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LEVEL 0 MONOMIAL CRYSTALS
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Dedicated to Professor George Lusztig on his 60th birthday

Abstract. We study the monomial crystal defined by the second author.
We show that each component of the monomial crystal can be embedded into
a crystal of an extremal weight module introduced by Kashiwara. And we
determine all monomials appearing in the components corresponding to all
level 0 fundamental representations of quantum affine algebras except for some
nodes of EéQ), Eél), Eél). Thus we obtain explicit descriptions of the crystals
in these examples. We also give those for the corresponding finite dimensional
representations. For classical types, we give them in terms of tableaux. For
exceptional types, we list up all monomials.

Introduction

In this paper we study the monomial crystal M defined by the second
author [32]. We show that each component of M can be embedded into a
crystal B(A) of an extremal weight module V' (\) introduced by Kashiwara
[18] (Theorem 2.2). This result was originally conjectured by Kashiwara,
when the second author discussed the result of [32] with him. We prove
this result by showing that the monomial crystal is equivalent to the com-
binatorial crystal appeared in Kashiwara’s embedding theorem [17]. (See
Proposition 2.6.) We then study the case of extremal weight modules of
level 0. We realize the crystal B(wy) of a level 0 fundamental representation
via the monomial crystal (Theorem 3.2). And we determine all monomials
appearing in the corresponding component of the monomial crystal for all
fundamental representations except for some fundamental representations
for EéQ), Eél), Eél). Thus we obtain explicit descriptions of the crystals in
these examples. For classical types, we give them in terms of tableaux. For
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exceptional types, we list up all monomials. Most of them have been calcu-
lated already in the literature ([14], [38], [24], [12], [36], [27], [37], [3]), but
we have a few new examples in exceptional types. And our method works
for arbitrary fundamental representations in principle, though we certainly
need to use a computer with huge memory for the triple node of Eél).

One of motivations of this work comes from the study of g-characters
of finite dimensional modules of the quantum affine algebra, introduced by
Knight [25], Frenkel-Reshetikhin [7], and have been intensively studied for
example in [6], [26], [28], [29], [31], [32], [8], [9], [10], [5] and the references
therein. In the combinatorial algorithm to compute g-characters for arbi-
trary irreducible representations [29], [31], the first step was to compute
(t-analogs of) g-characters for level 0 fundamental representations. There-
fore it would be nice if we could give their explicit forms. They can be
calculated by a computer, but we hope to see a structure by examining
their possible relations to the crystal bases.

In simply-laced type examples given in this paper, we construct explicit
bijections between monomials in g-characters, counted with multiplicities
and the crystal bases. (The existences of abstract bijections are trivial
as both have the same cardinality as dimensions of modules.) In fact,
the computation of the crystal base has been done with help of explicit
knowledge of g-characters. This is opposite to our motivation, and we need
a further study to achieve it.

Acknowledgments. The authors would like to thank the anonymous
referee for comments. A part of this paper was written when the first author
visited the RIMS (Kyoto) in the summer of 2004. He would like to thank
the RIMS for his hospitality and the excellent work conditions.

§1. Background

In this section we give backgrounds on quantized enveloping algebras,
extremal weight modules.

1.1. Cartan matrix

Let C' = (Cjj)i<ij<n be a generalized Cartan matriz, ie., C;; € Z,
Ciy =2,C;5 <0fori# jand C;; = 0 if and only if Cj; = 0. We set
I ={1,...,n} and | = rank(C). In the following we suppose that C is
symmetrizable, that is to say that there is a matrix D = diag(r1,...,r)
(r; € N*) such that B = DC' is symmetric.
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We consider a realization (b, I1,I1V) of C (see [13]): b is a 2n — [ dimen-

sional Q-vector space, Il = {a1,...,a,} C h* (set of the simple roots) and
IV = {of,..., )} C b (set of simple coroots) are set so that aj(e)) = C; ;
for 1 <i,j <n. Let Ay,..., A, € h* (resp. the AY,...,A) € b) be the fun-

damental weights (resp. coweights): Ai(a;/) = az(A ) =0

Let P ={\ € b* | AM(oy) € Z for all i € I} be the Welght lattice and
Pt={\eP|Aa))>0 for all + € I} the semigroup of dominant weights.
Let Q@ = @,c; Zoy C P (the root lattice) and Q1 = >, Na; C Q. For
A\ i€ b write A\ > pif A\ —pe Q.

