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Abstract. We prove the so-called inverse conjecture for the Gowers Us+1-norm in
the case s = 3 (the cases s < 3 being established in previous literature). That is, we
show that if f : [N] → � is a function with |f (n)| � 1 for all n and ‖f ‖U4 � δ then
there is a bounded complexity 3-step nilsequence F(g(n)�) which correlates with f .
The approach seems to generalise so as to prove the inverse conjecture for s � 4 as
well, and a longer paper will follow concerning this.

By combining the main result of the present paper with several previous results
of the first two authors one obtains the generalised Hardy–Littlewood prime-tuples
conjecture for any linear system of complexity at most 3. In particular, we have an
asymptotic for the number of 5-term arithmetic progressions p1 < p2 < p3 < p4 <

p5 � N of primes.

2010 Mathematics Subject Classification. Primary: 11B30; Secondary: 37A17.

NOTATION . By a 1-bounded function on a set X we mean a function f : X → �

with |f (x)| � 1 for all x ∈ X. If the cardinality |X | of X is finite and non-zero, we
write �x∈X f (x) for |X |−1 ∑

x∈X f (x). Throughout the paper the letter M will refer to a
large positive ‘complexity’ quantity, normally introduced in each statement of a lemma,
proposition or theorem. The letters c and C are reserved for absolute constants with
0 < c < 1 < C; different instances of the notation will generally denote different absolute
constants. If x ∈ � we will write �x� for the greatest integer less than or equal to x, and
{x} := x − �x�. If N is a positive integer then we write [N] := {1, . . . , N}.

1. Introduction. This paper concerns a special case of a family of conjectures
named the Inverse Conjectures for the Gowers norms by the first two authors. For each
integer s � 1 the inverse conjecture GI(s), whose statement we recall shortly, describes
the structure of 1-bounded functions f : [N] → � whose (s + 1)st Gowers norm ‖f ‖Us+1

is large. These conjectures together with a good deal of motivation and background to
them are discussed in [10, 11, 13]. The conjectures GI(1) and GI(2) are already known,
the former being straightforward application of Fourier analysis and the latter being
the main result of [11]. The aim of the present paper is to establish the first unknown
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case, that of GI(3), using what is in essence a method which seems to generalise to
prove GI(s) in general.

We have taken advantage of some shortcuts and explicit calculations that are
specific to the s = 3 case, hoping that this will render the paper somewhat appetising
as an hors d’œuvres for the general case. The general case will, furthermore, be phrased
in the language of non-standard analysis since this provides a very effective framework
in which to manage the complicated hierarchies of parameters that appear here. We
offer the present paper to those readers who are not immediately comfortable with the
non-standard language; it also serves as an illustration of the point, to be made in the
longer paper to follow, that our arguments may be taken out of the choice-dependent
realm of non-standard analysis and, in particular, can lead to effective bounds (albeit
extremely weak ones).

We begin by recalling the definition of the Gowers norms. If G is a finite abelian
group and if f : G → � is a function then we define

‖f ‖Uk(G) := (
�x,h1,...,hk∈G�h1 . . . �hk f (x)

)1/2k

,

where �hf is the multiplicative derivative

�hf (x) := f (x + h)f (x).

In this paper, we will be concerned with functions on [N], which is not quite a group. To
define the Gowers norms of a function f : [N] → �, set G := �/Ñ� for some integer
Ñ � 2kN, define a function f̃ : G → � by f̃ (x) = f (x) for x = 1, . . . , N and f̃ (x) = 0
otherwise, and set ‖f ‖Uk[N] := ‖f̃ ‖Uk(G)/‖1[N]‖Uk(G), where 1[N] is the indicator function
of [N]. It is easy to see that this definition is independent of the choice of Ñ, and so for
definiteness one could take Ñ := 2kN. Henceforth we shall write simply ‖f ‖Uk , rather
than ‖f ‖Uk[N], since all Gowers norms will be on [N]. One can show that ‖ · ‖Uk is
indeed a norm for any k � 2, though we shall not need this here.

The Inverse conjecture for the Gowers Us+1-norm posits an answer to the following
question.

QUESTION 1.1. Suppose that f : [N] → � is a 1-bounded function and let δ > 0 be
a positive real number. What can be said if ‖f ‖Us+1 � δ?

The conjecture made in [13] is that f must correlate with a certain rather algebraic
object called an s-step nilsequence. In the light of subsequent work [14, 15] it seems
natural to work with a somewhat more general object called a degree s polynomial
nilsequence. We recall now the bald definition; for much more motivation and examples,
see the introduction to [14].

DEFINITION 1.2 (Polynomial nilsequence). Let G be a connected, simply-
connected nilpotent Lie group. By a filtration G• of degree s we mean a nested sequence
G = G(0) = G(1) ⊇ G(2) ⊇ · · · ⊇ G(s+1) = {id} with the property that [G(i), G(j)] ⊆ G(i+j).
By a polynomial sequence adapted to G• we mean a map g : � → G such that
∂hi . . . ∂h1 g ∈ G(i) for all h1, . . . , hi ∈ �, where ∂hψ(n) := ψ(n + h)ψ(n)−1. Let � � G
be a discrete and cocompact subgroup, so that the quotient G/� is a nilmanifold, and
assume that each of the G(i) are rational subgroups1. If F : G/� → � is a 1-bounded,

1One may define rationality topologically, by stipulating that the G(i) are connected Lie subgroups of G and
that � ∩ G(i) is a cocompact subgroup of G(i). Some readers may wish to think more concretely, in terms of
the existence of a Mal’cev basis as in [14, Definition 2.1].
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Lipschitz function then the sequence (F(g(n)�))n∈� is called a polynomial nilsequence
of degree s.

REMARK . An important example of a filtration of a nilpotent group is the lower
central series G0 ⊇ G1 ⊇ G2 ⊇ . . ., in which G0 = G1 = G, and Gi+1 := [G, Gi] for i � 1.
It is classical (see, for example, [3]) that this is a filtration of degree s whenever G is s-
step nilpotent. This is the minimal example of a filtration, since for any other filtration
G• one has Gi ⊆ G(i).

REMARK . An important fact about polynomial sequences adapted to a filtration
G• is that they form a group under pointwise multiplication: see [20] or [14,
Proposition 6.2]. A polynomial sequence g : � → G can also be uniquely expressed as

a Taylor expansion g(n) = g
( n

0 )
0 g

( n
1 )

1 . . . g
( n

s )
s for some gi ∈ G(i) for i = 0, 1, . . . , s, where

( n
i ) is the usual binomial coefficient; see [14, Section 6].

REMARK . If G admits a filtration of degree s then, as we remarked above, G
must be s-step nilpotent. On the other hand, the degree can exceed the step by an
arbitrary amount. For instance, if P : � → �/� is a polynomial of degree d � 1, then
the function e(P(n)) := e2π iP(n) is a polynomial nilsequence of degree d, despite being
associated to a nilmanifold G/� = �/� of step just 1.

Roughly speaking, the inverse conjecture GI(s) asserts that a 1-bounded function
f has large Us+1-norm if and only if it correlates with a degree s nilsequence. However,
every aspect of this statement must be quantified in order to make a precise statement.
The key issue here lies in defining the complexity of a nilsequence, a matter which was
addressed in some detail in [14, Sec 2]. In this paper (fortunately) we can take a much
rougher approach. If δ > 0 is some parameter we shall simply say that the complexity
of a polynomial nilsequence (F(g(n)�))n∈� is Oδ(1) if the following list of objects are
bounded in a way that depends only on δ:
� dim G;
� The rationality of some Mal’cev basis X for G/� (see [14, Definition 2.4]);
� The rationality of each subgroup G(i) in the filtration (see [14, Definition 2.5]);
� The Lipschitz norm of F , measured using the metric defined in [14, Definition 2.2].
We do not encourage the reader to read those definitions in detail at this stage. The
important thing to note is that nothing is said about the polynomial sequence g, other
than that it is adapted to the filtration G•.

We may now state the Inverse Conjecture for the Gowers Us+1-norm, GI(s),
properly.

CONJECTURE 1.3 (GI(s)). Suppose that f : [N] → � is a 1-bounded function and
that ‖f ‖Us+1 � δ. Then there is a degree s polynomial nilsequence (F(g(n)�))n∈� of
complexity Oδ(1) such that |�n∈[N] f (n)F(g(n)�)| �δ 1.

As hinted earlier, this is not quite the formulation of GI(s) originally given in [13,
Section 8]. There, it was posited that f correlates with a linear2 nilsequence (F(gn�))n∈�.
One might now relabel this the strong inverse conjecture. In the longer paper to come
we will show how this in fact follows from Conjecture 1.3. In the special case of the
U4-norm under consideration here, it is possible to verify the strong inverse conjecture
quite directly by inspection, and we sketch this in Appendix F. We would, however,

2We remark that a linear nilsequence is not the same thing as a degree 1 nilsequence; a typical linear
nilsequence on an s-step nilmanifold will have degree s.
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like to impress upon the reader our opinion that Conjecture 1.3 is the most natural
one, a viewpoint that became apparent to the first two authors in the light of our
paper [14]. Unfortunately [13] was written before that paper and hence operates
under the assumption of the strong inverse conjecture. Relatively simple changes
would be required to make all of the arguments there work under the assumption
of Conjecture 1.3 however, the key issue being Section 11 of that paper.

The evidence for the inverse conjectures prior to the present work was a ‘local
version’ due to Gowers [8], its truth in the cases s = 1 and 2 (see [11]) as well as the
truth of analogues of the conjecture in both ergodic theory [18, 28] and in the ‘finite
field model’ in which [N] is replaced by �n for some small prime field � [1, 26].

It is also known that this conjecture is necessary, in the following sense.

PROPOSITION 1.4 (Necessity of inverse conjecture). Suppose that f : [N] → � is
a 1-bounded function, that (F(g(n)�))n∈� is a polynomial nilsequence of degree s and
complexity Oδ(1), and that |�n∈[N] f (n)F(g(n)�)| � δ. Then ‖f ‖Us+1 �δ 1.

There is currently no proof of this written in the literature. In the case of linear
nilsequences (F(gn�))n∈� there are two different (albeit related) proofs in the literature:
one in [11, Proposition 12.6] and the other in [13, Section 11]. The second of these
proofs would generalise rather easily to the more general setting of degree s polynomial
nilsequences (F(g(n)�))n∈�, the key issue being to note that [13, Lemma E.4] is true
for the values (g(n + ω · h)�)ω∈{0,1}s+1 , this being essentially [14, Proposition 6.5]. The
reader will doubtless be relieved to hear that we recently discovered a very short proof
of Proposition 1.4, and we give this in Appendix G. Note, however, that this proposition
is included for motivation and interest only, and is not actually required in this paper.

Here, then is the main result of our paper.

THEOREM 1.5 (GI(3)). The inverse conjecture for the U4-norm, GI(3), is true.

As already remarked, in Appendix F we will also establish the strong form of the
inverse conjecture for the U4-norm, in the form given in [13, Section 8].

By combining this result with the previous results in [13, 15] we obtain a proof of
what was referred to in [13] as the generalised Hardy–Littlewood conjecture for linear
systems of complexity at most 3. In particular, we have the following.

THEOREM 1.6. The number of quintuples of primes p1 < p2 < p3 < p4 < p5 � N in
arithmetic progression is asymptotic to γ N2/ log5 N, where

γ = 27
16

∏
p�5

p3(p − 4)
(p − 1)4

.

We refer the reader to [13] for further discussion. Several further applications of
the GI(s) conjectures will be given in a forthcoming paper of the first two authors [16].

2. An outline of the proof. In this section we outline the argument we use to
establish the inverse conjecture for the U4-norm.

It is easy to show, and well-known, that if ‖f ‖U4 � δ then there are � δCN values
of h for which �hf (n) := f (n + h)f (n) has U3-norm at least δC . Applying GI(2), it
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follows that for all these h we have

|�n�hf (n)χh(n)| � 1, (2.1)

where χh(n) is a 2-step nilsequence (with complexity bounded uniformly in h).
Very roughly speaking, the aim is to show that these 2-step nilsequences ‘line

up’ in such a way that they may be interpreted as the derivatives of a single 3-step
object. To make this work and for ease of exposition it is convenient to assume that
χh(n) is in fact equal to e(ψh(n)), where ψh(n) is a bracket quadratic phase: a sum of
terms of the form α1n�α2n�, α3n2 and α4n. The link between these objects and 2-step
nilsequences was explored in [11, Section 10] and will be recalled later in this paper. For
the purposes of this discussion let us suppose that ψh(n) = αhn�βhn�; this is something
of a simplification of the true situation.

Here is a rough outline of the main steps we shall be taking to control the
dependence of αh and βh on h. Suppose that (2.1) holds with χh(n) = e(αhn�βhn�).
Step 1 (Reducing the h-dependence) We may assume (possibly after refining the set of

h and modifying αh and βh somewhat) that βh does not depend on h.
Step 2 (Approximate linearity of h-dependent frequency) We may assume (possibly

after refining the set of h again) that αh is approximately equal to a bracket
linear form θ1{θ ′

1h} + · · · + θd{θ ′
dh} + θh.

Step 3 (Symmetry argument) Following Step 2, χh(n) is essentially e(ψh(n)) with the
phase ψh(n) being of the form T(h, n, n), where T(n1, n2, n3) is a sum of terms of
the form {θ1n1}θ2n2�θ3n3�. Not every such function T(h, n, n) can be obtained as
the ‘derivative’ of a 3-step object, however, and in order to make this assertion
we need some additional symmetry properties of the ‘generalised trilinear form’
T(n1, n2, n3).

It may be of some interest to make a comparison between this strategy and that
used in the proof of the U3-inverse theorem [11]. If ‖f ‖U3 � δ then for many h we have,
once again,

|�n�hf (n)χh(n)| � 1,

but now χh(n) may be assumed to be nothing more complicated than a linear phase
e(αhn). The argument runs roughly as follows:
Step 2’ (Approximate linearity of frequencies) At the possible expense of passing to a

subset of the h, the frequencies αh are approximately ‘bracket-linear’ in h, as
above;

Step 3’ (Symmetry argument) Following Step 2, χh(n) is essentially e(ψh(n)) with the
phase ψh(n) being of the form T(h, n) where T(n1, n2) is a sum of terms of
the form {θ1n1}θ2n2. Not every such function T(h, n) can be obtained as the
‘derivative’ of a 2-step object, however, and in order to make this assertion we
need some additional symmetry properties of the form T(n1, n2).

We note that Step 2’ is essentially due to Gowers [8, Chapter 7], although one must
apply a little extra geometry of numbers to get the precise conclusion we hint at here.
Step 3’ is due to the first two authors and is the main new result of [11], specifically
Lemma 9.4 of that paper. Note that Step 1 in the outline above did not feature at all in
the proof of the U3-inverse theorem and it is new to this paper.

Let us say a few words about how Steps 1, 2 and 3 are accomplished. The key
to almost all of our analysis is a straightforward adaption of a fundamental idea of
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Gowers [7], which proceeds from the assumption that

|�n�hf (n)χh(n)| � 1 (2.2)

for many h and draws a conclusion involving just the χh(n), and not the function f .
This argument is valid for any bounded functions χh(n) and we give it in Section 6.

The conclusion of that argument is that

�n∈[N]χh1 (n)χh2 (n + h1 − h4)χh3 (n)χh4 (n + h1 − h4) � 1 (2.3)

for many additive quadruples h1, h2, h3, h4, that is to say quadruples satisfying h1 +
h2 = h3 + h4.

Steps 1,2 and 3 all involve interpreting this in the case that χh(n) is a 2-step object
such as a bracket quadratic phase. One way to do this is to visualise

χh1 (n)χh2 (n + h1 − h4)χh3 (n)χh4 (n + h1 − h4)

as a certain h1, h2, h3, h4-dependent nilsequence on a product of four nilmanifolds (one
for each of the hi), in which case (2.3) states that the underlying polynomial sequence
gh1,h2,h3,h4 (n) is far from equidistributed. This situation may then be studied using the
distributional results on nilsequences contained in [14] in order to draw conclusions
concerning the dependence on h of ‘leading order’ terms in the χh(n).

Steps 1 and 2 really only use the ‘top-order’ structure of (2.3) – that is to say the
shifts h1 − h4 are not relevant. To handle Step 3 these shifts cannot be ignored. In the
general case the treatment of Step 3 will involve another appeal to the distributional
results on nilmanifolds in [14], but in the case of the U4-norm a much more hands-on
approach involving Bohr sets may be employed, and it is this argument that we give
here.

The following deliberately vague discussion may perhaps be helpful. Suppose that
|f (n)| = 1 for all n and that �hf ∼ χh (where we are not attaching any real meaning to
∼). Then we have the ‘cocycle identity’ �h+kf (n) = �hf (n + k)�kf (n), which translates
to χh+k(n) ∼ χh(n + k)χk(n). Imagining that the shift n �→ n + k does not affect the
‘top-order structure’ of χh(n + k), we have the approximate linearity condition

χh+k ∼ χhχk to top order.

Roughly speaking, Steps 1 and 2 are concerned with exploiting this rigorously. On the
other hand we also have the symmetry relation �h�kf = �k�hf , which suggests that
�hχk ∼ �kχh; Step 3 may be thought of in terms of exploiting this kind of information.

3. Almost nilsequences. In this paper we will be dealing with various objects
which are ‘almost’ nilsequences but not quite. They can invariably be represented as
F(g(n)�) for some function F which is only piecewise Lipschitz, the discontinuities
being on sets which are somehow ‘polynomial’. Rather than formalise these notions,
we instead introduce the notion of an approximate nilsequence, give some examples,
and point out a number of consequences of the definition.

DEFINITION 3.1 (Almost nilsequences). Suppose that � : [N] → � is a 1-bounded
function and that M > 1 is a complexity parameter. Then we say that � is a degree s
almost polynomial nilsequence of complexity OM(1) if, for any ε > 0, there is a genuine
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degree s polynomial nilsequence �ε with complexity Os,ε,M(1) such that �n∈[N]|�(n) −
�ε(n)| � ε.

REMARK . That is, � can be approximated arbitrarily well, in L1, by genuine
nilsequences. We will not specify the function Os,ε,M(1) exactly (and indeed it does not
make sense to do so, in view of the loose manner in which we have defined complexity).
The reader should just imagine that there is some fixed function which may be taken
in this definition and which makes all statements that we make later on true. Let us
also remark that the non-standard analogue of this definition, which will feature in
our forthcoming paper on the general case GI(s), is much cleaner and does not involve
any unspecified complexity parameters Os,ε,M(1).

We make the following easily verified, but rather useful, claim:

LEMMA 3.2 (Algebra properties). If �,� are degree s almost polynomial
nilsequences, then their sum � + � and product ��, and complex conjugate � are
also degree s almost polynomial nilsequences (with a slightly different complexity bound
Os,ε,M(1) on the approximants, of course).

The utility of Definition 3.1 is made clear by the following lemma, which states
that correlation with almost nilsequences is essentially the same thing as correlation
with genuine nilsequences.

LEMMA 3.3. Suppose that f : [N] → � is a 1-bounded function and that

|�n∈[N] f (n)�(n)| � δ

for some degree s almost polynomial nilsequence � of complexity Oδ(1). Then there
is a genuine degree s polynomial nilsequence F(g(n)�) of complexity Os,δ(1) such that
|�n∈[N] f (n)F(g(n)�)| � δ/2.

Proof. Simply take ε = δ/2 in Definition 3.1 and set F(g(n)�) = �ε(n). �
A particular consequence, which we shall make use of later, is that it suffices to

establish Conjecture 1.3 with almost nilsequences instead of genuine ones.
For 1-step nilsequences there is a further, very helpful, reduction that can be made.

