We attribute the better-than-expected
long-baseline results to the superior antenna hardware and place-
ment of the Scott Base IGS network station. The temporary base
station installed at Mario Zucchelli Station to support the medium
baseline test was located in a high-wind zone on top of a shipping
container and paired with an early model, lightweight Zephyr
antenna of slightly inferior quality to the IGS station antenna
(Fig. 6e). The IGS station is equipped with a Zephyr 3 geodetic
antenna, designed to minimise multipath via a large resistive
ground plane. The difference in antenna hardware quality is
shown by the distribution of the carrier-to-noise (C/N0) density
ratios (a measure of signal strength, Fig. 5), where overall,

Figure 6. Low-cost u-blox and survey-grade Trimble receivers and antennas installed on Priestley Glacier for 15 hours on 21 November, 2022 (Experiment 2). Panel
(a) demonstrates the configuration of the roving receivers. Panels (b-d) show the antenna models compared in the experiment. Panel (e) demonstrates the set-up
of the temporary base station installed at Mario Zucchelli Station (MZS). Panel (f) illustrates the configuration of the medium (33.9 km) and long (390 km) baselines
in Experiment 2. The basemap in (f) is a Sentinel-2, 10 m true-colour image acquired on 18 December, 2022, courtesy of the European Space Agency.
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observations from the Scott Base IGS station have higher C/N0

values than the Mario Zucchelli base station.

4.3 Multi-GNSS versus GPS positioning performance

This test compares multi-GNSS solutions (GPS + GLONASS +
Galileo + BeiDou + QZSS) to single (GPS) and dual-GNSS (GPS

+ GLONASS) solutions from the medium-baseline (33.9 km)
experiment conducted on Priestley Glacier. As expected, the five-
constellation positioning solution yields smaller errors than the
single (GPS) and dual-GNSS (GPS + GLONASS) solutions for
both u-blox and Trimble systems (Fig. 10). Each multi-GNSS
positioning solution includes at least twice as many tracked satel-
lites in comparison to the single and dual-constellation solutions,

Figure 7. Medium-baseline, dynamic positions recorded with u-blox and Trimble GNSS stations installed on Priestley Glacier for a 12 hour observation period on 21
November, 2022 (Experiment 2). East and north components of position correspond to the horizontal axes of the Antarctic Polar Stereographic coordinate system
(EPSG:3031), with the mean position removed. Eastings and northings also correspond to local across-flow and along-flow directions, respectively (Fig. 1c). The
baseline between the NetR9 base station and the on-glacier receivers is 33.9 km. σe and σu are standard deviations and σn is the standard deviation of the
detrended northing component of position (i.e., displacement downstream). n = 4320 epochs are included in each time series. Note the change in y-axis limits
from ±0.2 m for the horizontal components to ±0.4 m for the vertical component.

Figure 8. Horizontal trajectories of the u-blox and Trimble GNSS stations installed alongside each other on Priestley Glacier for 12 hours on 21 November, 2022
(Experiment 2). n = 4320 epochs are included in each solution.
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leading to less measurement noise and a reduced frequency of
undetected cycle slips that are characteristic of the single and
dual-constellation solutions.

The low-cost u-blox system only achieves competitive per-
formance to the Trimble system when three or more constella-
tions are tracked. The Trimble system, however, provided
centimetre-level precision for single (GPS) and dual (GPS +
GLONASS) solutions, at epochs when the u-blox system experi-
enced high signal noise and cycle slips (e.g,. Fig. 10, epochs at
1000 UTC). One key advantage of the higher-cost Trimble system
is therefore the ability to achieve precise positions and a stable
time series unaffected by cycle slips when only GPS and
GLONASS observations are available. We recommend that
u-blox rover and base station pairs are configured to track at
least GPS, GLONASS and Galileo satellites, at two or more fre-
quencies, for successful low-cost GNSS positioning. To summar-
ise, the dual-GNSS system (GPS+GLONASS) provided millimetre
to centimetre-level precision when using a survey-grade receiver
and antenna (Fig. 10), but may not suffice when using a low-cost
GNSS system at this site.

4.4 Low-cost antenna performance

The medium and long baseline experiments also evaluate the
potential impact of different low-cost antenna types on the preci-
sion of the positioning results. For the long baseline, horizontal
precision improved when the u-blox receiver Ub1 was paired
with a multiband surveying antenna instead of a multiband patch
antenna (RMS2D error for Ub1: 6.2mm vs. Ub2: 9.9mm).
Similarly, the surveying antenna also improved the vertical preci-
sion for both medium and long baseline solutions (Table 4).
Antenna type had no impact on horizontal error magnitudes in
the medium baseline test.