1.2. Quantized enveloping algebras

In the following we suppose that ¢ € C* is not a root of unity.

Let q¢; = ¢"i. For l € Z, r > 0, m > m’ > 0 we introduce the following
polynomials in Z[gF]:

DEFINITION 1.1. The quantized enveloping algebra U,(g) is the C-
algebra with generators kj, (h € b), & (i € I) and relations

%

knkn = kpen, ko=1, khxik b= qiaj( ) ;I:’

kr-a\-/ - k—’r-a\/
[z, 2] = 6 j———F—,
T g gt
1- C” -
v |17 59] sty =0 (ori £)
r=0 qi

This algebra was introduced independently by Drinfeld and Jimbo.

We use the notation k:zi = kiray and for I > 0 we set (xii)(l) =
(@) /g -

For J C I we denote by g; the Kac-Moody algebra of Cartan matrix
(Cij)ije-

Let U,(h) the commutative subalgebra of U,(g) generated by the kj,
(h€h).
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For V' a Uy(h)-module and w € P we denote by V,, the weight space of
weight w defined by

V,={veV|kyw=¢Myforall h €p}.

\
In particular for v € V,, we have kjv = q;u(ai Jv and for i € I we have
27V C Vita,-

We say that V' is Uy, (h)-diagonalizable if V = @ . p Vo

1.3. Extremal weight modules

In this section we recall the definition of extremal weight modules given
by Kashiwara [18], [19].

DEFINITION 1.2. A U,(g)-module V is said to be integrable if V is
U,(h)-diagonalizable, the weight subspace V,, C V is finite dimensional for
all w € P, and for u € P, i € I there is R > 0 such that V,4,,, = {0} for
r > R.

DEFINITION 1.3. For V' an integrable U,(g)-module and A € P, a vec-
tor v € V), is called extremal of weight A if there are vectors {vy, fwew such
that vlg = v and

zFv, =0 if £w(\)(e)) >0 and (:U?F)i(wu)(o‘iv))vw = Vg, (w)-

In the same way one can define the notion of extremal elements in a
crystal. Note that if v is extremal of weight A, then for w € W, v, is
extremal of weight w(\).

DEFINITION 1.4. For A\ € P, the extremal weight module V() of ex-
tremal weight A is the U,(g)-module generated by a vector vy with the
defining relations that vy is extremal of weight .

EXAMPLE. If A is dominant, V(\) is the simple highest weight module
of highest weight .

THEOREM 1.5. ([18]) For X € P, the module V () is integrable and has
a crystal basis B(\).

Note that uy € B(A) (which represents vy ) is extremal of weight A in
the crystal B(\).
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§2. Monomial crystal

In this section we recall the definition of the monomial crystal and
show that each connected component can be embedded in the crystal of an
extremal weight module (Theorem 2.2).

In this paper we suppose that C' is without odd cycles, i.e., there is a
function s: I — {0,1} (i — s;) such that C;; < —1 implies s; + s; = 1.
This situation includes all Cartan matrices of finite type and all Cartan
matrices of affine type except AS) (1>1).

2.1. Construction
Consider formal variables Yzil, e (te€l,l€Z, € P)andlet A be the
Yui,l(m)

set of monomials of the form m = e*(™) [icriez Yiy where u; ;(m) € Z,

w(m) € P such that

(2.1) > wii(m) = wim)(ay).
leZ
For m € A and i € I we set u;(m) = Y oz uii(m).
For example, YﬁeiAi €Aand A;; =e*Y; ;1Y 41 [1
We call [ the grade of the variable Y; ;.

Vil €A

Remark 2.1. (1) If we fix a monomial m and consider only monomi-
als m’ which are products of m with various A;j’s (as we shall do in this
paper), w(m') is uniquely determined by w(m) and w;;(m’). Indeed let z
be a formal variable and consider the modified quantized Cartan matrix
C(z) = (C;(2))i,; defined by C;j;(2) = [2];, and for i # j, C;;(z) =
Cij. For P(z) € Z[z%], let P(2) = Y, Pz, C(z) is invertible be-
cause (det(C(q)))n = 1 # 0. Let C(z) = (Ci;(2))i; be its inverse. If
m'm~1 = ew(m’)-wim) [Licricz Azil’l (with v;; € Z) we have v =3 ;) ey
wjp(m'm=1)(2'C; j(2))r. So we can safely omit (™).