LEMMA 3.4 (1-step correlation). Suppose that f : [N] → � is a 1-bounded function
and that |�n∈[N] f (n)�(n)| � δ for some degree 1 almost nilsequence � of complexity
Oδ(1). Then there is a θ ∈ �/� such that |�n∈[N] f (n)e(θn)| �δ 1. (The implied constants
here depend of course on the implied constants in the definition of an almost nilsequence.)

Proof. By the previous lemma we may assume that � is a genuine degree 1
nilsequence of complexity Oδ(1), that is to say a sequence of the form (F(nα))n∈�

where α ∈ (�/�)k for some k = Oδ(1) and F : (�/�)k → � is a function with Lipschitz
constant Oδ(1). Standard Fourier analysis (see, for example, [12, Lemma A.9]) implies
that we may expand

F(t) =
∑

m∈�k,|m|�Oδ (1)

cme(m · t) + O(δ/10),

where the cm are complex numbers with |cm| = Oδ(1). The result follows quickly from
this. �
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The next two lemmas collect together various examples of almost
nilsequences. The proofs, which are somewhat technical and tedious, are given in
Appendix E.

LEMMA 3.5. Suppose that α, β ∈ [0, 1] and that M > 1 is a complexity parameter.
The following are all examples of almost nilsequences of degree 1 and complexity OM(1):

(i) the set of 1-step Lipschitz nilsequences of complexity at most M;
(ii) the set of characteristic functions 1P, where P ⊆ [N] is a progression of length at

least N/M;
(iii) the set of functions of the form n �→ e(α{βn}), with α ∈ � and β ∈ �/�;
(iv) the set of functions of the form n �→ e({αn}{βn}), with α, β ∈ �/�;
(v) the set of functions of the form n �→ e(αn�βn�), where ‖β‖�/� � M/N.

In particular, (by Lemma 3.4), if f : [N] → � is a 1-bounded function such that
|�n∈[N] f (n)�(n)| � δ, where � is one of the functions on the above list, then there exists
θ ∈ �/� such that |�n∈[N] f (n)e(θn)| �δ,M 1.

LEMMA 3.6. Suppose that α, β, γ ∈ [0, 1]. Then the following are all examples of
almost nilsequences of degree s � 2 and complexity O(1):

(i) n �→ e({αn}βn), of degree 2;
(ii) n �→ e({αn}βn2), of degree 3;

(iii) n �→ e({αn}{βn}γ n), of degree 3.

Although the proof of this last lemma is little tedious, it is also important in the
sense that this is the only place in our paper where a 3-step nilsequence is actually
constructed.

4. Distributional results concerning nilsequences. We will rely heavily on the
quantitative distribution results concerning polynomial nilsequences (g(n)�)n∈[N]

established by the first two authors in [14]. There were two main results in that paper,
the first of which was used in the proof of the second. We are aware that the paper [14]
is long and somewhat difficult. However, the reader wishing to understand the present
paper need only be au fait with the statements of the results there, which means that
she need only read Chapters 1 and 2 of the paper. We will assume familiarity with
those chapters throughout this paper, and, in particular, will use notation from them
without further comment. We will also revisit these results in a non-standard setting
in the sequel to this paper, in which we will give more detailed proofs.

The first result we refer to gives a criterion for (g(n)�)n∈[N] being equidistributed.
This is [14, Theorem 2.9]. This theorem is a quantitative version of a polynomial
equidistribution theorem for nilmanifolds. The qualitative version basically claims
that equidistribution of polynomial sequences is determined on the abelianisation
G/[G, G]�. For linear sequences this is a classical result, and for polynomial sequences
the result is due to Leibman [21].

THEOREM 4.1 (Quantitative Leibman dichotomy). [14, Theorem 2.9] Let m, s �
0, 0 < δ < 1/2 and N � 1. Suppose that G/� is an m-dimensional nilmanifold together
with a filtration G• of degree s and that X is a 1

δ
-rational Mal’cev basis adapted to

G•. Suppose that g : � → G is a polynomial sequence adapted to G•. If (g(n)�)n∈[N] is
not δ-equidistributed, then there is some k ∈ �m′

, where m′ := dim G − dim[G, G] is the
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dimension of the horizontal torus of G/�, with |k| � δ−Om,s(1) and

‖k · (π ◦ g)‖C∞[N] � δ−Om,s(1), (4.1)

where π : G → G/[G, G]� ≡ (�/�)m′
is projection onto the horizontal torus of G/�.

The second result we allude to, proved in Sections 9 and 10 of [14] by iterating
the preceding theorem, is a certain factorisation result. We will need a variant of it in
the present paper involving an arbitrary growth function ω : �+ → �+; this may be
established3 by exactly the same iterative argument that is used in the proof of [14,
Theorem 10.2].

THEOREM 4.2 (Factorisation result). Let s, N � 0 be integers, let M � 1 be a real
number, and let ω : �+ → �+ be an arbitrary growth function. Suppose that G/�

is a nilmanifold of complexity at most M together with a filtration G• of degree s.
Suppose that X is an M-rational Mal’cev basis adapted to G• and that g : � → G• is a
polynomial map adapted to G•. Then there is an integer M0 with M � M0 = OM,s,ω(1), a
rational subgroup G′ ⊆ G, a Mal’cev basis X ′ for G′/�′ in which each element is an M0-
rational combination of the elements of X , and a decomposition g = εg′γ into polynomial
sequences ε, g′, γ : � → G adapted to G• with the following properties:

(i) ε : � → G is (M0, N)-smooth;
(ii) g′ : � → G′ takes values in G′, and the finite sequence (g′(n)�′′)n∈[N] is totally

1/ω(M0)-equidistributed in G′/�′′, whenever �′′ is a sublattice of �′ of index at
most ω(M0), and using the metric dX on G′/�′′;

(iii) γ : � → G is M0-rational, and (γ (n)�)n∈� is periodic with period at most M0.

REMARK. The terms ‘smooth’ and ‘totally equidistributed’ in this sort of context
will not feature elsewhere in the paper, as we shall rely only on this theorem to prove
Theorem 4.3 below. An extremely similar deduction was utilised (and proved in some
detail) in Section 2 of [15].

Sketch proof. The main idea is to iterate Theorem 4.1 using the following
‘dimension reduction argument’. At any given stage of the argument, one has an initial
factorisation g = εg′γ obeying all the properties claimed in the theorem for some M0,
except for the equidistribution conclusions on g′. (Note that one can trivially obtain
such an initial factorisation by setting ε and γ to be the identity, and G′ = G.) If g′

obeys the stated equidistribution properties, then we are done. Otherwise, by appealing
to Theorem 4.1 and refining to a finite sublattice of �′ if necessary, the horizontal
coefficients of g′(n) will contain an approximate linear dependence in the sense of
(4.1). One can then use this, following the arguments used to prove [14, Theorem 10.2],
in order to factorise g′ = ε′g′′γ ′, where ε′, γ ′ satisfy similar properties to ε, γ but with
a worse value of M0, and g′′ takes values in a connected subgroup G′′ of G′ of strictly
lower dimension. We then absorb the ε′ and γ ′ factors to ε, γ , replace G′ by G′′, increase
M0 to a larger quantity depending on M0 and ω, and continue the argument. Since
one cannot have an infinite descent of connected subgroups of G, the argument must
eventually terminate with a factorisation with the desired properties. �

3We feel rather sorry for our readers at this point. One particular advantage of the non-standard analysis
approach to be taken in the more general paper to follow is that the need for arbitrary growth functions ω

is eliminated.
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The theorem below is a quantitative version of an equidistribution result of
Leibman [21] stating that the orbit closure of a polynomial sequence (g(n)�)n∈�

is a finite union of subnilmanifolds Yj, each a closed orbit of a connected closed
subgroup Hj of G; moreover the polynomial sequence visits each Yj periodically, and
is well distributed there with respect to the normalised Haar measure. Much the same
argument (with more details) is given in Section 2 of [15].

THEOREM 4.3 (‘Quantitative Ratner’ result). Let s, N � 0 be integers, let M � 1
be a real number, and let ω : �+ → �+ be an arbitrary growth function. Suppose that
G/� is a nilmanifold of complexity at most M together with a filtration G• of degree s.
Suppose that X is an M-rational Mal’cev basis adapted to G• and that g : � → G• is a
polynomial map adapted to G•. Then there is an integer M0 with M � M0 = OM,s,ω(1)
and a decomposition of [N] into subprogressions Pj, each of length at least N/M0, together
with M0-rational connected subgroups Hj � G and elements xj ∈ G with coordinates at
most M0 such that (g(n)�)n∈Pj is 1/ω(M0)-equidistributed on xjHj�/� for each j.

Sketch proof. In Theorem 4.2, take a growth function ω′ : �+ → �+ even more
rapidly growing than the ω in the statement here. Let g = εg′γ be the resulting
decomposition. Take the progressions Pj to have common difference q, the period
of γ (n)�, and length sufficiently small that the smooth term ε(n) is almost constant
on each Pj. Choose yj, γj such that ε(n) ≈ yj and γ (n)� = γj� for n ∈ Pj. Then the
theorem holds with Hj := γ −1

j G′γj and xj := yjγj. Note that the action of conjugation
by γj moves � to a slightly different subgroup of G, but this new group intersects � in a
subgroup of index OM0 (1), and so one can proceed by using the fact that g′ is assumed
equidistributed with respect to such subgroups also. �

5. Free nilpotent Lie groups and free nilcharacters. In previous papers in additive
combinatorics in which nilsequences have been discussed, such as [11, 14], the
Heisenberg nilmanifold has been the central example and readers have been encouraged
to think of upper triangular matrix groups as the archetypal nilpotent Lie groups. A
key innovation in this paper and the sequel [17], strongly inspired by the recent work
of Leibman on bracket polynomials [22], is a shift away from this viewpoint. Instead,
it seems that free nilpotent Lie groups and certain functions on them play a crucial
rôle.

In this section we give some basic definitions in this regard in the 2-step case. In
Appendix E we will briefly meet an example of the 3-step case, but for the most part
we will be working with 2-step objects in which case it is not a particularly onerous
task to proceed very explicitly. The definitions in the higher step case are similar
but necessarily require some more general discussion of bases in free nilpotent Lie
algebras.

DEFINITION 5.1 (Free 2-step nilpotent Lie group and nilmanifold). By the free
2-step nilpotent Lie group on generators e1, . . . , ek we mean

G := {
et1

1 . . . etk
k et[2,1]

[2,1] . . . et[k,k−1]

[k,k−1] : t1, . . . , tk, t[2,1], . . . , t[k,k−1] ∈ �
}
,

subject to the relations e−1
i e−1

j eiej = [ei, ej] = e[i,j] for 1 � j < i � k. By the standard
filtration G• we mean simply the lower central series filtration with G(0) = G(1) = G,
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G(2) = [G, G] and G(3) = {id}. Inside G we take the standard lattice

� := {
em1

1 . . . emk
k em[2,1]

[2,1] . . . em[k,k−1]

[k,k−1] : m1, . . . , mk, m[2,1], . . . , m[k,k−1] ∈ �
}
.

The quotent G/� is then called the free 2-step nilmanifold on k generators.

A Mal’cev basis for G/� consists of the elements Xi = log ei and X[i′,i] = log e[i′,i];
the Mal’cev coordinates of an element of G are simply the elements

(t1, . . . , tk, t[2,1], . . . , t[k,k−1]).

As in [14], such a basis may be used to coordinatise G/� by identifying [0, 1]k+(k
2) as a

fundamental domain for the right action of � on G. Let us perform a calculation. In
Mal’cev coordinates it is easy to check that the multiplication law on G corresponds
to the operation

(ti, t[i′,i]) ∗ (ui, u[i′,i]) = (ti + ui, t[i′,i] + u[i′,i] + ti′ui).

For a given element g ∈ G with coordinates (ti, t[i′,i]) we may pick some γ ∈ � such

that gγ has coordinates in the fundamental domain F = [0, 1]k+(k
2) ∈ �k+(k

2). Possible
coordinates for γ are

ui = −[ti], u[i′,i] = −[t[i′,i] − ti′ [ti]],

where [ ] is the floor function. These coordinates are unique if gγ lies in the interior of
the fundamental domain F . The coordinates of gγ are then

({ti}, {t[i′,i] − ti′ [ti]}).

DEFINITION 5.2 (Coordinates). Suppose that G/� is the free 2-step nilmanifold
on k generators. Suppose that an element g ∈ G has Mal’cev coordinates ti, t[i′,i]. Then
the coordinates of g� ∈ G/� are the entries of the vector({ti}, {t[i′,i] − ti′ [ti]}

)
.

We write them as (ti, t[i′,i]).

DEFINITION 5.3 (Coordinate functions). By the basic coordinate functions
Fi, F[i′,i] : G/� → � we mean the functions Fi(t) = e(ti) and F[i′,i](t) = e(t[i′,i]). The top
order basic coordinate functions F[i′,i] will have a particularly important role to play.

Consider now a polynomial sequence g : � → G of the form

g(n) := (ξ1n, . . . , ξkn, q[2,1](n), . . . , q[k,k−1](n)), (5.1)

where the q[i′,i] are quadratic polynomials. By the theory developed towards the end
of Section 6 of [14] (or simply by a short direct calculation), these are degree two
polynomial sequences adapted to the standard filtration G• based on the lower central
series. The objects Fi(g(n)�), F[i′,i](g(n)�) are then called free 2-step nilcharacters, and
they will be basic building blocks in this paper. The top-order nilcharacters involving
F[i′,i] will play a particularly crucial role. In the light of the above computations these
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top-order free 2-step nilcharacters may be computed quite explicitly, and indeed we
have

F[i′,i](g(n)�) = e(ξin�ξi′n�)e(α[i′,i]n2 + β[i′,i]n), (5.2)

for some α[i′,i], β[i′,i] ∈ �. By altering the quadratics q[i′,i](n) we may make the coefficients
α[i′,i], β[i′,i] arbitrary. These quadratic phases e(αn2 + βn) should be thought of as
essentially 1-step objects, albeit of degree 2, and the most important feature of our
2-step nilcharacters are the bracket monomials ξi′n�ξin�. We will often use explicit
bracket-quadratics in this paper. In the longer paper to come, dealing with the general
case, it will not be possible to proceed so explicitly and indeed the main new innovation
of that paper (following the work of Leibman) is to develop a kind of ‘calculus’ of
bracket polynomials.

Let us note that F[i′,i](g(n)�) is not actually a 2-step nilsequence, because the
function F[i′,i] is only piecewise Lipschitz. From the explicit form given above and
Lemma 3.6, however, one sees that it is an almost 2-step nilsequence.

We now give a variant of the U3 inverse theorem involving 2-step free nilcharacters.

THEOREM 5.4 (Inverse theorem for U3, variant). Suppose that f : [N] → � is a
1-bounded function with ‖f ‖U3 � δ. Then we have |�n∈[N] f (n)χ (n)| �δ 1, where

χ (n) = e(αn2 + βn)
∏

1�i<i′�k

F
m[i′ ,i]
[i′,i] (g(n)�)

is the product of some free 2-step nilcharacters with a quadratic phase. Here, k = Oδ(1)
and the m[i′,i] are integers bounded by Oδ(1).

Proof. In [11, Theorem 10.9] it is shown that a function f with ‖f ‖U3 � δ has
inner product �δ 1 with a function which is the product of Oδ(1) bracket quadratics
e(αin�βin�), i = 1, . . . , m and a quadratic phase e(αn2 + βn). But such a function
already has the form χ given in the statement of the theorem, simply by taking k = 2m
and horizontal frequencies ξ2i−1 = βi and ξ2i = αi, i = 1, 2, . . . , m. �

REMARK. The proof of [11, Theorem 10.9] was actually a stepping stone on the way
to the proof of the U3 inverse theorem itself, which requires these 2-step nilcharacters
to be assembled into a Lipschitz Heisenberg nilsequence.

REMARK . It is possible to proceed directly from the U3 inverse theorem, that
is to say from the formulation given in Conjecture 1.3, although – as the previous
remark suggests – it would be a little perverse to do so. To do this requires one to
do a slightly odd kind of Fourier decomposition in the coordinate space (ti, t[i′,i]) =
[0, 1]k+(k

2),mapped onto the torus (�/�)k+(k
2), but there is an issue because a function F

which is Lipschitz on G/� need not even be continuous on this torus. We have a way
around this difficulty involving the introduction of a random shift to the fundamental
domain F . However we do not believe this argument will be necessary even in the more
general paper to come, since our plan is to first prove a variant form of Conjecture 1.3,
akin to Theorem 5.4, by induction and only then to deduce Conjecture 1.3 itself.

To conclude this section we give some crucial identities involving bracket
quadratics. It is the proper understanding and generalisation of these that we referred
to above when we talked about the development of a ‘calculus’ of bracket polynomials
in the forthcoming longer paper.
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The key identity we shall rely on is

X [Y ] = XY − {X}{Y} − [X ]Y + [X ][Y ], (5.3)

valid for all X, Y ∈ �. This implies that the map φ : (X, Y ) �→ X [Y ](mod 1) is
‘antisymmetric and bilinear modulo lower order terms’. Specifically, φ(X1 + X2, Y ) −
φ(X1, Y ) − φ(X2, Y ) = 0, whilst φ(X, Y1 + Y2) − φ(X, Y1) − φ(X, Y2) = {X}{Y1} +
{X}{Y2} − {X}{Y1 + Y2}, and φ(X, Y ) = φ(Y, X) + XY − {X}{Y}.

Let us say a clarify to some extent what we mean by ‘lower order’. We shall be
applying these identities when Xi = αin and Yj = βjn, and we shall also be considering
e(φ) rather than φ itself. Then these obstructions to antisymmetric bilinearity take
the form e({αn}{βn}), an almost 1-step nilsequence (cf. Lemma 3.5 (iv)) and e(θn2),
another 1-step object (but of degree 2).

Let us record these observations in the form of a lemma.

LEMMA 5.5 (Bracket quadratic identities). Suppose that α, α1, α2, β, β1, β2, γ ∈ �.
Then

(i) e((α1 + α2)n�βn�) = e(α1n�βn�)e(α2n�βn�);
(ii) e(αn�(β1 + β2)n�) = e(αn�β1n�)e(αn�β2n�) up to a product of terms of the form

e({θn}{θ ′n});
(iii) e(αn�βn�) = e(−βn�αn�) up to a product of terms of the form e(θn2) and

e({θ ′n}{θ ′′n}).
(iv) e(γ n�γ n�) is a product of terms of the form e(θn2) and e({θ ′n}{θ ′′n}).
Proof. The first three of these follow immediately from (5.3) and the subsequent

discussion. Part (iv) perhaps requires some comment: to prove it, first choose γ ′ so
that 2γ ′ = γ (mod 1). Then take α = β = γ ′ in (iii) to obtain the fact that e(γ n�γ ′n�)
is a product of terms of the required type. Now apply (ii) to conclude the same thing
for e(γ n�γ n�). �

6. Some arguments of Gowers. In this section we give the observation of
Gowers[7] described in Section 2, whereby one proceeds from the assumption that
|�n�hf (n)χh(n)| � δ for many f to get (2.3), a kind of weak linearity statement
concerning the map h �→ χh. Here is a more precise statement.

PROPOSITION 6.1 (Gowers). Suppose that f : [N] → � is a 1-bounded function,
that H ⊆ [N] is a set with cardinality ηN and that for each h ∈ H we have a function
χh : [N] → � with |χh(n)| � 1 for all n, and that

|�n∈[N]�hf (n)χh(n)| � δ (6.1)

for all h ∈ H. Then for at least η8δ4N3/2 of the quadruples (h1, h2, h3, h4) such that
h1 + h2 = h3 + h4 we have

|�nχh1 (n)χh2 (n + h1 − h4)χh3 (n)χh4 (n + h1 − h4)| � cη4δ2.