The long baseline positions obtained with a patch antenna
have larger error magnitudes because the simplified antenna
hardware is more susceptible to signal noise (Fig. 5). Patch anten-
nas do not contain internal shielding to mitigate multipath effects
and cycle slips are also more frequent due to the antenna receiv-
ing a weaker, noisier signal (Fig. 9b). Raw signals received by the
u-blox + patch antenna system have lower C/N0 values overall,
particularly for lower elevation satellites (, 30◦) (Figs. 5a–c). In
other settings, low-cost patch antennas are also shown to have a
lesser ability to suppress multipath interference and signal noise
(Odolinski and Teunissen, 2017b; Romero-Andrade and others,
2021; Manzini and others, 2022; Paziewski, 2022).

5. Experiment 3: Multi-day GNSS records of ice motion

Low-cost and survey-grade GNSS performance is evaluated in a
realistic glacier monitoring scenario: observing tide-modulated
ice flexure across the floating shear margin of Priestley Glacier.
Multi-day records of glacier motion were observed at six GNSS
stations (4 u-blox, 2 Trimble R10s) arranged in across- and
along-flow transects (Fig. 1c, Table 2). We present six GNSS
time series of tidally-modulated across- and along-flow ice dis-
placement and velocity with estimated positioning errors. In
this experiment, the amplitudes of the E/N/U position time series
for each station will vary due to the different receiver locations
with respect to the glacier margin, while the timing of high and
low tide peaks should be synchronised.

Vertical ice motion at a predominantly solar diurnal tidal fre-
quency is observed at all GNSS sites (Fig. 11). Focusing on the
low-cost configurations, stations Ub4 (600 m from the margin)
and Ub3 (800 m from the margin), detected clear diurnal tidal
oscillations with amplitudes less than 1 and 2 cm, respectively
(Fig. 11a), synchronised with the timing of the CATS2008 tide

Figure 9. Long-baseline, dynamic positions recorded with u-blox and Trimble GNSS stations installed on Priestley Glacier, for a 12-hour observation period on 21
November, 2022 (Experiment 2). The baseline between the Scott Base reference station and the on-glacier receivers is 390 km. σe and σu are standard deviations
and σn is the standard deviation of the detrended northing component of position (displacement downstream). n = 4320 epochs from a 12-hour observation period
are included in each time series. Note the change in y-axis limits from ±0.2 m for the horizontal components to ±0.4 m for the vertical component.
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prediction (Padman and others, 2002; Howard and others, 2019).
Vertical positions recorded by the three GNSS stations in the
along-flow transect (Fig. 11b) have very similar signal amplitudes
and error magnitudes, irrespective of receiver or antenna type.
Similar uncertainties are achieved in all of the GNSS configura-
tions reported here (Fig. 11, Table 4). For example, the average
of the moving standard deviation σu, a measure of observation
noise associated with vertical positioning, is 1.9 cm (Ub3) and
1.9 cm (Ub4) for the u-blox + patch antenna configurations,
and 1.7 cm (Ub1) and 1.6 cm (Ub2) when surveying antennas
are used. Three explanations for the marginally smaller vertical
errors derived from stations Ub1 and Ub2 are firstly the more
advantageous satellite–receiver geometry – the receivers were
installed a greater distance from Black Ridge and have an unob-
structed skyview (Fig. 1c). Ub1 and Ub2 were also able to track
an additional 1 to 2 satellites at each epoch and were paired
with low-cost surveying antennas rather than patch antennas.

Tidally-modulated along- and across-flow ice displacement is
observed at all GNSS stations (Fig. 12). All u-blox and Trimble
stations operated with a precision that allowed the detection of
velocity variability at a diurnal frequency (Fig. 12). In the along-
flow direction, ice velocity increases during the falling tide, and
slows during the rising tide, with one velocity maximum observed
per diurnal tide cycle. In the across-flow direction, the observed
transverse displacement of ice (towards and away from the mar-
gin) is associated with elastic bending. On the rising tide, ice is
displaced toward the margin and on the falling tide ice is dis-
placed toward the glacier centre (Fig. 12). The amplitude of

these oscillations ranges from ±1.5 cm (Ub4, nearest the glacier
margin) to ±3 cm (Ub1, nearest the glacier centre).