(2) The group A appears, in an equivalent form, in [31] for g-characters
at roots of unity, and also in [9] to study the g-characters of integrable
representations of general quantum affinizations. The additional term e*
(denoted by k) there) appears by looking at a part of a “universal R-
matrix”.

A monomial m is said to be J-dominant if for all j € J, [ € Z we have
uj(m) > 0. An I-dominant monomials is said to be dominant. Let B is
the set of J-dominant monomials, B is the set of dominant monomials.

https://doi.org/10.1017/50027763000009326 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000009326

90 D. HERNANDEZ AND H. NAKAJIMA
Consider the subgroup M C A defined by
M={meA|u(m)=0if | =s;+1 mod 2}.

(For the shortness of notations, we have replaced the condition [ = s; mod 2
of [32] by | = s; + 1 mod 2.)

Let us define wt: A — P and €;, i, pi,qi: A — Z U {oo} U{—o0} for
ielby (meA)

wt(m) = w(m),
pin(m) = ui(m),  ¢i(m)=max{p;(m)|LeZ}>0,
I<L
eip(m) == uy(m), ei(m)=max{e;r(m)|LeZ}>0,

pi(m) = max{L € Z | g; ,(m) = g;(m)}
= max{L ez ‘ Zuzl(m) = @i(m)}v

<L
qi(m) = min{L € Z | p; (m) = pi(m)}

= min{L €z ‘ - Zuu(m) = sz(m)}

I>L

Then we define &, f;: A — AU {0} for i € I by

- "

mALpi(m),l if gilm) > 0,

r3 0 if Pi (m) - 07
e if s (m) > 0
haim)+1 M P :

By [32], [21] (M, wt,&;, @i, &, fi) is a crystal (called the monomial crystal).

2.2. Connected components of M and monomial realization
of highest weight crystals
For m € M we denote by M(m) the subcrystal of M generated by m.
By [32], [21] the crystal M(m) is isomorphic to the crystal B(wt(m))
of the highest weight module of highest weight wt(m), if m is dominant.
The aim of Sections 2.3 and 3 is to “generalize” this result for general

m e M.
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2.3. Embedding of M(m) into B()\)
In this section we prove the following:

THEOREM 2.2. For m € M, the crystal M(m) is isomorphic to a
connected component of the crystal B(\) of an extremal weight module for
some X € P.

Note that it is proved in [4, Theorem 4.15] that for quantum affine
algebras, all the connected components of B(\) are isomorphic to each other
modulo shift of weight by §.

The proof is a slight modification of Kashiwara’s proof of the above
mentioned result.

DEFINITION 2.3. A shift on I is the data (<, ) of a total ordering <
on I and of a map ¢: I — Z such that

(1) (i) = ¢(j) for i <7,
(2) if Cij < —1 and i < j, then ¢(i) = ¢(j) + 1,
(3) forie I, s; = (i) mod 2.

For p: I — Z, one says that a total ordering < on [ is adapted to ¢ if
(<, ) is a shift.

LEMMA 2.4. Let p: I — 7 such that (i) — ¢(j) € {£1} if C;; < —1
and s; = (i) mod 2 for i € I. Then there is at least one total ordering on
I adapted to .

Proof. For each r € Z choose a total ordering on {j € I | ¢(j) = r},
and for each (i,4) € I? such that ¢(i) < p(j), put i > j. U

Note that in general there is at least one shift. Put (i) = s;, and
Lemma 2.4 gives a shift (¢, <).

In the following we fix a shift (<, ) in I. We put a numbering I =
{i1,...,in} so that i} <ig < -+ < ip.