REMARK. In the original paper [7], attention is restricted to the linear case χh(n) =
e(ξhn), but the argument extends without difficulty to the general case, as we shall see
in the proof.

https://doi.org/10.1017/S0017089510000546 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000546


14 BEN GREEN, TERENCE TAO AND TAMAR ZIEGLER

Proof. As in many arguments of analytic number theory and additive
combinatorics in which a function that one does not wish to understand is to be
eliminated, our main tool is the Cauchy–Schwarz inequality. Two applications of that
inequality give that

|�n,manbm�(n, m)|4 � �n,n′,m,m′�(n, m)�(n′, m)�(n, m′)�(n′, m′) (6.2)

whenever (an)n∈X , (bm)m∈Y , (�(n, m))n∈X,m∈Y are 1-bounded sequences of complex
numbers.

Returning to the proposition itself, the assumptions imply that

�h|�n�hf (n)χh(n)|2 � ηδ2,

where we have taken the expectation over some group �/N ′� with N ′ ∼ 2N (say) and
define all functions to be zero outside of [N] and χh to be identically zero if h /∈ H.
Expanding out and making some obvious substitutions this yields

�k�n,mf (m)f (m + k)f (n)f (n + k)�kχm−n(n) � ηδ2.

Applying Hölder’s inequality this means that

�k|�n,mf (m)f (m + k)f (n)f (n + k)�kχm−n(n)|4 � η4δ8.

Applying (6.2) for each k, we obtain

�k�n,n′,m,m′�kχm−n(n)�kχm′−n(n)�kχm−n′ (n′)�kχm′−n′ (n′) � η4δ8.

This is more suggestively written as

�h1+h2=h3+h4 �n,k�kχh1 (n)�kχh2 (n + h1 − h4)�kχh3 (n)�kχh4 (n + h1 − h4) � η4δ8,

which is the same as

�h1+h2=h3+h4 |�nχh1 (n)χh2 (n + h1 − h4)χh3 (n)χh4 (n + h1 − h4)|2 � η4δ8.

This immediately implies the stated result by a trivial averaging argument. �
We now give a corollary of this in the specific case that the χh(n) have the form

appearing in the statement of Theorem 5.4, that is to say

χh(n) := e(αhn2 + βhn)
∏

1�i<i′�k

F
m[i′ ,i](h)

[i′,i] (gh(n)�). (6.3)

COROLLARY 6.2. Suppose that f : [N] → � is a 1-bounded function and that

|�n∈[N]�hf (n)χh(n)| � δ

for all h in some set H, |H| � δN. Suppose now that the functions χh(n) have the specific
form (6.3). Then for at least δCN3 additive quadruples h1 + h2 = h3 + h4 ∈ H4 there are
frequencies αh1,h2,h3,h4 , βh1,h2,h3,h4 ∈ �/� such that

|�n∈[N]χh1 (n)χh2 (n)χh3 (n)χh4 (n)e(αh1,h2,h3,h4 n2 + βh1,h2,h3,h4 n)| �δ 1.
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Proof. Apply Proposition 6.1 and then use the bracket identities in Lemma 5.5 to
expand out terms such as χh4 (n + h1 − h4). This exhibits

χh1 (n)χh2 (n + h1 − h4)χh3 (n)χh4 (n + h1 − h4)

as a product of

χh1 (n)χh2 (n)χh3 (n)χh4 (n)

times various (possibly hi-dependent) terms of the form e(αn2) or e({αn}{βn}). By
Lemma 3.5 (iv) the latter are almost 1-step nilsequences; the conclusion then follows
from Lemma 3.4. �

REMARK. That this computation worked was no accident. In fact from the general
theory in [14] one knows that if χ (n) is a Lipschitz s-step nilsequence with a vertical
character then χ (n + k)χ (n) is an (s − 1)-step nilsequence. We did not apply this general
theory here, since we are being forced to deal with the coordinate functions F[i,i′] which
are not Lipschitz.

7. Step 1: Reducing the h-dependence. The aim of this rather long and technical
section is to handle Step 1 of the outline in Section 2. Our first task is to formulate
properly exactly what it is we intend to do. Recall that if ‖f ‖U4 � δ then, from the fact
that ‖�hf ‖U3 � δC for � δCN values of h and Theorem 5.4 we have

�n∈[N]�hf (n)χh(n) �δ 1 (7.1)

where χh is an object having the form (6.3), that is to say

χh(n) = e(αhn2 + βhn)
∏

1�i<i′�k

F
m[i′ ,i](h)
[i′,i] (gh(n)�). (7.2)

Each term involving an F[i,i′] is, by the calculations in Section 5 and in particular
those around (5.2), essentially a bracket quadratic e(ξn�ξ ′n�) involving ξ, ξ ′, two of
the frequencies in the ‘horizontal’ part of the polynomial sequence gh(n).

Let us be a little more precise and write gh(n) = (ξh,1n, . . . , ξh,kn, . . . ); thus the
numbers ξh,i are the horizontal frequencies just alluded to. Write �h := {ξh,1, . . . , ξh,k}
for this set. When we outlined Step 1 earlier on, we did little more than suggest that
our aim was to show that no bracket quadratic e(ξh,in�ξh,i′n�) involving two genuinely
h-dependent frequencies ξh,i actually occurs in the formula for χh(n).

To attach meaning to this, we will split �h as a union �∗ ∪ �′
h of a ‘core’ set

�∗ = {ξh,1, . . . , ξh,k∗ } and a ‘petal’ set �′
h = {ξh,k∗+1, . . . , ξh,k} in such a way that the

frequencies ξh,i, i = 1, . . . , k∗, do not actually depend on h. Our task, then, is to show
that (7.1) and (7.2) may be achieved in such a way that m[i,i′](h) = 0 when i, i′ > k∗. In
other words, no bracket quadratic e(ξh,in�ξh,i′n�) with i, i > k∗ actually occurs in the
expression for χh(n).

We will not prove that any situation such as (7.1) and (7.2) has this form
automatically. Rather, we will perform an inductive procedure in which the underlying
frequency sets are slowly modified so that they take on more and more characteristics
of the above ‘sunflower’ decomposition into core and petals. At the same time, the
set of h for which (7.1) holds will be gradually reduced, although it will always have
cardinality �δ N.
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Here is a precise statement.

PROPOSITION 7.1 (Step 1). Suppose that ‖f ‖U4 � δ. Then for �δ N values of h we
have �n∈[N]�hf (n)χh(n) �δ 1, where where

χh(n) = e(αhn2 + βhn)
∏

1�i<i′�k

F
m[i′ ,i](h)
[i′,i] (gh(n)�)

with k, |m[i,i′](h)| = Oδ(1). Furthermore there is a ‘sunflower’ decomposition of the
frequency sets �h = {ξh,1, . . . , ξh,k} of gh(n) into a ‘core’ �∗ = {ξh,1, . . . , ξh,k∗ } which
does not depend on h together with ‘petals’ �′

h = {ξh,k∗+1, . . . , ξh,k}, in such a way that
m[i,i′](h) = 0 if i, i′ > k∗.

The last statement – that is to say the assertion that there are no bracket quadratics
with two petal frequencies – is of course the beef here.

Here is a plan of the rest of this section. Proposition 7.1 is proved by a kind of
induction (on the ‘complexity’ of the core-petal decomposition). The inductive step
is stated as Proposition 7.5 below, and we give the full derivation of Proposition 7.1
shortly after the proof of that. Proposition 7.5 is itself deduced from Corollary 7.4,
which is in turn an easy deduction from Lemma 7.3. This latter result is the main
business of this section, and indeed is probably the hardest part of the entire argument.
For that reason we will, between stating it and proving it, give a kind of model variant
of the argument to illustrate the underlying algebraic structure.

Before we can begin we require a definition which will also feature later in the
paper.

DEFINITION 7.2 (Approximate relations and dissociativity). Suppose that

� = {ξ1, . . . , ξk} ⊆ �/�

is a finite set of frequencies. We say that this set satisfies an M-linear relation up to
ε if there are integers m1, . . . , mk, |mi| � M, not all zero, such that ‖m1ξ1 + · · · +
mkξk‖�/� � ε. If a set � satisfies no such linear relation then we say that it is (M, ε)-
dissociated. We say that a further frequency ξ lies in the M-linear span of � up to ε if
there are integers m1, . . . , mk, |mi| � M, such that ‖ξ − m1ξ1 − · · · − mkξk‖�/� � ε.

Let us now state the main lemma of this section. We remark that the hypothesis
of this lemma comes from applying Proposition 6.1 to the assumption (7.1). However
we shall revisit this point later on when we actually perform the inductive application
of the lemma.

LEMMA 7.3. Fix h1, h2, h3, h4 ∈ H and suppose that for j = 1, . . . , 4 we have a
decomposition �hj = �∗ ∪ �′

hj
of the frequency set �hj into a core �∗ = {ξhj,1, . . . , ξhj,k∗ }

not depending on j and a petal set �′
hj

= {ξhj,k∗+1, . . . , ξhj,k}. Suppose that the functions
χh(n) have the form (6.3) above, where both k and the indices m[i′,i](h) are bounded by M,
and suppose that we have

|�n∈[N]χh1 (n)χh2 (n)χh3 (n)χh4 (n)e(αh1,h2,h3,h4 n2 + βh1,h2,h3,h4 n)| � 1/M. (7.3)

Suppose that m[i′,i](h1) �= 0 for some pair i, i′ > k∗. Then either there is an OM(1)-linear
relation, up to OM(1/N), between the elements in �∗ ∪ �′

h1
∪ �′

h2
∪ �′

h3
, or else there is

such a relation between the elements of �∗ ∪ �′
h1

∪ �′
h2

∪ �′
h4

.
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Proof. The main idea is to apply the distributional results on nilsequences, and,
in particular, the ‘Quantitative Ratner’ result, Theorem 4.3, to the assumption (7.3).
There is a very natural way to do this, which is to write (7.3) as

|�n∈[N]F̃(g̃(n)�̃)| � 1/M, (7.4)

where of course

F̃(g̃(n)�̃) := e(αh1,h2,h3,h4 n2 + βh1,h2,h3,h4 n)
∏

1�i<i′�k

∏
j=1,2,3,4

F
m[i′ ,i](hj)
[i′,i] (ghj (n)�).

We may interpret the left-hand side as one big polynomial nilsequence on the 2-step
nilmanifold G̃/�̃, where G̃ = G × G × G × G × � and �̃ = � × � × � × � × �, and
the polynomial sequence g̃ = g̃h1,h2,h3,h4 (n) is given by

g̃(n) = g̃h1,h2,h3,h4 (n) = gh1 (n) × gh2 (n) × gh3 (n) × gh4 (n) × (αh1,h2,h3,h4 n2 + βh1,h2,h3,h4 n).

The Quantitative Ratner results are a little complicated, and so before continuing
with the proof we sketch how it goes in what might be termed the asymptotic limit case,
in which we work not with any given scale N, but rather with the limiting behaviour
as N → ∞. More precisely, instead of (7.4) we assume merely that4

lim
N→∞

�n∈[N]F̃(g̃(n)�̃) �= 0,

and instead of finding quantitative relations amongst the frequency sets we merely
conclude that the frequencies in either �∗ ∪ �h1 ∪ �h2 ∪ �h3 or �∗ ∪ �h1 ∪ �h2 ∪ �h4

are rationally dependent. The main difference between the model case and the actual
one is that the corresponding nilmanifold distribution results, due to Leibman [21], are
much cleaner in this setting. For simplicity of notation (in this sketch) let us suppose
that �∗ = ∅.

Suppose, then that �h1 ∪ �h2 ∪ �h3 and �h1 ∪ �h2 ∪ �h4 are both rationally
independent. Consider the orbit (g̃(n)�̃)n∈� in G̃. Roughly speaking5, the results of
[21] assert that this orbit is equidistributed on a subnilmanifold of the form H�̃/�̃,
where H is a closed connected rational subgroup of G̃.

If F̃ were continuous then this would imply that

lim
N→∞

�n∈[N]F̃(g̃(n)�̃) =
∫

F̃(x)dmH(x) �= 0 (7.5)

where mH is the Haar measure on H�̃/�̃. Unfortunately F̃ is not quite continuous, a
further technicality we will have to handle when discussing the proof of Lemma 7.3
proper. For the purposes of this sketch, however, let us assume that (7.5) holds.

Let π1, π2, π3, π4 : G̃ → G be the projections of G̃ onto each of the four factors
of G comprising G̃, and by abuse of notation use the same notation for the projection
maps from G̃/�̃ to the factors G/�. Now the projection (π1 × π2 × π3)(g̃(n)) has, as
its set of horizontal frequencies, �h1 ∪ �h2 ∪ �h3 , a set which is rationally independent.

4The convergence of all limits involving polynomial nilsequences was established in [21], at least in the case
when F̃ is continuous.
5In actual fact this is only true after subdividing � into finitely many subprogressions, and furthermore we
need to work with a translate x0H�̃/�̃. Both of these points are merely technical. The finitary analogue of
this result is, of course, the Quantitative Ratner Theorem, Theorem 4.3.
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But these frequencies are precisely those occurring in the projection of (π1 × π2 ×
π3)(g̃(n)�̃) onto the horizontal torus (abelianisation) of G/� × G/� × G/�, and hence
the orbit of this (abelian) nilsequence is dense. However Leibman’s criterion6 asserts
that a polynomial nilsequence is dense if and only if its abelianisation is, and so
((π1 × π2 × π3)(g̃(n)�̃))n∈� is dense in G/� × G/� × G/�.

Since (g̃(n)�̃)n∈� equidistributes in H�̃/�̃, we must have

(π1 × π2 × π3)(H�̃/�̃) = G/� × G/� × G/�.

Topological arguments7 using the fact that H is closed and connected let us lift this
statement to G to conclude that

(π1 × π2 × π3)(H) = G × G × G. (7.6)

By exactly the same argument we have

(π1 × π2 × π4)(H) = G × G × G. (7.7)

We claim that as a consequence of these observations we have

[G, G] × id × id × id × id ⊆ H.

To see this, let g, g′ ∈ G be arbitrary. Then (7.6) implies that H contains an element
of the form (g, id, id, x, z), for some x ∈ G and some z ∈ �, whilst (7.7) implies that
H contains an element of the form (id, g′, x′, id, z′) for some x′ ∈ G and some z′ ∈ �.
The commutator of these two elements is ([g, g′], id, id, id, id), thereby establishing the
claim.

REMARK . This idea has appeared in related contexts before, for example in the
work of Furstenberg and Weiss [6], as well as in less related contexts such as a paper
of Hrushovski [19, Lemma 4.11].

As a special case of the above claim, we see that for each pair i, i′ with 1 � i < i′ � k
and for each t ∈ � the element z := (et

[i,i′], id, id, id, id) lies in H. It follows that∫
F̃(x)dmH(x) =

∫
F̃(zx)dmH(x).

However a direct calculation using the definition of F̃ confirms that

F̃(zx) = e(tm[i,i′](h1))F̃(x).

Since t is arbitrary, the only way to reconcile this with (7.5) is to conclude that
m[i,i′](h1) = 0. Thus in this case (in which there is no core �∗) we see that either
the functions χh(n) are somewhat trivial in the sense that all of the m[i,i′](h) vanish,
or else we were wrong to assume that the frequencies in both �h1 ∪ �h2 ∪ �h3 and
�h1 ∪ �h2 ∪ �h4 are rationally independent.

This concludes our sketch of the asymptotic limit case, and we now return to our
original task of proving Lemma 7.3. The underlying idea is the same as in the above

6The finitary analogue of this is the Quantitative Leibman dichotomy, Theorem 4.1.
7In the finitary world these are somewhat painful and involve, for example, some quantitative linear algebra;
see Appendix A.
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sketch except that everything must be made quantitative, without any recourse to
limits. Furthermore there was one point in the above sketch where we treated a special
case (the core set �∗ is empty) and others where we waived our hands somewhat (the
function F̃ is not Lipschitz, the orbit only equidistributes on a coset of a nilmanifold,
and then only after passing to a subprogression). These issues must, of course, be dealt
with properly.

Consider the orbit (g̃(n)�̃)n∈[N]. Let ω : �+ → �+ be a growth function to be
specified later. By Theorem 4.3 there is some M0 = Oω,M(1) (which we may clearly
assume to be at least max(M, #G̃/�̃), since both of these quantities are OM(1)) with
the following property. We may partition [N] into subprogressions Pj with lengths at
least N/M0, such that corresponding to each progression Pj the uniform measure

μj := 1
|Pj|

∑
n∈Pj

1g̃(n)�̃

is 1/ω(M0)-close to the Haar measure mHj on bjHj�̃/�̃, where Hj � G̃ is some closed,
connected, M0-rational subgroup. Namely for any Lipschitz function F on G̃/�̃ we
have

|�n∈PF(g̃(n)�̃) −
∫

FdmHj | � 1
ω(M0)

‖F‖Lip (7.8)

By a trivial averaging argument, condition (7.4) implies that there is some P = Pj

such that

|�n∈PF̃(g̃(n)�̃)| � 1/M; (7.9)

let H = Hj be the corresponding group, and mH the Haar measure on bH�̃/�̃.
Let z ∈ [H, H] be an element, all of whose coordinates are bounded by OM0 (1),

and let F : G̃/�̃ → � be a Lipschitz function. Then Fz(x�̃) = F(zx�̃) is also Lipschitz
and ‖Fz‖Lip = OM0 (1)‖F‖Lip. Furthermore since mH is invariant under translation by
z (which lies in the centre of G) we have∫

FzdmH =
∫

FdmH,

and thus from (7.8) we get

|�n∈PFz(g̃(n)�̃) −
∫

FdmH | = OM0 (1/ω(M0))‖F‖Lip.

And by the triangle inequality

|�n∈PFz(g̃(n)�̃) − �n∈PF(g̃(n)�̃)| = OM0 (1/ω(M0))‖F‖Lip, (7.10)

thus if ω is sufficiently rapidly-growing then the error term here is negligible and thus

�n∈PF(zg̃(n)�̃) ≈ �n∈PF(g̃(n)�̃). (7.11)

Let εM0 be the quantity from the lifting Proposition A.4. Namely any element of x
of H[G̃, G̃]�̃/[G̃, G̃]�̃ = �m/�m whose coordinates are bounded by εM0 has a lift under
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the natural projection G̃ → G̃/[G̃, G̃]�̃ to an element in H with coordinates OM0 (1),
whose first m coordinates are the reduced coordinates of x.

We now deal with the issue of F̃ not being Lipschitz. Fix δ0 = 1
10εM0 . We first need

to modify the function F̃ . We will choose two parameters δ1, δ2, such that δ1 is much
smaller that δ0, and δ2 still smaller depending on δ1. However, both these quantities
will be �M,w 1. Consider the distribution of some fixed coordinate thj,[i′,i] of g̃(n)�̃ as
n varies over P. We may clearly suppose that there is no OM,ω(1)-linear relation, up
to OM,ω(1/N), amongst the frequencies �∗ ∪ �hj since otherwise the conclusion of the
lemma is trivially satisfied. If there is no such relation, and if the implicit constants in the
OM,ω(1) notation above are chosen sufficiently large, then by the quantitative Leibman
dichotomy, Theorem 4.1, the sequence (ghj (n)�)n∈P is δ2-equidistributed in G/�. Fix
a j ∈ {1, 2, 3, 4} and a pair i, i′ with 1 � i < i′ � k. Let ψ = ψj,i,i′ : G/� → [0, 1] be
supported where thj,[i′,i] � 2δ1 or thj,[i′,i] � 1 − 2δ1 and be equal to 1 whenever thj,[i′,i] � δ1

or thj,[i′,i] � 1 − δ1 and have ‖ψ‖Lip = OM,δ1 (1). Let ψ̃ = ψ̃j,i,i′ : G̃/�̃ → [0, 1] be the
pullback of ψj,i,i′ under the natural projection from G̃ to the jth copy of G.