5.1 Sources of positioning error

In this section, we consider the causes of positioning errors at the
Priestley Glacier field site. Variability in positioning noise is
shown by the moving standard deviation computed for each pos-
ition time series (Fig. 11b). Peaks and trends in the moving stand-
ard deviations are synchronised between all six of the GNSS
stations, despite their different locations across the glacier shear
margin. This consistency across GNSS stations indicates that vari-
ability in positioning noise is not predominately due to site spe-
cific multipath interference effects or differences in hardware
(low-cost versus survey-grade receivers, or surveying versus
patch antennas). Instead, the number of tracked satellites, or the
similarities in ionospheric and tropospheric conditions, may
determine the magnitude of positioning errors at the Priestley
Glacier site.

Time-varying satellite geometry and atmospheric effects are
demonstrated using the longest duration position time series
from station Tr1 (Trimble R10, 9-day duration, Fig. 13).
Short-term increases in positioning noise coincide with rapid
decreases in the number of tracked positioning satellites (e.g.,
the epochs at 0800 hours on November 19 in Fig. 13c). The
HDOP and PDOP, however, remain steady over the 9-day
measurement period due the high number of positioning satellites
tracked at all epochs (Fig. 13f). A second source of error, the

Figure 10. East (across-flow), north (along-flow) and vertical (up) positioning solutions for two Priestley Glacier GNSS stations with the inclusion of additional
satellite constellations. Each time series includes n = 4320 epochs (10 s sample interval) collected over a 12-hour observation period on 21 November, 2022.
The number of satellites is computed for an elevation cutoff angle of 15°. U-blox (a) and Trimble R10 (b) GNSS stations were installed as part of Experiment 2
(Fig. 6). Note the change in y-axis limits from ±0.3 m for the horizontal components to ±0.5 m for the vertical component.

Journal of Glaciology 11

https://doi.org/10.1017/jog.2023.101 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2023.101


prevailing ionospheric conditions (indicated by the Kp index), has
no apparent association with observed positioning noise
(Fig. 13e). Similarly, large variations in the slant ionospheric
delay, defined as the estimated delay as the GNSS signal passes
through the ionosphere, have very little association with position-
ing error magnitudes. This result indicates that the ionospheric
delay modelling strategy (Table 3) correctly estimates the iono-
spheric delays. Priestley Glacier GNSS datasets were collected dur-
ing a period of low to medium ionospheric disturbance (Kp index
≤4). A longer time series encompassing a wider range of geomag-
netic disturbances is required to further investigate these effects.
Indeed, low-cost GNSS hardware with poorer quality code and
carrier phase measurements may be more susceptible to degraded
positioning performance during periods of strong ionospheric
activity.

6. Discussion

GNSS positioning performance at high latitude sites may be
affected by relatively low satellite elevations, which result in
weaker receiver–satellite geometries and longer signal paths
through the ionosphere. Nonetheless, the positioning perform-
ance of u-blox GNSS stations at our high-latitude glacier site is
similar to performance evaluations of the same equipment at
mid-latitude sites. For example, kinematic positioning evaluations
of u-blox receivers have reported horizontal precision of σe
and σn = 10 mm (Odolinski and Teunissen, 2020) (RTK, long
baseline: 112 km) and σe = 8 and σn = 10 mm (Tidey and
Odolinski, 2023) (RTK, medium baseline: 27 km). In the present
experiments, equivalent data processing approaches applied to
low-cost and survey-grade observations with three or more con-
stellations resulted in comparable RMS errors for each baseline
length (Table 4). The high-cost, survey-grade system offered
no performance advantages. At longer baselines, pairing the

low-cost receiver with a ground-plane surveying antenna (rather
than a patch antenna) resulted in a small improvement in
precision.

The present work focuses on single-baseline kinematic posi-
tioning (a relative positioning method) because it can provide
the millimetre- to centimetre-level precision required for glacio-
logical applications. Error magnitudes are a function of baseline
length, with millimetre-level precision anticipated for short base-
lines (< 20 km). However, the common notion that a base station
must be located within a few tens of kilometres is not necessarily a
requirement, particularly for dual-frequency, multi-GNSS obser-
vations. Centimetre-level precision is feasible over long baselines
> 100 km (Schüler, 2006; Odolinski and Teunissen, 2020), and
indeed, the present work achieved centimetre-level precision for
both low-cost and survey-grade systems with a 390 km baseline
(Fig. 9).