For i € I, let B; be the crystal B; = {b;(I) | | € Z} with wt(b;(1)) = lo
and (j # i)

ei(bi(1)) = =1, @i(bi(1)) =1, &(b:(1) =b:i(1+1), fi(b:(1)) =bi(l—1),
ei(bi(1)) = @;(bi(l)) = —o0, &;(bi(1)) = f;(bi(l)) = 0.
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Let B(oo) be the crystal of U, (g) and let Ty = {tr} (A € P) be the
crystal defined by wt(ty) = A, &;(t)) = @i(ty) = —oc and &(ty) = fi(ty) =
0.

Let C be the crystal consisting of a single element ¢ with wt(c) = 0,

ei(c) = ¢i(c) =0, é(c) = fi(c) =0.
For m € A we define the crystal K, = C®- - - Ko K1 QKoQT, QK _1®
K o®---®C where forl € Z, K; = Bil ®BZQ ®®Bln®T)\(l) and )\(l) =

2icr MDA =3 Wi 20+ (i) (m)A; and o = wt(m) — Zie[,leZ ui (M)A
We also denote (A(1), ;") by Ai(1).

DEFINITION 2.5. Let us define ®7,: M(m) — K,, as follows: for m’ €
M(m) with

I wt(m! i (k) zi(k)
m' = v H Y okt H Al k()1
iel ke iel ke,
we define ®7,(m’) = b by

b=c® - - Rby®b; Ry Rta ®b_1Rb_9® -+ Rc,
where b; = b;, (zi1 (l)) Q- Qb (Zzn (l)) ®t>\(l)'

The map @5, is well-defined as the z;(k) depend only of m’ (see Re-
mark 2.1).

PROPOSITION 2.6. @}, is a strict embedding of the crystal.

When m is dominant, this result appeared in [30, 8.5] in an equivalent
form. More precisely, we parametrize Irr 50 there by monomials as explained
in [32, §3]. Then the above is exactly [30, 8.5].

Although the proof is exactly the same, we reproduce it here in our
current notation for the sake of the reader.

Proof. The injectivity is obvious. Let m’ € M(m) and b = ®J,(m/).
First we have

wtb) =a+ D> ug(mAi+ >zl

icl,leZ icl,lcZ

= wt(m) + wt(m'm™) = wt(m/).

Let us prove the following formulas (i € I, L € Z):
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(2.2) bL 1 Zwt bl Z Ui,l(m/)a

I>L 1>2L+(i)
(2.3) pilb) + Y _wt(b) () = D ugg(m).
I<L I<2L+¢(i)

The equation (2.2) can be checked as

— Z {Zz + ZZ l — 1 — Z CZ'J'ZJ‘(Z) — Z CZ'J'Z]'(Z) — Z)\Z(Z)

I>L I>L,j>i I>L—1,j<i I>L
=—z5(L-1)-> Ciz(L—1)+ Z(- > Cijz(l) - Ai(U)
i<t I>L Jjel
= 51 bL 1 Zwt bl
I>L

The equation (2.3) can be checked exactly in the same way.
The equation (2.2) implies

Ez(b) Iilgx{él bL 1 Zwt bl }

I>L

(s 30w} =eim)

1>2L4(4)

Similarly the equation (2.3) implies ¢;(b) = ¢;(m’).

Let us prove the compatibility with the operators é;, fz

If g;,(m’) = &;(b) = 0, then both ¢&;(m’) and é;(b) are 0. Suppose
otherwise. Then ¢&;(b) is given by replacing z;(L;) by z(L;) + 1 where
Li = max{L € Z | g;(br) — Y s, wt(b1)(e)) = €;(b)}. Therefore &;(b) =
(M A; a1, 14()+1)- But it follows from the equation (2.2) that 2L;4¢(i)+
2 = pi(m'), and so &;(b) = ®(m'A; p,(mry—1) = Pi(é;(m’)). Similarly fi is
compatible. 0

Let B=B;, ®B;,®---®B;,, and let P (resp. P~) be the subcrystal of
CR--- BB (resp. of BOB® ---®C) of elements of the form ¢® -+ ®
b(0)Rb(0) @by @bj_1 @+ - @by (resp. b1 @+ @bj_1 @y b(0)Rb(0)®- - @)
where by € B (1 <1’ <1) and b(0) =b;,(0) ® - -- ® b;, (0).
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Proof of Theorem 2.2. By the crystal isomorphism T\®B; ~ B; @7y, (»)
given by ty @ bi(1) — bi(l + Mo )) @ tg,(n), our crystal Ky, is isomorphic to
P Ty P~ for some N € P.