Our preceding observation about the distribution of (ghj (n)�)n∈P implies that

|�n∈Pψ̃(g̃(n)�̃)| = |�n∈Pψ(ghj (n)�)| �
∫

G/�

ψdmG/� + δ2‖ψ‖Lip

= oM;δ1→0(1) + OM,δ1 (δ2),

where oM;δ1→0(1) denotes a quantity that is bounded in magnitude by cM(δ1) for some
cM(δ1) that goes to zero as δ1 → 0 for any fixed M.

Let z be an element in [H, H] with OM0 (1)-bounded coordinates, and suppose
z = (zh1 , zh2 , zh3 , zh4 , w) under the decomposition of G̃ as G × G × G × G × �.
Then ψzhj

(ghj (n)�) = ψ(zhj ghj (n)�) is Lipschitz with ‖ψzhj
‖Lip = OM0 (1), and by the

invariance of mG/� under multiplication by zhj we get

|�n∈Pψ̃(zg̃(n)�̃)| = oM0;δ1→0(1) + OM0,δ1 (δ2).

By adding, the same type of bounds hold for the function � := ∑4
j=1

∑
1�i<i′�k ψ̃j,i,i′ ,

that is to say

|�n∈P�(g̃(n)�̃)|, |�n∈P�(zg̃(n)�̃)| = oM0;δ1→0(1) + OM0,δ1 (δ2).

Let us, at this point, fix δ1 �M0 1 in such a way that the oM0;δ1→0(1) term here is
bounded by δ10

0 (say), and let us then choose δ2 �M0 1 in such a way that the OM0,δ1 (δ2)
term is also bounded by δ10

0 . Then the last displayed equation becomes

|�n∈P�(g̃(n)�̃)|, |�n∈P�(zg̃(n)�̃)| = O(δ10
0 ). (7.12)

Note that by construction � is equal to 1 in a δ1-neighbourhood of all of the
discontinuities of our function F . As a result of this it is clear that we may find a
function F̃0 with the property that

‖F̃0‖Lip = OM0 (1)

whilst

|F̃ − F̃0| � �
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pointwise. By (7.10) we have

|�n∈PF̃0(zg̃(n)�̃) − �n∈PF̃0(g̃(n)�)| = OM0 (1/ω(M0))

and by (7.12) we have

|�n∈P(F̃ − F̃0)(zg̃(n)�̃)|, |�n∈P(F̃ − F̃0)(g̃(n)�̃)| = O(δ10
0 ).

Adding, we obtain

|�n∈PF̃(zg̃(n)�̃) − �n∈PF̃(g̃(n)�̃)| = OM0 (1/ω(M0)) + O(δ10
0 ).

Recall that δ0 = 1
10εM0 depends only on M0. By choosing ω : �+ → �+ to be

sufficiently rapidly-growing, the whole of the right-hand side can therefore be made
O(δ10

0 ), that is to say

�n∈PF̃(zg̃(n)�̃) = �n∈PF̃(g̃(n)�̃) + O(δ10
0 ). (7.13)

Now that ω has been fixed, we have M0 = OM(1) and δ0 �M 1. As stated before,
our aim now is to assume that �∗ ∪ �h1 ∪ �h2 ∪ �h3 and �∗ ∪ �h1 ∪ �h2 ∪ �h4 are
highly dissociated and use this to produce an element z ∈ [H, H] which, in conjunction
with (7.4), contradicts (7.13). We shall require a further parameter δ3 �M 1, much
smaller than δ0. We will specify it later on.

Let π1, π2, π3, π4 : G̃ → G be the projections from G̃ onto the four copies of G
(recall, of course, that G̃ = G × G × G × G × �). Once again we abuse notation and
use the same notation for the corresponding projections from G̃/�̃ to G/�. Suppose
that �∗ ∪ �h1 ∪ �h2 ∪ �h3 is OM(1)-dissociated up to OM(1/N). Let us examine the
abelian part of (π1 × π2 × π3)(g̃(n)�)n∈P, that is to say the image of (g̃(n)�̃)n∈P under
the projection

πab
123 : G̃/�̃ → G/[G, G]� × G/[G, G]� × G/[G, G]� ∼= (�/�)k × (�/�)k × (�/�)k.

This image takes the form(
(ξh1,in)k∗

i=1, (ξh1,in)k
i=k∗+1, (ξh2,in)k∗

i=1, (ξh2,in)k
i=k∗+1, (ξh3,in)k∗

i=1, (ξh3,in)k
i=k∗+1

)
(mod 1)

Recalling that �∗ = {ξh,1, . . . , ξh,k∗ } and that �h = {ξh,k∗+1, . . . , ξh,k}, it follows from
the asserted dissociativity (assuming the implicit OM(1) terms are large enough) and
Kronecker’s theorem in quantitative form (cf. Lemma D.2), that this image is δ3-
equidistributed in the subtorus

{(t, u1, t, u2, t, u3) : t ∈ (�/�)k∗ , u1, u2, u3 ∈ (�/�)k−k∗ } ⊆ (�/�)k × (�/�)k × (�/�)k.

In particular, there is an element in (πab
123(g̃(n)�̃))n∈P within O(δ3) of

(0, (0, . . . , δ0, . . . , 0), 0, 0, 0, 0) + πab
123(b),

where the δ0 lies in the ith position (note that i > k∗ by assumption). Now since
the uniform probability measure on (g̃(n)�̃)n∈P is OM0 (1/ω(M0)) = δ10

0 -close to the
Haar measure on bH�̃/�̃, the projection (πab

123(g̃(n)�̃))n∈P is δ10
0 -equidistributed in

πab
123(bH�̃/�̃). This means that there is an element x of πab

123(H�̃/�̃) within O(δ3) of

(0, (0, . . . , δ0, . . . , 0), 0, 0, 0, 0).
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Recall that we chose δ0 so that the lifting property A.4 holds. Recalling the
relationship between distance in coordinates and distance in G̃ (cf. [14, Lemma A.4]) we
can thus find an element in (π1 × π2 × π3)(H) at distance OM(δ3) from eδ0

i z1 × z2 × z3

where z1, z2, z3 ∈ [G, G] are arbitrary (with coordinates bounded by OM0 (1)). It follows
that we can find an g ∈ H with

dG̃(g, eδ0
i z1 × z2 × z3 × w4 × u) = OM(δ3)

where w4 ∈ G and u ∈ � are arbitrary.
Similarly, if �∗ ∪ �h1 ∪ �h2 ∪ �h4 is OM(1)-dissociated up to OM(1/N) then we

may locate inside H an element g′ with

dG̃(g′, eδ0
i′ z′

1 × z′
2 × w′

3 × z′
4 × u′) = OM(δ3),

where z′
1, z′

2, z′
4 ∈ [G, G], and w′

3 ∈ G, u′ ∈ � are arbitrary.
We then take for our element z ∈ [H, H] the commutator [g, g′]. Noting that8

[eδ0
i′ z1 × z2 × z3 × w4 × u, eδ0

i z′
1 × z′

2 × w′
3 × z′

4 × u′]

= [eδ0
i′ , eδ0

i ] = [ei′ , ei]δ
2
0 × id × id × id × id

and that the maps g �→ [g, g0] are uniformly Lipschitz for g0 in any bounded set, we
have

dG̃(z, [ei′ , ei]δ
2
0 × id × id × id × id) = OM0 (δ3). (7.14)

Now, as we have remarked, the coordinate functions F[l′,l] : G/� → � are not
Lipschitz. However, they are OM(1)-Lipschitz when restricted to [G, G]�/�, as an
easy computation confirms. It follows from this observation, (7.14) and the definition
of the functions F[l′,l] that for j = 1, 2, 3, 4 and for any x ∈ G/� we have

F[l′,l](zx)m[l′ ,l](hj) = F[l′,l](x)m[l′ ,l](hi) + OM0 (δ3)

unless l = i, l′ = i′ and j = 1 in which case

F[i′,i](zx)m[i′ ,i](h1) = e(δ2
0m[i′,i](h1))F[i′,i](x)m[i′,i](h1) + OM0 (δ3).

Taking products over all choices of i, i′, it follows that

F̃(zx) = e(δ2
0m[i′,i](h1))F̃(x) + OM0 (δ3),

from which it of course follows that

�n∈PF̃(zg̃(n)�̃) = e(δ2
0m[i′,i](h1))�n∈PF̃(g̃(n)�) + OM0 (δ3).

Choosing δ3 so small that the error term here is O(δ10
0 ), we obtain upon comparison

with (7.13) that

|1 − e(δ2
0m[i′,i](h1))|�n∈PF̃(g̃(n)�)| = O(δ10

0 ).

8Here we have used the fact, specific to the 2-step case, that [xt, yt′ ] = [x, y]tt
′
. One way to check this would

be to verify it for t, t′ ∈ � and use the fact that both sides are polynomials in a suitable coordinate system.
In the higher step case, the more general Baker-Campbell-Hausdorff formula could be used instead.
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Recalling that m[i′,i](h1) is an integer bounded in magnitude by M, that

|�n∈PF̃(g̃(n)�̃)| � 1/M,

and that δ0 may certainly be assumed to be much smaller than 1/M, we are forced to
conclude (at last!) that m[i′,i](h1) = 0. �

We may put Lemma 7.3 together with Corollary 6.2 in a straightforward manner.

COROLLARY 7.4. Suppose that |�n∈[N]�hf (n)χh(n)| � 1/M for all h ∈ H, where H ⊆
[N], |H| � N/M and χh(n) has the form (6.3) with complexity at most M, and with
decompositions of the frequency sets �h = {ξh,1, . . . , ξh,k} into cores �∗ = {ξh,1, . . . , ξh,k∗ }
which do not depend on h and petal sets �′

h = {ξh,k∗+1, . . . , ξh,k}. Then one of the following
two alternatives holds true:

(i) There is a set H ′ ⊆ H, |H ′| �M |H|, such that m[i,i′](h) = 0 whenever i, i′ > k∗
and h ∈ H ′;

(ii) For �M N3 triples h, h′, h′′ ∈ H3 the set �∗ ∪ �′
h ∪ �′

h′ ∪ �′
h′′ fails to be OM(1)-

dissociated up to OM(1/N).

Proof. By Corollary 6.2 there are �M N3 additive quadruples h1 + h2 = h3 + h4

such that there are αh1,h2,h3,h4 , βh1,h2,h3,h4 for which

|�n∈[N]χh1 (n)χh2 (n)χh3 (n)χh4 (n)e(αh1,h2,h3,h4 n2 + βh1,h2,h3,h4 n)| �M 1.

By pigeonhole there must either be �M N3 of these quadruples such that m[i′,i](h1) = 0
for all i, i′ > k∗, in which case we are clearly in alternative (i), or else there must
be some choice of i, i′ > k∗ such that there are �M N3 quadruples with m[i′,i](h1) �=
0. By Lemma 7.3 it follows that for each of these quadruples at least one of the
sets �∗ ∪ �′

h1
∪ �′

h2
∪ �′

h3
or �∗ ∪ �′

h1
∪ �′

h2
∪ �′

h4
fails to be OM(1)-dissociated up to

OM(1/N). It follows immediately that we are in case (ii). �
Now if alternative (i) holds in this last corollary then Step 1 is complete (that is,

Proposition 7.1 is proven). If alternative (ii) holds, then it is possible to replace the
core-petal decomposition �h = �∗ ∪ �′

h by one in which some of the petal behaviour
is absorbed into the core. The precise statement of this, which follows now, is slightly
long:

PROPOSITION 7.5. Let H ⊆ [N] be a set with |H| � N/M. Suppose that

|�n∈[N]�hf (n)χh(n)| � 1/M

for all h ∈ H, where |H| � N/M and the nilcharacter χh(n) has the form (6.3) with
complexity at most M and there is a decomposition of the underlying frequency set
�h = {ξh,1, . . . , ξh,k} into
� a core component �∗ = {ξh,1, . . . , ξh,k∗ } which does not depend on h and
� a petal component �′

h = {ξh,k∗+1, . . . , ξh,k}.
Then either
� there is a set H ′ ⊆ H, |H ′| �M |H|, such that m[i′,i](h) = 0 for all i, i′ > k∗ and for all

h ∈ H ′, or
� there is a set H̃ ⊆ H, |H̃| �M |H| and nilcharacters χ̃h(n) of complexity OM(1),

h ∈ H ′′, such that

�n∈[N]�hf (n)χ̃h(n) �M 1 (7.15)
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for all h ∈ H̃. Here the nilcharacters χ̃h(n) have the form

χ̃h(n) = e(αhn2 + βhn)
∏

1�i<i′�k̃

F
m̃[i′ ,i](h)
[i′,i] (g̃h(n)�̃),

where g̃h(n) = (ξ̃h,1, . . . , ξ̃h,k̃, 0, . . . , 0). Furthermore writing

�̃h := {ξ̃h,1, . . . , ξ̃h,k̃}

we have a decomposition �̃h = �̃∗ ∪ �̃′
h, where either

(i) (core decreases) |�̃∗| < |�∗| and |�̃′
h| = |�′

h| or
(ii) (petals decrease) |�̃∗| � |�∗| + 1 and |�̃′

h| < |�′
h|.

Proof of Proposition 7.1, a.k.a. Step 1. Before embarking on the proof of this last
proposition, we remark how a simple iteration of it leads to Proposition 7.1. One starts
with the trivial decomposition �h = �∗ ∪ �′

h where �∗ = ∅ and �′
h = �h, and with

the initial value of M being Oδ(1). It is not hard to see that there cannot be more than
OM(1) iterations of alternatives (i) (core decreases) or (ii) (petals decrease). �

Proof of Proposition 7.5. By Corollary 7.4 we may assume that there are �M N3

triples h, h′, h′′ ∈ H such that �∗ ∪ �h ∪ �h′ ∪ �h′′ fails to be OM(1)-dissociated up to
OM(1/N). To each such triple is associated a k∗ + 3(k − k∗) tuple

q∗,1, . . . , q∗,k∗ , qh,k∗+1, . . . , qh,k, qh′,k∗+1, . . . , qh′,k, qh′′,k∗+1, . . . , qh′′,k

of integers, all at most OM(1) in magnitude, such that

‖q∗,1ξ∗,1 + · · · + q∗,k∗ξ∗,k∗ + qh,k∗+1ξh,k∗+1 + · · · + qh,kξh,k + qh′,k∗+1ξh,k∗+1 + . . .

+ qh′,kξh′,k + qh′′,k∗+1ξh′′,k∗+1 + · · · + qh′′,kξh′′,k‖�/� = OM(1/N).

By pigeonholing we may pass to a further subcollection of triples h, h′, h′′ for which
these integers qh,j, qh′,j′ , qh′′,j′′ have no h, h′, h′′-dependence. If at least one of these latter
quantities (with j > k∗) is non-zero then by relabeling we may assume it is qh,k. All this
having been done, let us fix h′ and h′′ appearing in �M N of these triples. We then have
integers q1, . . . qk = OM(1), not all zero, and some frequency ξ0 such that

‖ξ0 + q1ξ∗,1 + · · · + qk∗ξ∗,k∗ + qk∗+1ξh,k∗+1 + · · · + qkξh,k‖�/� = OM(1/N)

for at least �M N values of h. Furthermore (case 1) we have ξ0 = 0 if qk∗+1 = · · · =
qk = 0; otherwise (case 2) we have qk �= 0.

Suppose we are in case 1 and that, without loss of generality, we have qk∗ �= 0. Then
ξ∗,k∗ is in the OM(1)-linear span, up to OM(1/N), of the set �̃∗ := { 1

Qξ∗,1, . . . ,
1
Qξ∗,k∗−1},

where Q is the lowest common multiple of the integers up to OM(1). Taking �̃′
h = �′

h,
we see that (i) is satisfied and also that �h is in the OM(1)-linear span, up to OM(1/N),
of �̃∗ ∪ �̃′

h. Suppose now that we are in case 2; then take �̃∗ = 1
Q�∗ ∪ { 1

Qξ0} and

�̃′
h = 1

Q�′
h \ { 1

Qξh,k}. Now condition (ii) is satisfied, and once again �h is in the OM(1)-

linear span, up to OM(1/N), of �̃∗ ∪ �̃′
h.
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The treatment of the two cases is, henceforth, the same and at this point we revert
to the bracket quadratic expressions

F
m[i′ ,i](h)
[i′,i] (gh(n)�) = e(m[i′,i](h)ξh,i′n�ξh,in�).

For each ξh,i we substitute in the expression for this frequency as an OM(1)-linear
combination of the frequencies in �̃′

∗ ∪ �̃′
h, plus an error which is OM(1/N). To simplify

this we use the bracket identities of Lemma 5.5 repeatedly to express the whole product
χh(n) as a product of terms e(m̃[i′,i](h)ξ̃h,i′n�ξ̃h,in�) with i < i′, where the exponents
m̃[i′,i](h) are still OM(1), together with various terms of the form e(θn2), e({αn}{βn})
and e(αn�βn�) with β = OM(1/N).

Now we may use Lemma 3.5 (ii), (iii) and (iv) repeatedly, bearing in mind the
assumption |�n∈[N]�hf (n)χh(n)| � 1/M, to remove all terms of these last two types
and replace them by a single linear term e(θ ′n). Doing this and then taking the new
bracket quadratics e(m̃[i′,i](h)ξ̃h,i′n�ξ̃h,in�) and writing them as nilcoordinate functions

F
m̃[i′ ,i](h)
[i′,i] (g̃h(n)�̃), we obtain precisely the desired conclusion (7.15). �

8. Step 2: Approximate linearity. In this section we address Step 2 of the outline
in Section 2. In the last section we decomposed the underlying frequency sets �h =
{ξh,1, . . . , ξh,k} into a core set �∗ and a petal set �′

h, in such a way that no nilcharacter
F[i,i′](gh(n)) corresponding to two petal frequencies ξh,i, ξh,i′ appears in the expression
for χh(n). Our task now is to proceed from here to show that, at least for many h, the
petal set �′

h has a weak linear structure. There follows a precise statement of what we
shall prove. By a bracket-linear form of complexity M we mean a function ψ : � → �/�

of the form

ψ(h) = β0 + α1{β1h} + · · · + αm{βmh} + θh,

where the αj, βj, β lie in � and m � M.

PROPOSITION 8.1. Suppose that f : [N] → � is a 1-bounded function with ‖f ‖U4 � δ.
Then there is a set H ⊆ [N], |H| �δ N, such that for all h ∈ H we have

|�n∈[N]�hf (n)χh(n)| �δ 1.

Here we have

χh(n) = e(αhn2 + βhn)
∏

1�i<i′�k

F
m[i′ ,i](h)
[i′,i] (gh(n)) (8.1)

with k, |m[i,i′](h)| = Oδ(1), where gh(n) = (ξh,1n, . . . , ξh,kn, 0, . . . , 0), m[i′,i](h) = 0 if i, i′ >

k∗, the frequency set �h decomposes as �∗ ∪ �′
h with �∗ = {ξh,1, . . . , ξh,k∗ } independent

of h, and every frequency ξh,i, i > k∗, in the petal set �′
h is a bracket linear form in h of

complexity Oδ(1).