Successful positioning with the low-cost u-blox system is pos-
sible with both single-baseline kinematic positioning, and single-
receiver PPP (Zumberge and others, 1997). While we use kine-
matic positioning due to its inherently smaller error magnitudes
at short to medium baselines, remote field settings may necessi-
tate the application of PPP techniques. To illustrate the perform-
ance of PPP with low-cost hardware, we generate example
solutions using the online CSRS-PPP service (GPS+GLONASS
only) and RTKLIB kinematic-PPP (GPS + GLONASS +
Galileo) (see Supplementary Material). The choice of low-cost
rather than survey-grade hardware did not compromise position-
ing performance for glaciological applications when using PPP.

6.1 Set-up of low-cost systems for successful precise
positioning

The u-blox ZED-F9P receivers used here have the capability to
track multi-GNSS dual-frequency signals (e.g., GPS and

a b

Figure 11. The tide-modulated vertical displacement of four u-blox and two Trimble GNSS stations on Priestley Glacier. Panel (a) includes the stations installed in
an across-flow transect. Panel (b) includes the stations installed in an along-flow transect, and a tide prediction from the CATS2008 model (Padman and others,
2002; Howard and others, 2019). Shaded error bounds show the moving standard deviation (two-hourly window) of the vertical position time series. These GNSS
stations are expected to exhibit vertical oscillations with varying amplitudes due to their different locations with respect to the glacier margin and grounding zone.
Predicted tidal amplitudes and GNSS-observed amplitudes differ because the Priestley Glacier field site is not freely-floating in hydrostatic equilibrium. GNSS sta-
tion locations are mapped in Fig. 1c.
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GLONASS: L1 and L2, Galileo: E1 and E5b). Dual-frequency obser-
vations enable medium and long-baseline positioning with low-cost
systems (Odolinski and Teunissen, 2020). GNSS signals are delayed
as they travel through the ionosphere, and this effect is amplified as
baseline length increases and satellite elevation decreases, leading to
errors on the order of tens of metres (Odijk and Wanninger, 2017).
Estimation of the ionospheric delay is therefore necessary for
medium and long baselines, but can be neglected for shorter base-
lines, in which case the delays are approximately equal.
Dual-frequency data is used to estimate slant ionospheric delays,
leading to more precise estimates and improved ambiguity
resolution performance (Odolinski and Teunissen, 2020). In the
present work, centimetre-level precision over a long baseline
(390 km) is achieved in this way. Single-frequency low-cost
modules will not achieve comparable results. Multi-GNSS solutions

(i.e., GPS + GLONASS + Galileo + BeiDou + QZSS) provide an
improved satellite geometry and redundancy in observations, lead-
ing to improvements in precision (e.g., Odolinski and others,
2015b; Paziewski and Wielgosz, 2017; Xue and others, 2021).

Single-constellation and dual-constellation solutions are widely
used for GNSS positioning in Antarctica, particularly when
employing PPP services such as the CSRS-PPP service (Banville
and others, 2021), or when applying corrections from permanent
long-term reference stations for kinematic positioning. In the lat-
ter case, existing GNSS reference stations in Antarctica are often
configured to receive GPS and GLONASS signals only. For
example, the nearby Mario Zucchelli and Jang Bogo Station refer-
ence GNSS stations in Terra Nova Bay both recorded GPS and
GLONASS signals only during our field campaign. Installation
of a temporary base station on stationary ground to track

Figure 12. Across and along-flow ice displacement and velocity at each Priestley Glacier GNSS station. GNSS positions (green dots) are smoothed with a five-hour
moving median filter (dark blue line). Shaded blue error bounds represent ±1σ in horizontal position over a five-hour sliding window. In column 1, across-flow
displacement in the negative (positive) direction indicates motion toward (away from) the glacier margin. In column 2, the along-flow displacement is presented
with the mean linear flow removed. Along-flow displacement in the positive direction indicates an increased downstream flow rate. The ice velocity (black line) is a
linear least-squares fit between the smoothed displacement (blue line) and time. The grey error band denotes the velocity computed from unsmoothed positions
(green dots), presented as a ±1σ error band. The tide prediction is from the CATS2008 model (Padman and others, 2002; Howard and others, 2019). Neap tide
occurred on 20 November, 2022.
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additional constellations may be beneficial for low-cost kinematic
positioning if millimetre- to centimetre-level precision is required.
The multi-GNSS solutions presented here outperformed the sin-
gle or dual-constellation solutions for both low-cost and survey-
grade receivers (Fig. 10).