It is known that P is isomorphic to | |;, ;)= B(00) ® Ty(p)- (See [20,
7.2.4] for example.) Similarly P~ is |—|fi(b):0 Tyt(p) ® B(—00). Therefore
P ® Ty ® P~ is a disjoint union of various B(oco) ® T\ ® B(—o0). The
crystal of the modified enveloping algebra Z;{q(g) is equal to | |cp B(oo) ®
T\ ® B(—o0) and its connected components can be embedded into some
B(A) ([18, Corollary 9.3.4]). Therefore our assertion follows. U

83. Monomial realization of the level 0 extremal fundamental
weight crystals

In this section we study in more details extremal weight crystals (Propo-
sition 3.1) for quantum affine algebras. We prove that the crystal of a level
0 fundamental extremal weight module can be realized in the monomial
crystal (Theorem 3.2).

We omit ¢*(™) hereafter by Remark 2.1(1).

3.1. Extremal monomials

When m is dominant, the component M(m) is isomorphic to B(\)
where A is the weight of m. But the situation is different in general, as not
all m € M are extremal, even if the monomial is dominant or antidominant
for each ¢ € I. For example in the case Dil), m = Y2,0Y0T32 is not extremal.
Indeed suppose that m is extremal. Then we have

My = fa(m) = Y53 Y01 Yy £ V11 Ya1Ya1.

But (wt(ms,))(o) = —1 < 0 and fo(ms,) = Y55 Y1,1Y11Y31 # 0, and so
mg, 1S not extremal, we have a contradiction.
However we have the following consequence of Theorem 2.2.

PROPOSITION 3.1. Let (p,<) be a shift. Then for (l1,...,l,) € Z",
the monomial m = [[;c; Yz‘l,fp(z‘) € M is extremal and M(m) is isomorphic
to the connected component of B(wt(m)) generated by Uy(m)-

Proof. Consider the morphism ®,. It follows from Theorem 2.2 that
it gives an embedding M(m) C B(\) where A € P. But for this particular
m we have ®,(m) = c®--- @ b(0) ® b(0) @ tyi(m) @ b(0) ®b(0) ® --- @ ¢ in
Proposition 2.6. So m is sent t0 Uyy(m) € B(wt(m)) which is extremal.  []
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3.2. Monomial realization of the level 0 extremal fundamental
weight crystals

We suppose that C is of affine type. Let us number the set of simple

roots as I = {0,1,...,n}. We choose the extra vertices 0 so that ag = aj =

1 (except Agi), ap = 2, aj = 1), and the index number of the vertices are

the notations of [13] (for untwisted cases X 1) we use the enumeration of

finite type of [13] for the sub-Dynkin diagram of type X). This choice is

unique up to an automorphism of the Dynkin diagram. We set Iy = I'\ {0}.
2)

We also consider a new type A(QnT, which is the same as A(;l), but we
take the opposite numbering convention from [13], i.e., the vertex i in A(QZ)T

is the the vertex n —17 in A(Qi)

n in Agi), and we have ag = 1, aj = 2. We need to distinguish these as we
consider the restriction of representations to Uy(gr,). Note also that this
convention was taken in [4].

Let Q¥ = 3,c; Za;'. There is a unique ¢ € >, .; Na such that {h €
Q" | ai(h) =0 for all i € I} = Zce. We write ¢ = >,y a ;. In the same
way one can define § = 3., a;a; € Q. The a; are given in [13], the a, are
the a; of the transposed Cartan matrix.

We have {w € P | w(af)=0forallie I} = QSN P. Put Py =
P/(QiN P).

Let PO ={\ € P | A(c) = 0} be the set of level 0 weights.

Let U,(g)" be the subalgebra of U (g) generated by xli and kyp (h €
> Qc;). This has P, as a weight lattice. We have the corresponding
definition of the crystal. When we want to distinguish crystals of /,(g) and
Uy(g)', we call the former a P-crystal, and the latter a Pg-crystal.