We shall establish this proposition inductively in a manner not too dissimilar to
that in the last section. The inductive step which drives Proposition 8.1 is the following;
it might be compared to Proposition 7.5 in the last section.
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PROPOSITION 8.2. Suppose that H ⊆ [N] is a set with |H| � N/M. Suppose that for
all h ∈ H we have

|�n∈[N]�hf (n)χh(n)| � 1/M,

where χh(n) has the form (8.1) and the frequency set �h is decomposed as �∗ ∪ �struct
h ∪

�unstruct
h , where the frequencies in �∗ do not depend on h and those in �struct

h are bracket-
linear in h with complexity at most M. Then there is a set H̃ ⊆ H, |H̃| �M 1, such
that

|�n∈[N]�hf (n)χ̃h(n)| �M 1,

where χ̃h(n) has the form

χ̃h(n) = e(α̃hn2 + β̃hn)
∏

1�i<i′�k̃

F
m̃[i′ ,i](h)
[i′,i] (g̃h(n)�̃),

a nilcharacter with complexity OM(1) in which the frequency set �̃h decomposes as
�̃∗ ∪ �̃struct

h ∪ �̃unstruct
h where either

(i) (core decreases) |�̃∗| < |�∗|, |�̃struct
h | � |�struct

h |, |�̃unstruct
h | � |�̃unstruct

h |;
(ii) (unstructured part decreases) |�̃∗| = OM,|�∗|(1), |�̃struct

h | = |�struct
h | + 1,

|�̃unstruct
h | = |�unstruct

h | − 1.

Proof of Proposition 8.1 given Proposition 8.2. To prove Proposition 8.1 one first, of
course, applies Step 1. With that in hand one may pick M = Oδ(1) and initialise the
inductive use of Proposition 8.2 by taking �unstruct

h to equal to the entire petal frequency
�′

h and �struct
h = ∅. It is not hard to see that this repeated application of Proposition

8.2 terminates in time OM(1), at which point the unstructured component �unstruct
h is

empty. �
It remains, of course, to prove Proposition 8.2, and this will be the main business

of this section. Once again the key tool is Proposition 6.1, of which we require the
following variant.

LEMMA 8.3. Suppose that H ⊆ [N] is a set with |H| � N/M and that

|�n∈[N]�hf (n)χh(n)| � 1/M

for all h ∈ H, where χh(n) has the form (8.1) with m[i,i′](h) = 0 if i, i′ > k∗ and the
underlying frequency set �h has been decomposed as �∗ ∪ �struct

h ∪ �unstruct
h , where the

core �∗ does not depend on h and �struct
h consists of bracket linear forms of complexity at

most M. Write χh(n) = χ struct
h (n)χunstruct

h (n), where the two parts here correspond to the
structured and unstructured frequencies in �h. Then there is a set H̃ ⊆ H, |H̃| �M |H|,
and frequencies αh1,h2,h3,h4 , βh1,h2,h3,h4 ∈ �/� such that

�n∈[N]χ
unstruct
h1

(n)χunstruct
h2

(n)χunstruct
h3

(n)χunstruct
h4

(n)e(αh1,h2,h3,h4 n2 + βh1,h2,h3,h4 n) �M 1

for �M N3 additive quadruples h1 + h2 = h3 + h4 ∈ H̃.

Proof. The idea is to apply Proposition 6.1 and then simply observe that the
contribution from the structured parts χ struct

h (n) can be made to cancel out. Bracket
linear forms are not quite genuinely linear, but if ψ(h) = α1{β1h} + · · · + αm{βmh} + θh
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then we have ψ(h1) + ψ(h2) = ψ(h3) + ψ(h4) whenever the tuple (β1h, . . . , βmh)(mod 1)
lies in some cube

∏m
j=1[ij/10, γj + (ij + 1)/10] (say), where the ij are integers between 0

and 9. By pigeonholing we may pass to a set H̃ ⊆ H such that for each bracket-linear
form ψ(h) in �struct

h , and for all h ∈ H̃, the corresponding tuple always lies in a cube of
this form depending only on ψ , and not on h.

By Proposition 6.1 there are �M N3 additive quadruples h1 + h2 = h3 + h4 ∈ H̃
and frequencies αh1,h2,h3,h4 , βh1,h2,h3,h4 ∈ �/� such that

|�nχh1 (n)χh2 (n)χh3 (n)χh4 (n)e(αh1,h2,h3,h4 n2 + βh1,h2,h3,h4 n)| �M 1.

Now the contribution to this from the structured parts,

χ struct
h1

(n)χ struct
h2

(n)χ struct
h3

(n)χ struct
h4

(n),

is a product of bracket quadratic terms of the form

e(ψ(h1)n�θn� + ψ(h2)n�θn� − ψ(h3)n�θn� − ψ(h4)n�θn�)

or

e(θn�ψ(h1)n� + θn�ψ(h2)n� − θn�ψ(h3)n� − θn�ψ(h4)n�).

For the quadruples h1, h2, h3, h4 under consideration we have ψ(h1) + ψ(h2) = ψ(h3) +
ψ(h4), and so the first of these expressions is identically 1. The second is not, but by
applying Lemma 5.5 we see that it is merely a combination of terms of the form
e(θn2), e({αn}{βn}) and e(αn�βn�) with ‖β‖�/� = OM(1/N), where α, β and θ depend
on h1, h2, h3, h4. Applying Lemma 3.5, it follows that we may completely ignore
the contribution from these structured parts, although we may need to modify the
frequencies αh1,h2,h3,h4 , βh1,h2,h3,h4 . �

The next task is to use a similar (but much simpler) argument to that used for
Lemma 7.3 to study the conclusion of Lemma 8.3 for a particular quadruple h1 + h2 =
h3 + h4.

LEMMA 8.4. Let h1, h2, h3, h4 be fixed and suppose that nilcharacters χhj (n) have
the form (8.1). Suppose that for each j = 1, 2, 3, 4 the underlying frequency set �hj is
decomposed as �∗ ∪ �struct

hj
∪ �unstruct

hj
, where the core set �∗ does not depend on hj and

each element of �struct
hj

is a bracket linear form ψ(hj), again not depending on hj. Suppose
that

|�n∈[N]χ
unstruct
h1

(n)χunstruct
h2

(n)χunstruct
h3

(n)χunstruct
h4

(n)e(αh1,h2,h3,h4 n2 + βh1,h2,h3,h4 n)| � 1/M.

Suppose that not all of the integers m[i,i′](hj) corresponding to frequencies ξhj,i, ξhj,i′ , one
of which is in �unstruct

hj
, vanish. Then some there is some OM(1)-rational relation, up to

OM(1/N), amongst the elements of �∗ ∪ �unstruct
h1

∪ �unstruct
h2

∪ �unstruct
h3

∪ �unstruct
h4

.

Proof. Once again we interpret the assumption as an assertion about a 2-step
nilsequence. Perhaps the ‘correct’ way to do this (and the manner more amenable to
generalisation) would be to mimic the construction of the last section and apply
the Quantitative Ratner theorem once again. However in the special case of the
U4-norm being addressed by this paper a shortcut in which only the (simpler)
quantitative Leibman dichotomy, Theorem 4.1, is needed and we give this here. Let
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us take G to be the free 2-step nilpotent Lie group on the ordered generating set
{eξ : ξ ∈ �∗ ∪ �unstruct

h1
∪ �unstruct

h2
∪ �unstruct

h3
∪ �unstruct

h4
}. As in Section 5 we identify the

‘coordinate’ functions Fξ,ξ ′ : G/� → �, and we take a polynomial sequence g : � → G
whose coordinate at eξ is ξn, for all ξ in the above indexing set, and all of whose other
coordinates are zero except for that at [eξ , eξ ′ ] for some arbitrary pair of frequencies
ξ, ξ ′ in the above set, where the coordinate of g is some quadratic q = qh1,h2,h3,h4 (n) to
be specified shortly. Inside G take � to be the lattice of integer points in the free 2-step
nilpotent Lie group. Finally, take

F :=
4∏

i=1

F
mj,j′ (hi)
ξ∗,j,ξhi ,j′

.

By an appropriate choice of the quadratic term q we may ensure that

F(g(n)�) = χunstruct
h1

(n) . . . χunstruct
h4

(n)e(αh1,h2,h3,h4 n2 + βh1,h2,h3,h4 n).

Note that we have
∫

G/�
F = 0. Although F is only piecewise Lipschitz, it is nonetheless

the case that if (g(n)�)n∈P is δ-equidistributed for an appropriate δ �M then
|�n∈[N]F(g(n)�)| � 1/10M, contrary to assumption. This is because, as in the last
section, we may decompose F as a sum F0 + F1 where ‖F0‖Lip = OM,ε(1) and |F1| is
bounded above pointwise by a function � with

∫
G/�

� = O(ε) and ‖�‖Lip = OM,ε(1).
Thus we are forced to conclude that (g(n)�)n∈P is not δ-equidistributed on G/�,

for some δ �M 1. By the quantitative Leibman dichotomy, Theorem 4.1, this implies
that there is some k ∈ �dim(G:[G,G]), 0 < |k| = OM(1), such that ‖k · (π ◦ g)‖C∞[N] =
OM(1/N). In view of the way that π ◦ g was constructed, namely the fact that the
horizontal part π ◦ g contains only the terms ξn with ξ ∈ �∗ ∪ �unstruct

h1
∪ �unstruct

h2
∪

�unstruct
h3

∪ �unstruct
h4

, this is precisely the result claimed. �
The conclusion of Lemma 8.4 looks rather weak, but using the tools of additive

combinatorics pioneered in this context by Gowers (particularly in [8, Ch. 7]) it turns
out to be enough for us to be able to impose some bracket linear behaviour on
some of the unstructured sets �unstruct

h . The following result concerning approximate
homomorphisms is our key tool. We know of no source for this precise result in the
literature, though we feel it should be somehow be regarded as ‘known’. It is appropriate
to associate the names of Freı̆man, Ruzsa and Gowers with results of this kind.

PROPOSITION 8.5 (Approximate homomorphisms). Let δ, ε ∈ (0, 1) be parameters
and suppose that f1, f2, f3, f4 : S → �/� are functions defined on some subset S ⊆ [N]
such that there are at least δN3 quadruples (x1, x2, x3, x4) ∈ S4 with x1 + x2 = x3 + x4

and ‖f1(x1) + f2(x2) − f3(x3) + f4(x4)‖�/� � ε. Then there is a bracket linear phase ψ :
� → �/� of complexity Oδ(1) and a set S′ ⊆ S, |S′| �δ N, such that f1(x) = ψ(x) +
O(ε) for all x ∈ S′.

Proof. See Appendix C. �
LEMMA 8.6. Let H ⊆ [N] be a set of size at least N/M, and suppose that we have

a core set �∗ and, for each h ∈ H, sets �unstruct
h . Suppose that |�∗|, |�unstruct

h | � M.
Suppose that for at least N3/M additive quadruples h1 + h2 = h3 + h4 in H there is
an M-linear relation, up to O(M/N), in �∗ ∪ �unstruct

h1
∪ �unstruct

h2
∪ �unstruct

h3
∪ �unstruct

h4
.

Then either
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(i) There is some element of the core �∗ which lies in the OM(1)-span of the others,
up to OM(1/N), or

(ii) There is a bracket linear form ψ of degree OM(1) and a set H ′ ⊆ H, |H ′| �M |H|,
such that ψ(h) lies in the OM(1)-linear span up to OM(1/N) of �unstruct

h for all
h ∈ H ′.

Proof. Let the elements of the core set �∗ be {ξ∗,1, . . . , ξ∗,M} and those of the petal
set �h be {ξh,1, . . . , ξh,M}. Suppose, for a given quadruple h1 + h2 = h3 + h4, that the
approximate linear relation between the elements of �∗ ∪ �h1 ∪ �h2 ∪ �h3 ∪ �h4 is

‖q∗,1(h1, h2, h3, h4)ξ∗,1 + · · · + q∗,M(h1, h2, h3, h4)ξ∗,M

+ q1,1(h1, h2, h3, h4)ξh1,1 + · · · + q1,M(h1, h2, h3, h4)ξh1,M

+ · · · + q4,1(h1, h2, h3, h4)ξh4,1 + · · · + q4,M(h1, h2, h3, h4)ξh4,M‖�/� = O(M/N),

where each integer q has magnitude at most M. There are only (2M + 1)5M choices for
these integers and so we may pass to a subcollection of �M N3 quadruples for which
there is such a relation and for which none of the q’s depend on h1, h2, h3, h4. Since �∗
is M-dissociated, at least one of the qi,j must be non-zero, i = 1, 2, 3, 4; without loss of
generality, suppose that q1,1 �= 0.

Writing f1(h1) := q1,1ξh1,1 + · · · + q1,Mξh1,M , we see that we have found functions
f2, f3, f4 : H → �/� such that

‖f1(h1) + f2(h2) − f3(h3) − f4(h4)‖�/� � 1/N ′

for �M N3 additive quadruples h1 + h2 = h3 + h4 ∈ H, for some N ′ � N/M. Now we
apply Proposition 8.5 to conclude that there is a bracket linear phase ψ of complexity
OM(1) such that f1(h) = ψ(h) + OM(1/N) for all h in some set H ′ ⊆ H, |H ′| �M N.
This concludes the proof of the lemma. �

We are now in a position to prove Proposition 8.2 which, recall, was the inductive
step driving the main result of this section, namely Proposition 8.1. The argument is
very similar to that employed in the proof of Proposition 7.5, hingeing on repeated
use of the bracket identities of Lemma 5.5 to expand out linear combinations of
frequencies.

Proof of Proposition 8.2. The assumption that |�n∈P�hf (n)χh(n)| � 1/M may be
fed into Lemma 8.3 to conclude the existence of a set H ′ ⊆ H with |H ′| �M |H| such
that

�nχ
unstruct
h1

(n)χunstruct
h2

(n)χunstruct
h3

(n)χunstruct
h4

(n)e(αh1,h2,h3,h4 n2 + βh1,h2,h3,h4 n)) �M 1

for �M N3 additive quadruples h1 + h2 = h3 + h4 in H ′. This in turn may be fed into
Lemma 8.4, which allows us to conclude that for each of these additive quadruples there
is an OM(1) linear relation, up to OM(1/N), between the elements of �∗ ∪ �unstruct

h1
∪

�unstruct
h2

∪ �unstruct
h3

∪ �unstruct
h4

. There is one other possibility here, namely that in the
attempt to apply Lemma 8.4 we find that, for many quadruples h1 + h2 = h3 + h4,
all of the integers m[i,i′](hj) corresponding to frequencies ξhj,i, ξhj,i′ , one of which is in
�unstruct

hj
, are zero. This is a rather trivial case, however, for we may then pass to the set

H̃ of h1 (say) appearing here, and simply delete the unstructured frequencies �unstruct
h ,
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which play no actual role in the expression for χh(n). The conclusion of Proposition
8.2 is then immediate in this case.

Returning to the main line of the argument, we may then apply Lemma 8.6 to
conclude that either

(i) There is some element ξ ∈ �∗ which lies in the OM(1)-linear span of the others,
up to OM(1/N), or

(ii) There is a bracket linear form ψ of degree OM(1) and a set H̃ ⊆ H ′, |H̃| �M

|H|, so that ψ(h) lies in the OM(1)-linear span of �unstruct
h for all h ∈ H̃.

These two possibilities will correspond to alternatives (i) and (ii) respectively in
Proposition 8.2. To see this we proceed rather as in the proof of Proposition 7.5,
making use once again of Lemma 5.5 as well as extensive use of Lemma 3.5 to handle
the somewhat annoyingly non-Lipschitz 1-step objects which arise. The treatment of
(i) is exactly analogous to the aforementioned argument, so we only describe (ii) in any
detail.

Assume that the sets �unstruct
h are ordered as ξh,k0+1, . . . , ξh,k. We are assuming

that there is a bracket-linear form ψ(h) having the form qh,k0+1ξh,k0+1 + · · · + qh,kξh,k +
OM(1/N), for all h ∈ H ′. Here the integers qh,j are all bounded in magnitude by OM(1)
and so we may, by passing to a further subset H ′′ ⊆ H ′, assume that they do not depend
on h. Without loss of generality let us suppose that qh,k �= 0. Then we may write ξh,k as
an OM(1)-linear combination of 1

Qψ(h) and the frequencies 1
Qξh,k0+1, . . . ,

1
Qξh,k−1, plus

an error of OM(1/N), where Q is the lcm of the numbers up to OM(1). Now we replace
�struct

h by �struct
h ∪ { 1

Qψ(h)} and �unstruct
h by { 1

Qξh,k0+1, . . . ,
1
Qξh,k−1}, and then proceed to

rewrite the bracket quadratics e(ξn�ξ ′n�) using these new sets of frequencies by means
of Lemma 5.5 and Lemma 3.5 exactly as we did at the end of Section 7. �

Before moving onto the next section we apply one additional piece of analysis
to Proposition 8.1. This allows us to conclude that the quadratic frequency αh varies
bracket-linearly in h as well. Thus, once this is done, only the linear term e(βhn) does
not have a rigid structure imposed upon it.

PROPOSITION 8.7. In the statement of Proposition 8.1, we may assume that the
quadratic frequency αh varies bracket-linearly in h.

Proof. We may, of course, take for granted the conclusion of Proposition 8.1. We
apply Proposition 6.1 once again, using the same argument we employed at the start
of the proof of Lemma 8.3 to first pass to a subset H ′ ⊆ H, |H ′| �M N, on which all
the bracket linear forms ψ in the petals �′

h are linear in the sense that ψ(h1) + ψ(h2) =
ψ(h3) + ψ(h4) whenever h1 + h2 = h3 + h4 with h1, h2, h3, h4 ∈ H ′. This gives

�n∈[N]χh1 (n)χh2 (n + h1 − h4)χh3 (n)χh4 (n + h1 − h4) �M 1.

As in Corollary 6.2, this implies that χh1 (n)χh2 (n)χh3 (n)χh4 (n) correlates with a
quadratic phase e(αh1,h2,h3,h4 n2 + βh1,h2,h3,h4 n). Moreover a careful analysis of the proof
of that corollary, looking at the decomposition χh(n) = χ ′

h(n)e(αhn2 + βhn), where

χ ′
h(n) =

∏
1�i<i′�k

F
m[i′ ,i](h)

[i′,i] (gh(n)�),

reveals that we can take αh1,h2,h3,h4 = αh1 + αh2 − αh3 − αh4 . That is, the genuinely
bracket-quadratic objects comprising χ ′

h(n) only give rise to linear terms.
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The term χ ′
h1

(n)χ ′
h2

(n)χ ′
h3

(n)χ ′
h4

(n) arising from the genuinely bracket quadratic
parts is a product of terms of the form e(αn�ψ(h1)n� + αn�ψ(h2)n� − αn�ψ(h3)n� −
αn�ψ(h4)n�) where, recall, ψ(h1) + ψ(h2) = ψ(h3) + ψ(h4). Using Lemma 5.5 (iii) to
move the ψ terms to the outside of the brackets and applying Lemma 3.5 repeatedly,
we conclude that

�n∈[N]e((α′
h1

+ α′
h2

− α′
h3

− α′
h4

)n2 + θh1,h2,h3,h4 n) �M 1

for all these quadruples h1 + h2 = h3 + h4, where α′
h − αh is a bracket-linear form of

complexity OM(1). By Lemma D.1 it follows that there is some q = OM(1) such that

‖q(α′
h1

+ α′
h2

− α′
h3

− α′
h4

)‖�/� = OM(1/N2).

By Proposition 8.5 there is a further subset H ′′ ⊆ H, |H ′′| �M |H|, together with a
bracket linear form ψ ′(h) of complexity OM(1), such that

qα′
h = ψ ′(h) + OM(1/N2)

for all h ∈ H ′′. This means that

αh = ψ ′′(h) + rh

q
+ OM(1/N2),

where ψ ′′(h) is another bracket linear form and rh takes integer values. Refining
[N] into progressions of common difference q and length �M N small enough to
make the OM(1/N2) error negligible, and then applying Lemma 3.5 (ii), we obtain the
claim. �

9. Step 3: The symmetry argument. Finally we turn to Step 3 of the programme
outlined in Section 2, the so-called symmetry argument. Here we shall take an approach
somewhat different to the one we shall employ in the general case of the Us+1-norm,
s � 4, where further use is made of the nilmanifold distribution results of Section 4 and
there are slightly complicated issues concerning the keeping-track of the complexity of
various bracket expressions.