The precision and accuracy of GNSS positions can be
improved by pairing the low-cost receivers with survey-
grade or geodetic antennas (e.g., Odolinski and Teunissen,
2017b; Paziewski, 2022; Romero-Andrade and others, 2021).
Performance improvements associated with the use of survey-
grade antennas are well established and we do not evaluate this
further here. Instead, we compared the performance of low-cost
patch antennas and low-cost standard surveying antennas to
meet the objective of using a purely low-cost system. In cases
where sub-centimetre precision is required, or when working
with long baselines exceeding 100 km, using a low-cost surveying
antenna rather than a patch antenna may lead to improved

precision (e.g., Table 4). In the long baseline (390 km) test
(Experiment 2), we observed a 30% reduction in the 3D RMS
error when using a low-cost surveying antenna instead of a
patch antenna.

6.2 Applications and advantages of low-cost positioning in
Antarctica

The low-cost positioning systems installed on Priestley Glacier
consumed approximately half as much power as the survey-grade
systems (Table 2). Power usage depends on the choice of receiver,
data logger, and antenna hardware (amplified surveying multi-
band antenna models consume more power than patch antenna
models), and the observation sampling frequency. Low-cost posi-
tioning systems used in the present work logged all available con-
stellations at 1 Hz while supported by a pair of small 12 V solar
panels (28 cm × 28 cm) and a single 18 A h SLA battery. The
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Figure 13. The association between positioning noise, satellite–receiver geometry and ionospheric conditions at station Tr1. Panel (a) shows the easting compo-
nent of position. Filtered position time series have outliers removed as described in Section 2.2. Panel (b) shows the corresponding moving standard deviation,
computed for 1-hourly windows (360 epochs). Panel (c) shows the number of satellites tracked at each epoch. Panels (d) and (e) show the slant ionospheric delay
and the Kp index (NOAA, 2023), a measure of global ionospheric disturbance. Panel (f) shows the variability in the horizontal dilution of position (HDOP) and
position 3D dilution of precision (PDOP). In this analysis, only the easting component of horizontal position is presented for brevity. Similar conclusions are
drawn from time series of the northing and vertical components of position.
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reduced power consumption of the low-cost system is a key
advantage because the weight and bulkiness of an overwinter
power system (battery bank + solar panels) is a burden for logis-
tical resourcing. At present, continuous GNSS records of
Antarctic ice dynamics are biased toward the summer months,
with data gaps arising from the challenge of maintaining steady
power supply during the polar winter (e.g., Jones and others,
2016; Greene and others, 2020; Klein and others, 2020).
Low-cost GNSS stations, such as the dual-frequency u-blox
units tested here, are a step toward continuous, year-round mon-
itoring in remote environments where power requirements are
logistically challenging.

Installation of a temporary low-cost base station to support a
field campaign is possible without significant cost barriers.
Where centimetre-level rather than decimetre-level precision is
required, a low-cost, single-baseline solution may yield positions
with better precision and accuracy than a PPP solution
(Figs. S1 and S2). With dual-frequency receivers and multi-
GNSS configurations such as the five-system (GPS +
GLONASS + Galileo + BeiDou + QZSS) configuration used in
the present work, medium- to long-baseline kinematic position-
ing (> 300 km) is feasible (Experiment 2) and may provide
improved precision and accuracy over PPP (Fig. S2).
Long-baseline positioning solutions can also provide redundancy
and quality control when relying on PPP solutions.

The precision of the positioning system determines the smal-
lest measurable ice displacement or change in velocity. The low-
cost GNSS units tested on Priestley Glacier operated with
centimetre-level horizontal and vertical precision, suitable for a
range of glaciological applications. Minimum horizontal and
vertical tidal oscillations detected by the low-cost systems were
∼1 cm and ∼1.5 cm, respectively (Figs. 11 and 12). The precision
of the low-cost units is suitable for the observation of tide-
modulated velocity gradients within a single week-long field cam-
paign, with no return to the site required. Nearer to the glacier
margin, where ice displacement approaches zero, measurement
noise begins to exceed the amplitude of displacement, although
the mean position is well defined and tide signals are still
detected. Low-cost GNSS units similar to the set-ups evaluated
here are also suitable for densifying existing GNSS monitoring
networks or reference stations. For single-season, temporary occu-
pations of field sites, the significantly lower cost combined with
lesser power consumption motivates the deployment of additional
GNSS stations for improved spatial coverage and repeatability for
studies of ice kinematics and mechanics.