For i € Iy, let us define a level 0 fundamental weight w; by A; —a) Ay €

PY when g # Agi” and

. In particular, the extra vertex 0 is the vertex

wi:Ai—Ao (z#n), wnZQAn—AO

when g = A%)T. The corresponding extremal weight module V(w;) are
called a level 0 fundamental extremal weight module. Those representations
and their crystal have been intensively studied, see [1], [2], [4], [19], [22],
[34], [35].

We identify these with (usual) fundamental weights of the finite dimen-
sional Lie algebra gj, when (g,7) # (Agi”,n). For (g,i) = (Agzl)T,n), we
identify w, with the twice of the n*® fundamental weight. We denote by
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Vi, (wi) the corresponding irreducible Uy(g,)-module, and by By, (w;) its
crystal base, for either case.
As B(w;) is connected (see [19]), it follows from Proposition 3.1 that

THEOREM 3.2. Let (<, ) be a shift on I. For i € IO, let M be the

monomial given by Y; .Y, :(v() for g # AQnT, M =Y, ,»Y, ) for g =

Aéi”, i #n, and M = YnQ o(n) 0¢(0 for g = A%)T, i = n. Then M is
extremal in M and M(M) ~ B(w;).

This result establishes a monomial realization of the level 0 extremal
fundamental weight crystals B(cw;). We will give some examples in Sec-
tion 5.

Not all monomials of weight w; give a crystal isomorphic to B(w;)
(see the example in Section 3.1). However there are some other monomials
which generate the same crystal as we will see in the next subsection.

3.3. Other monomial realizations
For i € I, let #; > 0 be the distance between ¢ and 0, that is to say the

minimum p > 0 such that there exists a sequence {0 = jo, j1,...,Jp =i} of

distinct elements of I satisfying Cj, ;. , < —1.

Suppose g # A(Qiﬁ for brevity.

COROLLARY 3.3. Leti € Iy and l,l' € Z such that 1 — 1" € {—6;,—6; +
,0;} and I' = so mod 2. We have M(Y;, Ol, ) ~ B(w;).

Proof. Tt follows from Theorem 3.2 that it suffices to show that there
is a shift (<, ) such that ¢(i) = and p(0) = I’. Suppose that I —1' <0
(the proof is the same for [ — 1" > 0) and let a = (6; + 1 —I')/2. Define
o: I —Zby p(j)=U+6;if 0; <aand p(j) =U'+2a—0; if 6; > a. We
can conclude with Lemma 2.4. [

For example in all cases we have the following:

(1) if 6; € 2Z then M( 10Y00 ):B(wi),
(2) if 6; € 2+ 1 then M(Yi oYy, ) = B(w,).

PROPOSITION 3.4. Suppose that C is of type Dq(zl) (n>4) and let i €
{2,...,n—2}. Then M =Y; OYO_zl 1Y()z+1 is extremal and M(M) ~ B(w;).
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Proof. First suppose that ¢ <n — 3. Consider
m=(for - fic1fi)(M) = Y0T¢1+1Y1,i—1YQT¢1K+1,1-

Let us define ¢: I — Z by p(0) =i+1,¢(2) =1i,0(1) = ¢(3) =i—1,9(4) =
i—2,...,0n—2)=i—n+4,0n) =pn-—-1) =i—n+5 Lemma 2.4
gives a shift (¢, <). So it follows from Proposition 3.1 that m is extremal,

and so M = myg,s, ,...s, 15 extremal.
If i =n — 2, in the same way we consider

m=(fo-- i) (M) = Y50\ Yin-3Ys, oVn11Yn1.
O

In the following we will see various examples of realizations of the level
0 extremal fundamental weight crystals.

84. Finite dimensional crystals — start

Kashiwara has shown that there is a U,(g)-automorphism z, of the
level 0 fundamental extremal weight module V(wy) preserving the global
crystal base, and the induced P-crystal automorphism, denoted also by
zg, on the crystal B(wy) [19]. The weight of z; in the P-crystal is dgd

where dy = max(1, a) /ay) except d; = 1 for (g,¢) = (Agn),n) The quotient
B(wy)/z is the crystal of the finite dimensional irreducible U,(g)’-module
W(we) = V(we)/(ze — 1)V (wp). We denote it by B(W(wy)). We call

W (wyg) the level 0 fundamental representation.
After Theorem 3.2 it is natural to ask the followings.