In the special case of the U4-norm that this paper is concerned with, a rather
direct argument using Bohr sets is possible. Let S = {θ1, . . . , θd} ⊆ �/� be a set of
frequencies and suppose that ρ ∈ (0, 1). Then we set

B(S, ρ, N) := {n ∈ [ρN] : ‖nθj‖�/� � ρ for all j = 1, . . . , d}.

We shall need a small amount of the theory of such sets, particularly pertaining to the
notion of regularity – the idea that there is a plentiful supply of ρ for which the size of
B(S, ρ ′, N) is nicely controlled for ρ ′ ≈ ρ. The need to introduce this idea in additive
combinatorics was first appreciated in [5] and it has now appeared in several places,
for example [11] where the notion is defined in Definition 2.6 and discussed in more
detail in Chapter 8.

For our purposes here we say that a value ρ is regular if we have

|B(S, (1 + κ)ρ, N)| = |B(S, ρ, N)|(1 + O(d|κ|))

https://doi.org/10.1017/S0017089510000546 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089510000546


32 BEN GREEN, TERENCE TAO AND TAMAR ZIEGLER

uniformly for |κ| � 1/d. We shall need the following facts about regular Bohr sets. It
would be possible to obtain much more precise statements but we shall not need to do
so here.

LEMMA 9.1 (Regular Bohr sets – Basic Facts). Fix a set S = {θ1, . . . , θd} of
frequencies, and write B := B(S, ρ, N). We have the following facts.

(i) (Ubiquity of regular values) For any ρ0 ∈ (0, 1/2) there is a regular value of ρ

in the interval [ρ0, 2ρ0].
(ii) (Fourier expansion of Bohr cutoffs) Suppose that ρ is regular, and that ε > 0 is

a parameter. Then we may decompose the cutoff 1B(n) as ψ1(n) + ψ2(n), where
ψ1(n) = ∫ 1

0 ψ̂1(θ )e(θn) dθ with ‖ψ̂1‖1 := ∫ 1
0 |ψ̂1(θ )| dθ � Cε,ρ and

∑
n |ψ2(n)| �

εN.
(iii) (Large generalised Fourier coefficients) Suppose that ρ is regular and that φ :

B(S, 2ρ, N) → �/� is locally linear on B in the sense that φ(x + y) = φ(x) +
φ(y) whenever x, y ∈ B. Suppose that |�x∈Be(φ(x))| � η. Then there is a regular
value of ρ ′, ρ ′ �ε,η,ρ 1, such that ‖φ(x)‖�/� � ε for all x ∈ B(S, ρ ′).

Sketch Proof. The definition of Bohr set we are using here is very slightly different
to that used in [11], in that our Bohr sets are contained in [N] and not in �/N�.
Nonetheless, the proofs of the above statements are so close to those in �/N� that
we simply refer to the relevant sections of the aforementioned paper. Statement (i)
is [11, Lemma 8.2]. Statement (ii) is not explicitly mentioned in [11]. To prove it,
take ψ1(n) = 1

|B′|1B ∗ 1B′ (n), where B′ := B(S, ρ ′, N) for a suitably small ρ ′ �ε,ρ 1. The

bound on ‖ψ̂1‖1 follows from Plancherel, whilst the bound on ‖ψ2‖1 is a consequence
of the regularity of B and the observation that 1

|B′|1B ∗ 1B′ (n) = 1B(n) provided that
n /∈ B(S, ρ + ρ ′, N) \ B(S, ρ − ρ ′, N). Finally, (iii) is [11, Lemma 8.4]. �

Let us return to the main business of this section, which is to conclude the proof
of Theorem 1.5. The main result of the last section, Proposition 8.7, took us from the
assumption that ‖f ‖U4 � δ to the conclusion that

|�n∈[N]f (n)f (n + h)χh(n)| �δ 1 (9.1)

for a set H of size �δ N, where χh(n) is a product of terms of the form e({αh}βn�γ n�),
e(α{βh}n2) and e(θhn). Using the fact that �γ n� = γ n − {γ n}, we may assume that

χh(n) = e(
k∑

j=1

{αjh}βjn{γjn})e(
k∑

j=1

α′
j{β ′

j h}n2))e(θhn).

Later on it will be convenient to assume that

For all h ∈ H we have ‖θh‖�/� � ρ1 for all θ ∈ {α1, . . . , αk, β
′
1, . . . , β

′
k}, (9.2)

for some small parameter ρ1 > 0 to be specified later. This can be achieved at the
expense of thinning out H somewhat to a set of size merely �ρ1,δ N, as we now show.

To demonstrate the last claim we distinguish two types of such θ . We say that θ is
good if the number of h ∈ H such that ‖θh‖�/� < ρ1 is at most 10ρ1N. By refining H
to a set H ′ ⊆ H with |H ′| � |H| − 20ρ1kN, we may assume that ‖θh‖�/� � ρ1 for all
h ∈ H ′ and for all good θ . Note that |H ′| � |H|/2 if ρ1 is chosen small enough as a
function of δ, as it will be later on. If θ is not good then the sequence {nθ (mod �)}n∈[N] is
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not ρ1-equidistributed, and by well-known results of diophantine approximation (see,
for example, [14, Proposition 3.1]) there is some q � ρ−C

1 such that ‖qθ‖�/� � ρ−C
1 /N.

This means that the bracket {θh} takes on only ρ−2C
1 values as h ranges over [N], and

so there is a subset H ′′ ⊆ H ′, |H ′′| � ρCk
1 |H|, on which all these brackets are constant.

This means that the corresponding terms in χh(n) may be ignored, for the purpose of
(9.1), since they depend just on n and not on h. Replacing H by H ′′ gives the claim,
and henceforth we assume that (9.2) holds, remembering that we now only have the
weaker bound |H| �ρ1,δ N.

Write

T(x, y, z) :=
k∑

j=1

{αjx}βj

3
y{γjz} +

k∑
j=1

α′
j

3
{β ′

j x}yz,

so that 3T(h, n, n) is the form appearing in the definition of χh(n). Here, there are three
possible choices for each βj/3, α′

j/3 and it does not matter which we take; the reason for
introducing these 3’s will become apparent later. Then T(x, y, z) is trilinear on the Bohr
set B := B(S, ρ0, N), where S = {α1, . . . , αk, γ1, . . . , γk, β

′
1, . . . , β

′
k} and the parameter

ρ0 ∈ [ 1
20 , 1

10 ] is chosen so that B is regular. By stating that T is trilinear we mean that,
for example, T(x1 + x2, y, z) = T(x1, y, z) + T(x2, y, z) when all of x1, x2, x1 + x2, y, z
lie in B. We begin by symmetrising T in the last two variables, a straightforward task.
For each j pick some β̃j such that 2β̃j = βj/3 (there are two choices) and set

T̃(x, y, z) :=
k∑

j=1

{αjx}β̃jy{γjz} +
k∑

j=1

{αjx}β̃jz{γjy} +
k∑

j=1

α′
j

3
{β ′

j x}yz.

Then of course T̃(h, n, n) = T(h, n, n), but now T̃(x, y, z) is symmetric in the last two
variables. Dropping the tildes, we assume henceforth that T itself is symmetric in the
last two variables.

Our assumption, then, is that

|�n∈[N] f (n)f (n + h)e(3T(h, n, n))e(θhn)| �δ 1

for all h lying in some set H of size at least �ρ1,δ N, where H additionally satisfies
(9.2). Our immediate goal is to localise the variables h and n to small Bohr sets so that
we may properly exploit the trilinearity of T .

Let us briefly reprise the heuristic mentioned in the Section 2 to recall why it is
that we expect T to be symmetric in the first two coordinates as well (on a‘nice set’).
Suppose we knew that f (n)f (n + h) = χh(n) = e(3T(h, n, n))e(θhn) for all n, h. Then we
get

χh(n + k)χk(n) = f (n)f (n + h + k) = χk(n + h)χh(n).

Using the trilinearity of T and symmetry in the last two coordinates we get

6T(h, k, n) = 6T(k, h, n).

Now of course we do not have proper equations but only correlations, we don’t have
correlation for all h but only for ‘many’, and we have trilinearity only when the variables
are restricted to Bohr sets, so we must work much harder.
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We start with the h variable. Set B1 := B(S, ρ1, N), where ρ1 is the (as yet
unspecified) quantity appearing in (9.2). Modifying ρ1 by at most a factor of two,
we may assume that B1 is regular. We claim that it is possible to find an h0 ∈ H such
that the intersection H ∩ (h0 + B1) has size �ρ1,δ N. A slight trick is necessary to
establish this: consider ∑

n∈[N]

1H ∗ 1B′ ∗ 1B′ (n)1H(n),

where B′ := B(S, ρ1/2, N). On the one hand this equals
∑

n 1H ∗ 1B′ (n)2 which, by the
Cauchy–Schwarz inequality, is �ρ1,δ N3. On the other hand we have 1B′ ∗ 1B′ (n) �
|B1|1B1 (n) for n ∈ [N], and from these two inequalities the claim follows immediately.

Our assumption now implies that

|�n∈[N] f (n)f (n + h0 + h′)e(3T(h0 + h′, n, n))e(θh0+h′n)| �δ 1

for all h′ lying in some set H ′ ⊆ B1 = B(S, ρ1, N), |H ′| �ρ1,δ N. By the careful
construction of H (cf. (9.2)) and the fact that h0 ∈ H we have {αj(h0 + h′)} =
{αjh0} + {αjh′}, and similarly for the β ′

j , and hence we obtain the linearity property
T(h0 + h′, n, n) = T(h0, n, n) + T(h′, n, n). After relabelling we hence have

|�n∈[N] f1(n)f2(n + h)e(3T(h, n, n))e(θhn)| �δ 1

for all h ∈ H, where H ⊆ B1, |H| �ρ1,δ N, f1(n) := f (n)e(T(h0, n, n)) and f2(n) :=
f (n + h0).

We must now localise the n variable, and for this we use a somewhat different trick.
By averaging there is some n0 such that

�n∈[N]f1(n0 + n)f2(n0 + n + h)e(3T(h, n0 + n, n0 + n))e(θhn)1B1 (n) �δ 1.

Now we have

β(n + n0){γ (n + n0)} = βn0{γ (n + n0)} + βn{γ n} + βn{γ n0}
+ βn({γ (n + n0)} − {γ n} − {γ n0}).

Substituting into the expression for e(3T(h, n + n0, n + n0)) and expanding, we see that
the contribution from the term e(βn0{γ (n + n0)}) may be absorbed into the linear term
e(θhn) (by Lemma 3.5), as may the term e(βn{γ n0}) (trivially). The term {γ (n + n0)} −
{γ n} − {γ n0} takes values in {−1, 0, 1} according to whether γ n(mod 1) lies in certain
intervals I−1

γ , I0
γ , I+1

γ , and so we obtain

�n∈[N]f ′
1(n)f ′

2(n + h)e(3T(h, n, n))e(θhn)

×
k∏

j=1

(
1γjn∈I−1

γj
e(−{αjh}βjn) + 1γjn∈I0

γj
+ 1γjn∈I+1

γj
e({αjh}βjn)

)
1B1 (n) � 1,

where f ′
1(n) = f1(n + n0) and f ′

2(n) = f2(n + n0). It follows that there is a choice of
εj ∈ {−1, 0, 1} and a θ ′

h such that

�n∈[N]f ′
1(n)f ′

2(n + h)e(3T(h, n, n))e(θ ′
hn)

k∏
j=1

1
γjn∈I

εj
γj

1B1 (n) � 1.
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By Lemma 3.5 we may remove the last term at the expense of changing θ ′
h again.

Removing the dashes for notational convenience we now obtain

�n∈[N]f1(n)f2(n + h)e(3T(h, n, n))e(θhn)1B1 (n) � 1.

Here, f1(n) = f (n + n0)e(T(h0, n0 + n, n0 + n)) and f2(n) = f (n + h0 + n0), and we recall
once more that this is known to hold for �ρ1,δ N values of h ∈ B1.

Set χh(n) := e(3T(h, n, n))e(θhn)1B1 (n). Applying Proposition 6.1, we obtain

�n∈[N]χh1 (n)χh2 (n + h1 − h4)χh3 (n)χh4 (n + h1 − h4) �ρ1,δ 1 (9.3)

for at least cρ1,δN3 additive quadruples (h1, h2, h3, h4) ∈ B1 with h1 + h2 = h3 + h4. We
have already, in previous sections, extracted ‘top order’ information from statements
like this and our task here is to exploit the additional structure inherent in (9.3),
particularly that present in the terms h1 − h4.

Parametrising these by h1 = h, h2 = h + a + b, h3 = h + a, h4 = h + b we obtain

�n∈[N]χh(n)χh+a+b(n + b)χh+a(n)χh+b(n + b) �ρ1,δ 1

for at least cδN3 triples h, a, b with h ∈ t + B′ and a, b ∈ B(S, 3ρ1, N). Substituting in
the definition of χh(n), and using the trilinearity of T we obtain

�ne(6T(a, b, n) + (θh + θh+a+b − θh+a − θh+b)n)1B1 (n)1B1 (n + b) �ρ1,δ 1 (9.4)

for at least cρ1,δN3 triples h, a, b with h ∈ B1 and a, b ∈ B(S, 3ρ1, N). Pigeonholing in
h, one sees that there is some fixed h such that this holds for at least cρ1,δN2 pairs
a, b ∈ B(S, 3ρ1, N). Let ε = ε(ρ1, δ) be a small positive quantity to be specified very
shortly. By Lemma 9.1 (ii) and the regularity of B1 we may expand

1B1 (n + b) =
∫ 1

0
ψ̂1(θ )e(θ (n + b)) dθ + ψ2(n),

where ‖ψ̂1‖1 � Cε,ρ1,δ and
∑

n |ψ2(n)| � εN. Choosing ε so that the contribution to
(9.4) from ψ2(n) is negligible, we see using the triangle inequality that there is some
θ ∈ [0, 1] such that

�n∈B1 e(6T(a, b, n) + (θh + θh+a+b − θh+a − θh+b + θ )n) �ρ1,δ 1 (9.5)

for the same fixed h and many pairs a, b as before. For each a, b write φa,b(n) for the
phase appearing here, thus

φa,b(n) := 6T(a, b, n) + (ηa + η′
b + η′′

a+b)n

where ηa := θh − θh+a + θ , η′
b := θh+b and η′′

a+b := θh+a+b. Equation (9.5) implies that

|�n∈B1 e(φa,b(n))| �ρ1,δ 1.

Let ε = ε(δ, ρ1) be a small positive parameter to be specified later. By Lemma 9.1
(iii) there is some ρ2 = ρ2(ε, ρ1, δ) such that we have

‖φa,b(n)‖�/� � ε
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for all n ∈ B2 := B(S, ρ2, N) and for these same pairs a, b, that is to say for at least
cρ1,δN2 pairs a, b ∈ B(S, 3ρ1). Thus

6T(a, b, n) = (ηa + η′
b + η′′

a+b)n + O(ε)

for at least cρ1,δN2 choices of a, b ∈ B(S, 3ρ1, N) and for all n ∈ B2. For at least cδN3

triples a, b, b′ we thus have

6T(a, b − b′, n) = (η′
b − η′

b′ + η′′
a+b − η′′

a+b′ )n + O(ε)

for all n ∈ B2. Writing c := a + b + b′ it follows that

6T(c − b − b′, b − b′, n) = (η′
b − η′

b′ + η′′
c−b′ − η′′

c−b)n + O(ε)

for at least cρ1,δN3 triples c, b, b′ ∈ B(S, 9ρ1, N) and for all n ∈ B2. Fix some c for which
this holds for at least cρ1,δN2 pairs b, b′; then by trilinearity of T we have

6(T(b, b′, n) − T(b′, b, n)) = κb(n) + κ ′
b′ (n) + O(ε)

for all these pairs b, b′ and for all n ∈ B2, where κb := η′
bn − T(c, b, n) + T(b, b, n) −

η′′
c−bn and κ ′

b′ = −η′
b′n + η′′

c−b′n − ψ(c, b′, n) + ψ(b′, b′, n). The exact form of these
expressions is not relevant, as we shall very shortly see.

Indeed for at least cρ1,δN3 triples b1, b2, b′ ∈ B(S, 3ρ1) we have

6T(b1 − b2, b′, n) − T(b′, b1 − b2, n) = κb1 (n) − κb2 (n) + O(ε)

for all n ∈ B2, and hence for at least cρ1,δN4 quadruples b1, b2, b′
1, b′

2 ∈ B(S, 3ρ1) we
have

6T(b1 − b2, b′
1 − b′

2, n) − T(b′
1 − b′

2, b1 − b2, n) = O(ε)

for all n ∈ B2. There are at least cρ1,δN2 different pairs x, y ∈ B(S, 6ρ1) represented as
x = b1 − b2, y = b′

1 − b′
2, and for each of them

6(T(x, y, n) − T(y, x, n)) = O(ε)

for all n ∈ B2. Write A ⊆ [N]2 for the set of these pairs, thus |A| � cδN2. Let us write
A ⊕ A for the set of all pairs (x, y1 ± y2) where both (x, y1) and (x, y2) lie in A, together
with all pairs (x1 ± x2, y) where both (x1, y) and (x2, y) lie in A. By bilinearity we see
that

6(T(x, y, n) − T(y, x, n)) = O(kε)

for all pairs (x, y) in the k-fold bilinear sumset A ⊕ A ⊕ · · · ⊕ A and for all n ∈ B̃.
Now by Lemma B.2 this k-fold bilinear sumset A′ := A ⊕ A · · · ⊕ A contains a

product P × P provided that k � Cδ, where P is an arithmetic progression which
contains 0 and has length N and common differences d = Oδ(1). Thus for all triples
x, y, z ∈ P ∩ B̃ we have

T(x, y, z) − T(y, x, z) = O(kε) + σx,y,z, (9.6)

where σx,y,z takes values in �/6�.
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Recall that we have

|�n∈[N]f1(n)f2(n + h)e(3T(h, n, n))e(θhn)1B1 (n)| � 1

for many h ∈ B1. By the pigeonhole principle, there are h1, n1 such that

|�n∈[N] f1(n + n1)f2(n + h1 + h)e(3T(h1 + h, n1 + n, n1 + n))1P∩B1 (n)1B1 (n1 + n)| � 1

for many h ∈ P ∩ B1. Obviously n0 ∈ B(S, 2ρ1, N), and so we may expand T(h1 +
h, n1 + n, n1 + n) using trilinearity. Doing this, absorbing the linear terms into e(θhn)
using Lemma 3.5 and expanding the cutoff 1B1 (n1 + n) as a Fourier series using
Lemma 9.1 (ii), we obtain

|�n∈[N] f ′
1(n)f ′

2(n + h)e(3T(h, n, n))1P∩B1 (n)e(θ ′
hn)| � 1

for may h ∈ P ∩ B1. Here, f ′
1(n) = f1(n + n1)e(T(h1, n, n)) = f (n + n0 + n1)e(T(h0, n0 +

n1 + n, n0 + n1 + n) + T(h1, n, n)) whilst f ′
2(n) = f (n + h0 + h1 + n0 + n1). Once again

we drop the dashes in what follows for notational convenience.
By the trilinearity of T and the approximate symmetry (9.6) of T in the first two

variables, the genuine symmetry in the last two and another application of Lemma 3.5
to handle the terms which are linear in n, it follows that

|�n∈[N] f1(n)e(−T(n, n, n))f2(n + h)e(T(n + h, n + h, n + h))1P∩B1 (n)e(θ̃hn)e(2σn,h,n)| � 1,

provided that ε was chosen sufficiently small in terms of δ. This, recall, is for many
h ∈ P ∩ B1.