7. Conclusions

Low-cost, mass-market dual-frequency GNSS receivers are cap-
able of precise and reliable positioning at high-latitude, glaciated
sites, with errors comparable to high-cost systems. Horizontal
and vertical positions from co-located u-blox ZED-F9P GNSS
receivers (< $300 USD) and survey-grade Trimble R10 receivers
(> $10,000 USD) were compared under stationary and dynamic
conditions in Terra Nova Bay, Antarctica. RMS horizontal errors
(Table 4) indicate almost identical performance for short base-
lines (u-blox + patch antenna: 2 mm, Trimble: 2 mm), medium
baselines (u-blox + surveying antenna: 8 mm, Trimble: 8 mm)
and long baselines (u-blox + surveying antenna: 6 mm, Trimble:
7 mm). A low-cost ground-plane surveying antenna provides a
slight advantage over a patch antenna at longer baseline lengths.

Four low-cost GNSS stations and two survey-grade stations
were installed on Priestley Glacier to evaluate the performance
and reliability of each system in a challenging kinematic setting
characterised by centimetre-level ice displacements. The efficacy

of low-cost GNSS depends on the magnitude of the observation
noise, relative to the signal of interest. Multi-day time series of
3D ice motion show that the low-cost systems operated with a
level of precision useful for measuring tide-modulated velocity
variability at semidiurnal and diurnal frequencies, at a field site
where vertical ice displacement is < 5 cm per day, and horizontal
ice motion is < 20 cm per day. A low-cost GNSS station installed
within 600 m of the glacier margin detected tidal horizontal oscil-
lations of ±1 cm. Such high-precision results will be reproducible
in other study sites in Antarctica, providing that dual-frequency,
multi-constellation receiver and antenna hardware is used.

The experiments presented here provide a ‘proof of concept’ of
the efficacy of low-cost GNSS positioning systems for glaciological
monitoring applications. The mass-market receivers and antennas
evaluated here yield both a considerable cost advantage and a
� 50% reduction in power consumption in comparison to a
survey-grade system. These experiments encourage the wide-
spread use of low-cost receivers to expand GNSS monitoring net-
works, both in Antarctica and in glaciated regions worldwide.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2023.101

Data. The long baseline positioning uses multi-GNSS observations from the
International GNSS Service (IGS) station SCTB near Scott Base, maintained by
LINZ (2023) and downloaded in RINEX 3 format from the European Space
Agency (ESA) GNSS Science Support Centre: https://gssc.esa.int/. Daily
multi-GNSS broadcast ephemeris files (BRDM00DLR product)
(Steigenberger and Montenbruck, 2020) are from the CDDIS GNSS data arch-
ive (Noll, 2010): https://cddis.nasa.gov/Data_and_Derived_Products/GNSS/
gnss_mgex.html. Final multi-GNSS precise orbit and clock information
(Montenbruck and others, 2017; Männel and others, 2020) generated by the
GFZ Analysis Centre are available from the Analysis Center of the
Multi-GNSS Experiment (MGEX): https://www.gfz-potsdam.de/en/section/
space-geodetic-techniques/projects/mgex. Global Kp index values (Matzka
and others, 2021) presented in Fig. 13 were downloaded from https://kp.gfz-
potsdam.de/en/data. Modified Sentinel-2 images in Fig. 1 were downloaded
from https://scihub.copernicus.eu/dhus/#/home.

The software u-center v22.07 is available at https://www.u-blox.com/en/
product/u-center. The Trimble RINEX Converter ‘ConvertToRINEX v3.14.0’
software is available at https://geospatial.trimble.com/trimble-rinex-converter.
Hatanaka-compressed RINEX files are uncompressed with the RNXCMP soft-
ware available at: https://terras.gsi.go.jp/ja/crx2rnx.html. GNSS datasets were
processed with the open-source software RTKLIB (v.2.4.3 b34, developed by
T. Takasu), available at https://rtklib.com/. CSRS-PPP solutions (Banville
and others, 2021) were generated with the online service: https://webapp.
csrs-scrs.nrcan-rncan.gc.ca/geod/tools-outils/ppp.php. The CATS2008 tide
model (Padman and others, 2002; Howard and others, 2019) used to generate
the prediction in Figs. 11 and 12, is available at https://www.usap-dc.org/view/
dataset/601235.

Code availability. A description of the low-cost GNSS hardware compo-
nents and data logger code is available on GitHub (https://github.com/
hollystill/LowCostGNSS).
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