Now from (9.6) and the smallness of ε we see that σ : (P ∩ B1)3 → �/6� is trilinear.
Thus σn,h,n is constant as n, h vary over any translate of Q := 6 · (P ∩ B1) := {6x : x ∈
P ∩ B1}. Since P ∩ B1 may be covered by Oδ(1) such translates, we may pigeonhole yet
again to conclude the existence of h2, n2 such that

|�n∈[N] f1(n + n2)e(−T(n2 + n, n2 + n, n2 + n))F2(n + h)1Q(n + n2)e(θ ′
hn)| � 1.

for many h, where

F1(n) := f1(n + n2)e(−T(n2 + n, n2 + n, n2 + n))

= f (n + n0 + n1 + n2)e(−T(n2 + n, n2 + n, n2 + n)

+ T(h0, n0 + n1 + n2 + n, n0 + n1 + n2 + n) + T(h1, n2 + n, n2 + n))

and F2 is a 1-bounded function whose precise nature is unimportant. It follows from
this and an expansion of 1Q(n + n2) as a Fourier series that

�h‖F1(n)F2(n + h)‖4
U2 � 1.

Expanding out implies that the Gowers inner product 〈F1, F1, F1, F1, F2, F2, F2, F2〉U3

is � 1. By the Gowers–Cauchy–Schwarz inequality we see that ‖F1‖U3 � 1 which, by
the inverse theorem for the U3 norm, implies that

�n∈[N]F1(n)�(n) � 1

for some 2-step nilsequence �(n).
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Now F1(n) is equal to f (n + n0 + n1 + n2) times a variety of bracket terms. By
Lemma 3.6, each of those bracket terms is a product of almost nilsequences of degree
at most 3. Thus f itself has inner product �δ 1 with a degree 3 almost nilsequence
on [N]. As we observed in Lemma 3.3, this is enough to establish (at last!) the inverse
conjecture for the U4-norm, that is to say Theorem 1.5. �

Appendix A. Lifting results for nilmanifolds. In this section we establish some
slightly technical results concerning the relationship between points on a connected,
simply-connected nilpotent Lie group G and points in the nilmanifold G/�. These
results were necessary in Section 7.

We begin with a folklore result of quantitative linear algebra type.

LEMMA A.1 (Bounded equations have bounded solutions). Suppose that A is an
m × n matrix and that b ∈ �m. Suppose that all of the entries of A are rational numbers
of complexity at most M, and that the entries of b are bounded by M. Then if the equation
Ax = b has a solution over �n, it has a solution in which each coordinate is bounded by
OM,m,n(1).

Sketch proof. By removing rows of A if necessary we may assume that the rows of
A are linearly independent. One may then augment A to a non-singular n × n matrix Ã
by adding appropriate basis vectors ei. Augment b to a vector b̃ ∈ �n by simply adding
n − m zeros to b. Then the equation Ãx̃ = b̃ has a solution given by x̃ = Ã−1b̃. All
entries of x̃ are bounded by OM,m,n(1) by the construction of Ã−1, the key point here
being to note that | det Ã| is bounded below by �M,m,n(1) since it is a non-zero rational
number of complexity OM,m,n(1). �

We record the following special case.

COROLLARY A.2 (Linear lifting). Suppose that V � �n is a vector subspace given
by the vanishing of linear forms over � with coefficients of magnitude at most M. Let
π : �n → �m be projection onto the first m coordinates. Suppose that the entries of
x ∈ �m are bounded by M, and that π−1(x) ∩ V is nonempty. Then π−1(x) ∩ V contains
a vector whose entries are bounded by OM,m,n(1).

Proof. The condition that a vector y lies in π−1(x) ∩ V may be encoded as Ay = b,
where this linear system includes the equations y1 = x1, . . . , ym = xm and the equations
that y must satisfy in order to lie in V . By construction the entries of A are rational
numbers of complexity at most M and the entries of b are bounded. The corollary
therefore follows from the preceding lemma. �

Using a little Lie theory, this last result has the following further corollary.

COROLLARY A.3. Suppose that G is a connected, simply-connected nilpotent
Lie group and let π : G → G/[G, G] be the natural projection. Suppose that the
Lie algebra g = log G has a basis X = {X1, . . . , Xm, Xm+1, . . . , Xn}, where π (X ) :=
{π (X1), . . . , π (Xm)} is a basis for g/[g, g] = log(G/[G, G]) as a vector space over �.
Suppose that H is an M-rational connected subgroup relative to X , and that π (H)
contains an element x ∈ �m whose entries, written in the basis π (X ), are bounded by M.
Then there is an element x̃ ∈ H with π (x̃) = x whose entries are bounded by OM,n(1).

Proof. Let h = log H be the Lie algebra of H. By standard Lie theory (see, for
example, [3]) the exponential/logarithm maps from g to G and from h to H are
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diffeomorphisms. The result now follows from the preceding corollary upon taking
V = h.

This last corollary took place at the level of Lie groups. The actual result we
required in Section 7 concerned lifting from nilmanifolds. We state it now. �

PROPOSITION A.4 (Lifting from nilmanifolds). Let G/� be a nilmanifold with
Mal’cev basis X = {X1, . . . , Xm, Xm+1, . . . , Xn} and of complexity at most M, and
let H � G be a closed connected M-rational subgroup giving rise to a subnilmanifold
H�/�. Then there is a quantity εM > 0 with the following property. Suppose that
H[G, G]�/[G, G]�, identified with the torus �m/�m using the Mal’cev basis X , contains
an element x whose reduced coordinates (those nearest 0) are all at most εM. Let
ψ : G → G/[G, G]� be the natural projection onto the horizontal torus of G/�. Then
there is a lift x̃ ∈ H with coordinates OM(1) whose first m coordinates are precisely the
reduced coordinates of x.

Proof. The Mal’cev coordinates give a commutative diagram

G/[G, G] −−−−→ �m⏐⏐� ⏐⏐�
G/�[G, G] −−−−→ �m/�m.

(A.1)

The inclusion of H[G, G]/[G, G] into G/[G, G] identifies the former with a vector
subspace V � �m given by the vanishing of linear forms over � with coefficients
of magnitude OM(1), and then H[G, G]�/[G, G]� becomes identified with V�m/�m.
Note that this last object is not in general connected, being a union of a finite number
of cosets of a subtorus of �m/�m. We claim that there is an intermediate lift x′ of x
to H[G, G]/[G, G] whose coordinates in �m are the same as the reduced coordinates of
x in �m/�m. Once this claim is proved we may use the last corollary to lift x′ again,
under the map π : G → G/[G, G], thereby confirming the proposition.

The claim is a completely abelian statement concerning tori. To prove it, suppose
that the linear relations over � which define V as a subspace of �m are given by∑m

j=1 kij xj = 0, i = 1, . . . , m′. Suppose that εM < |kij |/10m (say) and that x, written as
(x1, . . . , xm) in reduced coordinates, lies in V�m/�m. By assumption we have |xj| � εM

for all j. Then
∑m

j=1 kij xj is an integer, yet it also has magnitude at most 1/10. It must
therefore vanish, which means that element x′ ∈ G/[G, G] whose coordinates in �m are
precisely those of x must lie in H[G, G]/[G, G], as claimed. �

Appendix B. Sárközy-type results. In this section we prove a lemma that was used
in the course of the so-called symmetry argument in Section 9. It is a familiar principle
in additive combinatorics that if one takes some fairly ‘dense’ set A in an abelian group
then the sumsets 2A = A + A, 3A = A + A + A become progressively more structured,
containing longer and longer progressions and ever larger Bohr sets. See, for example,
[2, 4, 9]. Sárközy [24] was the first to observe that in very high-order sumsets kA, one
may locate very large amounts of structure indeed. The following rather neat version
of his result follows directly from a theorem of Lev ([23, Theorem 2′]):

THEOREM B.1 (Lev). Suppose that A ⊆ [N] is a set of size αN. Then for any k �
2/α the set kA − kA := A + · · · + A − A − · · · − A contains an arithmetic progression
{0, d, 2d, . . . , (N − 1)d} where d � 1/α.
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In Section 9 we required a kind of ‘bilinear’ version of this. Suppose that A ⊆ [N]2

is a set. Let us write A ⊕ A for the set of all pairs (x, y1 ± y2) where both (x, y1) and
(x, y2) lie in A, together with all pairs (x1 ± x2, y) where both (x1, y) and (x2, y) lie
in A. The importance of this definition for us lies in the fact that if a bilinear form
is approximately annihilated by A then it is also also approximately annihiliated by
A ⊕ A.

PROPOSITION B.2 (Bilinear Sárközy result). Suppose that A ⊆ [N]2 is a set of size
αN2. Then for k � 128/α3 the k-fold iterated bilinear sumset A ⊕ A · · · ⊕ A contains a
product P × P′, where P = {0, d, 2d, . . . , (N − 1)d} and P′ = {0, d ′, 2d ′, . . . , (N − 1)d ′}
with 0 < d, d ′ � 4/α2.

Proof. For each x ∈ [N] write Ax := {y ∈ [N] : (x, y) ∈ A} for the vertical fibre of A
above x. By a simple averaging argument there are at least αN/2 values of x for which
|Ax| � αN/2. For each such x the vertical sumset kAx − kAx, where k � 4/α, contains
a progression P = {0, dx, 2dx, . . . , (N − 1)dx} with 0 < dx � 2/α. By the pigeonhole
principle we may pass to a further set {Ax : x ∈ X} of vertical fibres , |X | � α2N/4,
which all have the same value of dx, say d. By a further application of Lev’s theorem
the set lX − lX , l � 8/α2, contains a progression P′ = {0, d ′, 2d ′, . . . , (N − 1)d ′} with
0 < d ′ � 4/α2. �

REMARK . We believe that it ought to be possible to prove a structural result in
which only some bounded sum A ⊕ A ⊕ · · · ⊕ A is involved, where the number of
summands does not depend on α (and might, for example, be 16). Such a result would
deserve to be called a ‘bilinear Bogolyubov theorem’ by analogy with Bogolyubov’s
lemma [2]. One would not expect to find a structure as simple and rich as the product
P × P′; we expect the relevant structure to be, rather, a ‘transverse set’, the intersection
of sets of the form {(x, y) ∈ [N]2 : ‖θxy‖�/� � ε}.

Appendix C. Structure of approximate homomorphisms. The aim of this appendix
is to indicate a proof of Proposition 8.5, whose statement we recall now. As we said
before, this result is somehow ‘known’ without being explicitly given anywhere in
the literature. The forthcoming Barbados lectures of the first author will give a self-
contained treatment of results of this type.

PROPOSITION 8.5 (Approximate homomorphisms). Let δ, ε ∈ (0, 1) be parameters
and suppose that f1, f2, f3, f4 : S → �/� are functions defined on some subset S ⊆ [N]
such that there are at least δN3 quadruples (x1, x2, x3, x4) ∈ S4 with x1 + x2 = x3 + x4

and ‖f1(x1) + f2(x2) − f3(x3) − f4(x4)‖�/� � ε. Then there is a bracket linear phase ψ :
� → �/� of complexity Oδ(1) and a set S′ ⊆ S, |S′| �δ N, such that f1(x) = ψ(x) +
O(ε) for all x ∈ S′.

Proof. We begin with a ‘rounding’ trick to dispose of the error of ε in the range.
Take N := [1/ε] and for i = 1, 2, 3, 4 define f̃i : S → �/� by taking f̃i(x) = r/N, where
r, 0 � r < N, is the integer such that r/N is nearest to fi(x) in �/� (ties being broken
arbitrarily). Then of course f̃i(x) = fi(x) + O(ε) for all x ∈ S and so

f̃1(x1) + f̃2(x2) − f̃3(x3) − f̃4(x4) = O(ε)

for the set of additive quadruples (x1, x2, x3, x4) ∈ S4 in the hypothesis of the
proposition. The quantity ‖f̃1(x1) + f̃2(x2) − f̃3(x3) − f̃4(x4)‖�/� is quantised and
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restricted to integer multiples of 1/N, and there are only O(1) such numbers with
magnitude O(ε). It follows that there is some θ0 such that ‖f̃1(x1) + f̃2(x2) − f̃3(x3) −
f̃ ′
4(x4)‖�/� = 0 for cδN3 additive quadruples (x1, x2, x3, x4) ∈ S4, where f̃ ′

4(x) = f̃4(x) +
θ0.

Writing �i := {(x, f̃i(x)) : x ∈ S} ⊆ � × �/�, i = 1, 2, 3, and �′
4 := {(x, f̃ ′

4(x)) : x ∈
S} ⊆ �/� for the ‘graphs’ of f̃1, f̃2, f̃3 and f̃ ′

4, this means that the additive energy (cf. [25,
Chapter 2]) E(�1, �2, �3, �

′
4) is at least cδN3. By [25, Corollary 2.10] (or the Cauchy–

Schwarz–Gowers inequality) it follows that the additive energy E(�1, �1, �1, �1)
is at least cδCN3, or in other words that there are � cδCN3 additive quadruples
(x1, x2, x3, x4) ∈ S4 for which ‖f̃1(x1) + f̃1(x2) − f̃1(x3) − f̃1(x4)‖�/� = 0.

From this point on we give references to the paper [11] of the first two authors,
which is reasonably well-adapted to our purposes. Most of the ideas here go back to [8,
Chapter 7] and to earlier work of Ruzsa. Starting from the assumption that the graph
� has large additive energy, the key steps are the following9.

(i) [11, Proposition 5.4] Apply the Balog-Szemerédi-Gowers theorem followed
by the Plünnecke-Ruzsa inequalities to conclude that there is a set S0 ⊆ S,
|S0| � cδCN, such that the graph � := {(x, f̃1(x)) : x ∈ S0} satisfies an iterative
sumset estimate |k� − l�| �k,l N for all integers k, l � 1.

(ii) [11, Proposition 9.1] The function f̃1 correlates with a function which is
locally linear on a Bohr set. This means that there are is a Bohr set
B = B(�,ρ, N) with � = {θ1, . . . , θd} ⊆ �/�, d = Oδ(1) and ρ �δ 1 together
with a function φ : B → �/� satisfying φ(x + y) = φ(x) + φ(y) whenever
x, y, x + y ∈ B(�,ρ, N), as well as some x0 ∈ [N] and some θ0 ∈ �/� such that
f̃ (x + x0) = θ0 + φ(x) for �δ N values of x ∈ (S0 − x0) ∩ B. The appropriate
definitions here are given in full in [11] and are also recalled in Section 9 of the
present paper.

(iii) Apply some geometry of numbers to conclude that any such linear function φ

has the form φ(x) = α1{θ1x} + · · · + αd{θdx} + θx on some multidimensional
progression P ⊆ B with |P| �δ N. The proof of this is very similar to, but
easier than, that of [11, Proposition 10.8], where an analogous statement is
established for locally quadratic phase functions on Bohr sets.

It follows from all of this that we have

f̃1(x) = θ0 + α1{θ1(x − x0)} + · · · + αd{θd(x − x0)} + θ (x − x0)

for all x in some set S1 ⊆ S0, |S1| �δ N.
Now we have {θj(x − x0)} = {θjx} − {θjx0} + τj,x, where τj,x takes values in

{−1, 0, 1}. By the pigeonhole principle we may pass to a further subset S2 ⊆ S1 with
|S2| �δ N such that, for all x ∈ S2, each of the τj,x is independent of x.

Take S′ := S2. Then for x ∈ S′ we have

f̃1(x) = θ ′
0 + α1{θ1x} + · · · + αd{θdx} + θx,

a bracket linear form of complexity d = Oδ(1). Recalling that f̃1(x) = f1(x) + O(ε), the
result follows. �

9Strictly speaking, the tools we are applying here only apply to groups rather than to intervals such as [N].
However, this can be easily addressed by temporarily embedding [N] in, say, �/10N�; we omit the details.
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REMARK. The rounding trick we used to remove the ε errors was a slightly dirty one
but makes the argument quite short given known results. It would probably be possible,
and more natural in some moral sense, to run through the Balog-Szemerédi-Gowers
and Freiman arguments carrying an O(ε) error throughout.

Appendix D. Some diophantine results. This section recalls some well-known
results from Diophantine approximation which, in the context of this paper, may
be naturally viewed as distributional results for abelian (1-step) nilsequences. We will
use them repeatedly in the next section. Furthermore Lemma D.2 below was crucial
in Section 7, and Lemma D.1 was required at the end of Section 8.

LEMMA D.1. Let d � 1 be an integer, let ε ∈ (0, 1/2) be a parameter, and suppose
that ψ(n) = αdnd + · · · + α0 is a polynomial of degree d such that (ψ(n)(mod 1))n∈[N] is
not ε-equidistributed on �/�. Then for all i = d, d − 1, . . . , 1 there are coprime integers
ai, qi, qi � ε−Cd , such that

αi = ai

qi
+ O

(
ε−Cd

Ni

)
.

Proof. This is actually a special case of the Quantitative Leibman Dichotomy,
Theorem 4.1, although this is a somewhat misleading statement to make since it is also
a crucial ingredient in the proof of that result. It is proven using Weyl’s criterion for
equidistribution and Weyl’s inequality (see, for example, [27]), and indeed the statement
that the lead coefficient αd is close to rational is essentially equivalent to that inequality.
The other coefficients αd−1, αd−2 . . . may be shown to be almost rational iteratively;
the argument is given in detail in [14, Section 4]. �

Secondly we recall a quantitative version of Kronecker’s theorem, phrased in
language appropriate to Section 7. Once again this is a special case of the Quantitative
Leibman Dichotomy, and once again it is very well-known.

LEMMA D.2. Let d � 1 be an integer, let ε ∈ (0, 1/2) be a parameter, and let
α1, . . . , αd ∈ �/� be frequencies. Suppose that ((α1n, . . . , αdn)(mod 1))n∈[N] fails to be
ε-equidistributed in the torus (�/�)d . Then the set {α1, . . . , αd} satisfies an ε−Cd -linear
relation up to ε−Cd /N (that is, there are integers m1, . . . , md, not all zero, with |mi| � ε−Cd

for all i and ‖m1α1 + · · · + mdαd‖�/� � ε−Cd /N).

Proof. This is discussed in detail in [14, Section 3]. Here is a very rough sketch: if
the sequence is not ε-equidistributed, there is some Lipschitz function F : (�/�)d → �

with

|�n∈[N]F(α1n, . . . , αdn) −
∫

(�/�)d
F(θ )dθ | � ε‖F‖Lip.

Lipschitz functions are well-approximated in L∞ by their Fourier series; exanding F
into such a series, it follows that some exponential sum

�n∈[N]e( �m · �αn)

has modulus at least εCd , where �m = (m1, . . . , md) and |mi| � ε−Cd . The lemma now
follows with an application of the formula for the sum of a geometric series. �
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Appendix E. Almost nilsequences. The aim of this section is to establish Lemmas
3.5 and 3.6, which asserted that various objects – chiefly bracket polynomials – are 1-,
2- and 3-step almost nilsequences.

LEMMA 3.5. Suppose that α, β ∈ [0, 1] and that M > 1 is a complexity parameter.
The following are all examples of almost nilsequences of degree 1 and complexity OM(1):

(i) the set of 1-step Lipschitz nilsequences of complexity at most M;
(ii) the set of characteristic functions 1P, where P ⊆ [N] is a progression of length at

least N/M;
(iii) the set of functions of the form n �→ e(α{βn}), with α ∈ � and β ∈ �/�;
(iv) the set of functions of the form n �→ e({αn}{βn}), with α, β ∈ �/�;
(v) the set of functions of the form n �→ e(αn�βn�), where ‖β‖�/� � M/N.

Proof. (i) is trivial.
To prove (ii) we first note that 1P(n) can be expressed as the product of 1I (n)

and 1n≡a(mod q), where I ⊆ N/M is an interval and q � M. The second object is in
fact a 1-step nilsequence F(g(n)�) on �/�, the polynomial sequence g : � → � being
g(n) = n/q and the function F : �/� → [0, 1] being Lipschitz, equal to 1 at a/q and
supported within 1/10q (say) of a/q. The first object, 1I (n), is not quite a genuine 1-
step nilsequence. However let us observe that any function ψ : [N] → � with Lipschitz
constant O(1/N) is a genuine 1-step nilsequence; indeed we have ψ(n) = F(g(n)�)
on �/�, where g(n) = n/2N and F : �/� → � is defined by setting F(n/2N) := ψ(n)
for n ∈ [N] and by Lipschitz extension elsewhere. Now simply note that 1I may be
approximated arbitrarily closely, in L1[N], by functions ψ of this type. Specifically, we
may take a sequence of Lipschitz ‘tent’ functions ψ which equal 1 on I and are zero at
points distance more than εN from I . The claim now follows from Lemma 3.2.

To establish (iii) we first note that if α ≡ α′(mod 1) then α{βn} ≡ α′{βn} + (α −
α′)βn(mod 1), and so we may assume that 0 � α � 1. Let ε > 0 be arbitrary and define
F : �/� → � by F(x) = e(α{x}) and divide into two cases: either (βn(mod 1))n∈[N] is
ε/10-equidistributed on �/�, or it is not. In the former case we take a 100ε-Lipschitz
function F̃ which agrees with F outside of the set {x ∈ �/� : ‖x‖�/� � ε/10} and is
bounded by 1 elsewhere. By the assumed equidistribution we obviously have e(α{βn}) =
F(βn) = F̃(βn) for all except at most εN/2 values of n. The result is then immediate.

If, on the other hand, the sequence (βn(mod 1))n∈[N] fails to be ε/10-equidistributed
then by Lemma D.1 with d = 1 there is an integer q � ε−C and an a ∈ � such that
‖β − a

q‖�/� � ε−C/N. This in turn means that we may divide [N] into progressions
P1 ∪ · · · ∪ Pm, m � ε−C , on which n �→ e(α{βn}) varies by at most ε/100. Since (by
part (ii)) functions which are constant on progressions are almost 1-step nilsequences,
the result follows (using Lemma 3.2 as necessary).

To prove (iv) we use a trick. The function (x, y) �→ e(xy) on the square [0, 1]2

may be smoothly extended to a periodic function on [0, 2]2. By Fourier analysis (cf.
[12, Lemma A.9]) it may then be uniformly approximated to any desired accuracy
ε by a linear combination of frequencies e((kx + ly)/2), k, l ∈ �. Thus e({αn}{βn})
may be approximated uniformly by a linear combination of functions of the form
e(k{αn}/2)e(l{βn}/2). But such functions are almost 1-step nilsequences by (iii), and
the claim follows from Lemma 3.2.

Finally we turn to (v). The condition that ‖β‖�/� � M/N means that we may
divide [N] into subprogressions (in fact subintervals) P1 ∪ · · · ∪ Pm, m = OM(1), such
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that �βn� is equal to some constant cj for n ∈ Pj. The result then follows from (ii) and
Lemma 3.2. �

Now we turn to higher degree bracket polynomial phases.

LEMMA 3.6. Suppose that α, β, γ ∈ [0, 1]. Then the following are all examples of
almost nilsequences of degree s � 2 and complexity O(1):

(i) n �→ e(�αn�βn), of degree 2;
(ii) n �→ e(�αn�βn2), of degree 3;

(iii) n �→ e(�αn��βn�γ n), of degree 3.

Proof. The proofs of all three parts are somewhat similar and proceed along the
following lines: each object may be exhibited in a fairly obvious way as a nilsequence
F(g(n)�), where F is, however, only piecewise Lipschitz. If the sequence (g(n)�)n∈[N] is
highly equidistributed then it spends sufficient time away from singularities for one to
be able to approximate by F̃(g(n)�), where F̃ is genuinely Lipschitz. If not then there
must be an approximate rational relation between the horizontal frequencies of g(n)
(that is, the frequencies occurring in the projection to G/[G, G]). This may then be used
to approximate the object in question by objects of lower complexity.

To exhibit these arguments as part of a more general theory is not a particularly
easy matter and involves a more conceptual understanding of bracket identities such
as those in Lemma 5.5 and others such as (E.3) below. The required theory is implicit
in the work of Leibman [22] and will be introduced properly in our longer paper to
come.

In this paper we can proceed in an ad hoc and slightly calculational way, taking
advantage of one or two simplifications specific to the U4 (3-step) case. In a sense,
however, these calculations also serve as motivation for the longer paper to come. We
begin by recalling the constructions of Section 5 leading up to (5.2). Specialising to
the free 2-step nilpotent group on two generators (essentially the Heisenberg group)
we have

F[1,2](g(n)�) = e(�αn�βn)

and

F[1,2](g′(n)�) = e(�αn�βn2)

where F[1,2] : G/� → � is the basic coordinate function introduced in Definition 5.3
and g, g′ : � → G are polynomial sequences of degree 2 and 3 respectively given
in coordinates by g(n) = (αn,−βn, 0), g′(n) = (αn,−βn2, 0). Only the first two
coordinates (corresponding to the horizontal torus G/[G, G]) are really important.

The discontinuities of F[1,2] are very manageable: the key point, already exploited
in Section 7, is that for any ε > 0 there is are ε−C-Lipschitz functions F̃ : G/� → �

and � : G/� → [0, 1] such that
∫

G/�
� � ε and |F(x) − F̃(x)| � �(x) pointwise.

Fix ε > 0. Let us consider statement (i), for which we consider the sequence
(g(n)�)n∈[N]. If it is ε-equidistributed then, by the preceding, e({αn}βn) = F(g(n)�) and
F̃(g(n)�) are within 2ε in L1[N]. If this is not the case then, by the Quantitative Leibman
Dichotomy (Theorem 4.1) there must be some O(ε−C)-linear relation, up to O(ε−C/N),
between α and β. The rest of the argument in this case is essentially identical to that at
the very end of Section 7; we may find some γ such that α = q1γ + O(ε−C/N) and β =
q2γ + O(ε−C/N), where q1, q2 are integers with magnitude at most ε−C . Substituting
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into e(αn�βn�) and making repeated use of the bracket identities of Lemma 5.5 as well
as Lemma 3.5, one sees that in this case e(αn�βn�) lies within ε in L1[N] of a degree 2
nilsequence (of step 1) of complexity Oε(1). Thus in either case we have approximated
e(αn�βn�) within O(ε) by a degree 2 polynomial nilsequence of complexity Oε(1),
thereby completing the proof of (i).

The analysis of (ii) is similar but, obviously, involves consideration of the sequence
(g′(n)�)n∈[N] instead. If the sequence (g′(n)�)n∈[N] is ε-equidistributed then we are done,
as before. If not, the Quantitative Leibman Dichotomy implies that either α = a1

q1
+

O(ε−C/N) or else β = a2
q2

+ O(ε−C/N2). In the first case we may then partition [N]
into progressions P1 ∪ · · · ∪ Pm, m = Oε(1), on which �αn� is constant and then apply
Lemma 3.5 (ii) to approximate e(�αn�βn2) within O(ε) by a degree 2 polynomial
nilsequence of complexity Oε(1). In the second case we first apply the bracket identity
(5.3) to write

e(�αn�βn2) = e(αβn3)e(−αn[βn2])e(−{αn}{βn2}). (E.1)

The first term here is already a degree 3 polynomial nilsequence of complexity O(1).
In the second term we may partition [N] into progressions P1 ∪ · · · ∪ Pm, m = Oε(1),
on which [βn2] is constant and then apply Lemma 3.5 (ii) to approximate arbitrarily
closely by a degree 1, nilsequence. The third term, e(−{αn}{βn2}), may be handled using
the same trick as in the proof of Lemma 3.5 (iv). This reduces matters to handling
e(θ{θ ′n}) (already known to be a degree 1 almost nilsequence by Lemma 3.5 (iii)) and
e(θ{θ ′n2}). By an argument almost identical to that used in the proof of Lemma 3.5
(iii), only using Lemma D.1 with d = 2 instead, this second object may be shown to
be an degree 2 almost nilsequence. Using Lemma 3.2 to put everything together, we
obtain the claim.

We turn now to the proof of (iii), which is important in the sense that it is the only
place in our paper where a 3-step nilmanifold is actually constructed!

Specifically, we let g be the free 3-step Lie algebra generated by three generators
e1, e2, e3, or equivalently

G :={
et1

1 et2
2 et3

3 et21
21 et211

211et31
31 et311

311et32
32 et322

322et212
212et312

312et213
213et313

313et323
323 : ti, tij , tijk ∈ �, 1 � i, j, k,� 3

}
.

subject to the relations e−1
i e−1

j eiej = [ei, ej] = e[i,j] for 1 � j < i � 3, [[ei, ej], ek] = eijk ,
and the Jacobi relation [[ei, ej], ek][[ej, ek], ei][[ek, ei], ej] = 1. Inside G we take the
standard lattice

�:={
en1

1 en2
2 en3

3 en21
21 en211

211 en31
31 en311

311 en32
32 en322

322 en212
212 en312

312 en213
213 en313

313 en323
323 : ni, nij , nijk ∈ �, 1� i, j, k,� 3

}
.

Then G/� is the free 3-step nilmanifold on 3 generators. We take G• to be the lower
central series on G

We abbreviate et1
1 . . . et323

323 as (t1, . . . , t323). A computation yields the multiplication
law

(t1, . . . , t323) � (u1, . . . , u323) = (s1, . . . , s323)

where si = ti + ui for i = 1, 2, 3, sij = tij + uij + tiuj for 1 � j < i � 3, and s312 =
t312 + u312 + t32u1 + t31u2 + t3u1u2; we will ignore the other coordinates, as they will
not be needed in this calculation.
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Using this law, we see that for any real numbers t1, . . . , t323, one has

(t1, . . . , t323)� = (s1, . . . , s323)�

where

si := {ti} for i = 1, 2, 3;

sij := {tij − ti[tj]} for 1 � j < i � 3;

s312 := {t312 − t32[t1] − t31[t2] + t3[t1][t2]}, (E.2)

and with the other coordinates sijk ∈ [0, 1] being explicitly computable, but not relevant
for this discussion. Thus if we let

g(n) := eαn
1 eβn

2 eγ n
3

and let F : G/� → � be the 3-step basic coordinate function function

F((s1, . . . , s323)�) := e(s312)

for s1, . . . , s323 ∈ [0, 1], then one sees that e(�αn��βn�γ n) is equal to F(g(n)�) times
objects already known to be almost nilsequences by earlier parts.

This concludes the argument unless (g(n)�)n∈[N] spends too much time near
the singularities of F , which are at the points sj = 0 and sj = 1, j = 1, 2, 3. There
will be no problem unless10 one of the sequences (αn(mod 1))n∈[N], (βn(mod 1))n∈[N],
(γ n(mod 1))n∈[N] fails to be ε-equidistributed. If (αn(mod 1))n∈[N] is not ε-equidist-
ributed then, by the now-familiar application of Lemma D.1 with d = 1, we may
partition [N] as a union P1 ∪ · · · ∪ Pm of at most ε−C progressions such that �αn� is
constant on Pi. We may then conclude using part (i) and Lemma 3.5 (ii). An identical
argument works if (βn(mod 1))n∈[N] fails to be ε-equidistributed.

The final case is when (γ n(mod 1))n∈[N] fails to be ε-equidistributed. In this case
we note that

{αn}{βn}{γ n} = (αn − �αn�)(βn − �βn�)(γ n − �γ n�) (E.3)

so that

e(�αn��βn�γ n) =e({αn}{βn}{γ n})e(−�αn�βn�γ n�)

× e(−αn�βn��γ n�)e(αβn2�γ n�)e(αγ n2�βn�)e(βγ n2�αn�).

Each of the terms on the right except the first can be handled using part (ii) or by those
instances of part (iii) already established. To deal with the first term e({αn}{βn}{γ n})
one may proceed exactly as in Lemma 3.5(iv) to show that this is in fact an degree 1
almost nilsequence. Applying Lemma 3.2 to collect terms, we obtain the claim. �

The main business of the paper is now concluded. The remaining two appendices
were promised in the introduction but are not necssary for the proof of Theorem 1.5.

10This observation, which is stronger than saying that the abelianisation ((αn, βn, γ n)(mod 1))n∈[N] ⊆ (�/�)3

is not equidistributed, is somewhat specific to the three-step situation we are working with and represents
something of a simplification over the argument required in general.
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Appendix F. The strong inverse conjecture. We have shown, in Theorem 1.5, that a
1-bounded function f : [N] → � with ‖f ‖U4 � δ correlates with a degree 3 polynomial
nilsequence F(g(n)�). As we remarked after the statement of Conjecture 1.3, this
does not quite establish the result used in (for example) [13], where correlation with a
nilsequence F(gnx�) was used. In this section we shall refer to linear nilsequences to
distinguish objects of this last type from more general polynomial nilsequences.

In this section we indicate, very briefly, how our arguments may be modified to
obtain this apparently stronger statement. In the longer paper to come we will provide
a quite general proof that Conjecture 1.3 implies this strong variant. Let us recall once
more, however, our view that this is the ‘wrong’ perspective and that [13] works, with
rather minimal changes, in the context of polynomial nilsequences.

We need only show that large U4-norm entails correlation with almost linear
nilsequences, defined in exact analogy with Definition 3.1. We already have correlation
with almost polynomial sequences, so it will suffice to show that the almost polynomial
sequences used in the paper are also almost linear sequences of the same degree.

Clearly, any degree 1 almost nilsequence is already an almost linear 1-step
nilsequence, and an inspection of the previous appendix shows that e(�αn�βn) is
an almost linear 2-step nilsequence, modulo a quadratic phase e(γ n2), and similarly
e(�αn��βn�γ n) is an almost linear 3-step nilsequence modulo phases such as e(γ n3)
and e(�γ n�δn2). As Lemma 3.2 is clearly also valid for almost linear nilsequences, one
only needs to verify three remaining claims, for any real numbers α, β:
� e(αn2) is an almost linear 2-step nilsequence;
� e(αn3) is an almost linear 3-step nilsequence; and
� e(�αn�βn2) is an almost linear 3-step nilsequence.

We look first at e(αn2) and consider once again the 2-step nilpotent group on
2 generators (Heisenberg group); looking all the way back to (5.2) and taking g =
(2α, 1, 0) one may compute that F[1,2](gn�) = e(αn2 + θn) for some θ ∈ �/�. Now
F[1,2](t1, t2, t12) is discontinuous when t12 = 0 or 1. If we wish to approximate e(αn2 +
θn) within ε (in L1[N]) by a Lipschitz linear nilsequence, we must show (for example)
that there are no more than 10εN values of n ∈ [N] for which αn2 + θn(mod 1) is within
ε of 0. But if this is not the case then, by Lemma D.1, we have α = a/q + O(ε−C/N2),
at which point we can split [N] into ε−C progressions on which e(αn2 + θn) is within
O(ε) of a linear phase. One may then proceed using Lemma 3.5.

Now we turn to the 3-step objects e(αn3) and e(�αn�βn2), which require some
slightly more careful calculations on the free 3-step nilmanifold are required. With
the notation for the free 3-step nilpotent Lie group as in the preceding section, let
g = eα

1 eβ

2 eγ

3 . Then one can check that

gn = enα
1 enβ

2 enγ

3 e(n
2)αβ

21 e(n
2)αγ

31 e(n
2)βγ

32 · · · e
αβγ (2(n

3)+(n
2))

312 · · ·

and hence one may compute (cf. (E.2))

F312(gn�) = e
(
αβγ

(
2
(n

3

) + (n
2

)) − (n
2

)
βγ �αn� − (n

2

)
αγ �βn� + nγ [αn]�βn�) (F.1)

Taking β = γ = 1 and replacing α by 6α gives F312(gn�) = e(αn3 + q(n)) for some
quadratic q. The discontinuities of F312 may be handled as for F[1,2] above, and so we
see that e(αn3 + q(n)) is an almost 3-step linear nilsequence for some quadratic q. Since
we can already obtain pure quadratic and linear phases as almost linear nilsequences
of step less than 3, it follows that e(αn3) itself is an almost 3-step linear nilsequence.
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Next, we take β = 1 and replace γ by −2γ . Taking into account objects already
known to be almost linear nilsequences, we have now obtained e(γ n2[nα]) as a 3-step
almost linear nilsequence. Applying (E.1), we see that to obtain the desired object
e([nα]γ n2) it suffices to examine e({αn}{γ n2}). By the trick used in the proof of Lemma
3.5 (iv), it suffices in turn to handle e(θ{θ ′n}) and e(θ{θ ′n2}). The first of these is an
almost 1-step (linear) nilsequence by Lemma 3.5 (iii). To handle the second, proceed
in the same way as in the proof of Lemma 3.5 (iii) but in the obvious places substitute
the fact (established above of course) that pure quadratic phases are 2-step linear
nilsequences, together with the case d = 2 of Lemma D.1.

Appendix G. Necessity of the inverse conjectures. In this appendix we sketch a
rather short proof of Proposition 1.4, which asserted that functions which correlate with
a degree s polynomial nilsequence must have large Us+1-norm. Since linear nilsequences
are merely special cases of polynomial ones, this kind of argument could substitute in,
for example, [13, Sec. 10], where a rather more complicated approach was taken.

PROPOSITION 1.4. Suppose that f : [N] → � is a 1-bounded function, that
(F(g(n)�))n∈� is a polynomial nilsequence of degree s and complexity Oδ(1), and that

|�n∈[N] f (n)F(g(n)�)| � δ.

Then ‖f ‖Us+1 �δ 1.

Sketch proof. The argument is only a sketch in that we do not address such issues
as the complexity of the nilsequences involved. We leave this as a (not particularly
interesting) exercise to the reader, most of the details of which may be found in [14]
where these complexity issues are discussed in detail. We proceed by induction on s,
the claim being obvious when s = 0. Let f : [N] → � be a 1-bounded function, and
let g : � → G be a polynomial sequence of degree s adapted to the filtration G•. Let
F(g(n)�) be a polynomial nilsequence of complexity Oδ(1). Assume that

|�n∈[N] f (n)F(g(n)�)| �δ 1. (G.1)

By decompositing F into vertical characters as in [14, Lemma 3.7], we may assume that
F has a vertical frequency: that is, there is some non-trivial character ξ : G(s)/G(s) ∩ �

such that

F(gsx) = e(ξ (gs))F(x)

for all gs ∈ G(s) and x ∈ G/�.
By taking the modulus squared of (G.1) and making the substitution n′ = n + h

we see that

�n∈[N]�hf (n)F(g(n + h)�)F(g(n)�) �δ 1

for �δ N values of h ∈ [N].
However for each fixed h the ‘derivative’ n �→ F(g(n + h)�)F(g(n)�) of the degree

s-step nilsequence F(g(n)�) is a Lipschitz polynomial nilsequence of degree (s − 1), the
underlying nilmanifold being

(G�) = (G ×G(2) G)/G�
(s),
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where G ×G(2) G = {(g, h) : g, h ∈ G, gh−1 ∈ G(2)}, and G�
s = {(gs, gs) : gs ∈ G(s)}. For

details of this theory see Section 7 of [14].
We now invoke our induction hypothesis to conclude that

‖�hf ‖Us �δ 1

for �δ N values of h.
Noting that

‖f ‖2s+1

Us+1
= �h∈�/N ′�‖�hf ‖2s

Us
,

we are done. �
It is perhaps worth reiterating the main point of the above argument, since it

explains the importance of nilsequences in the whole theory: the derivative of a degree
s polynomial nilsequence with a vertical character is a degree (s − 1) polynomial
nilsequence.
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