(1) Give an explicit description of monomials appearing in M (M).

(2) Give an explicit description of the automorphism z.

Note that the automorphism z, is defined as a composite of operators
€;, f‘i’s. But we require more explicit description.

We do not answer these questions in general, but we give examples in
the next sections. These are motivated by known descriptions of level 0
crystals in terms of tableaux [14], [24], [37] in part, but closer to those of
g-characters [32].

Before giving examples, we define P-crystal automorphisms on the
monomial crystal M. For p € Z, o € Q6 N P let 73, , denote the map

Top.a: M — M defined by 79, o(e* [] YZQZ”) = M) Y:Z_’;Qp This clearly
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preserves the compatibility condition (2.1) and is a Pg-crystal automor-
phism. In the following, we omit « from the notation and denote simply by
T2p-

Suppose that M (M) is a monomial crystal isomorphic to B(w,) such
that M is an extremal vector with e;M = 0 for all ¢ € I. If we have a
monomial m € M(M) with wt(m) = wt(M) + Ndyd for N € Z, then we
have m = z}¥(M). This follows from [19, §5.2]. In particular, if M (M) is
isomorphic to B(w() and preserved under 7y, then 7, is equal to a power
of zZy.

In the following examples, we answer the above questions (1), (2) in
the following manner:

(1) First show that M(M) is invariant under 79, for some p. Then
M(M) /7o ~ B(wwg) /2 for some N.

(2) We determine all monomials in M(AM)/7o, and give z, explicitly in
these monomials.

We thus obtain explicit descriptions of crystals of some finite dimen-
sional representations of Uy(g)’: we treat all fundamental representations
except some fundamental representations for EéQ), Eél), Eél). However it
is natural to hope that this procedure works for any fundamental represen-
tations with appropriate choices of the initial monomials m.

Note that the uniqueness of the crystal base for W (wy) is not known
so far. But all the examples where we compare the crystal base with those
existing in the literature, we can always prove that the crystal bases are

isomorphic.

4.1. Let us illustrate our description in type A(21T)+1 with n = 2r +1
(r>0).
Mimicking the definition in [32], [15], we define

p = Ykill,p+kyk7p+k_1 for1<k<n+1,peZ,
where Y;, 1, is understood as Y .

4.1.1. Let us consider the first level 0 fundamental extremal weight
module V(w). Let M = Yl,pY()Tlerl- We have M(M) ~ B(w;) by Corol-
lary 3.3.

Then the crystal graph of M(M) is given in Figure 1. Here O[n + 1]

means fop = p +ng1s 1-€., the suffix is shifted by n + 1. In particular
M(M) is preserved under 7,11, which has weight —d. Therefore we have

21 = Tp—1 and M(M) /111 ~ B(W (w1)).
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0+l
Figure 1: (Type Ag)) the crystal B(wj) of the vector representation

4.1.2. Next consider B(wy) for £ < r + 1. (The description for the
remaining case £ > r + 1 can be obtained from these cases by applying a
diagram automorphism.) Let My = YmYd}l. It follows from Corollary 3.3
that M(My) ~ B(wy). We set ’

Mj = Yo, 0,n—f+1+42; j,ZJerJJL*f+1+J

= <n7f+2jn7£+2j72 T n7€+2) X (,1,3 T 17€+2j>
J 1
= 1] L | T T,
n—{—2p+2;5+2 +1—-2p+2j
p=1

p=j+1

with 0 < j < £. Note that M, = n7n+1%jg+1+g = Tp+1(Mp). Note also
that M; = TQ(M(]) for £ =r +1.

For an increasing sequence T' = (1 < i; < ig < -+- < iy < n+1) of
integers (i.e., a Young tableaux of shape (¢)) we assign

J ¢
mry = [[[#] X H for 0 <j <¢—1.
T3 L Pl p—opt2j42 ? lpyr1-2pt2j =)=
p:

p=j+1
Then one can directly check that
(1) My, (Mj) consists of mr,; for various sequences 1" (cf. [32, 4.6]),
(2) fo(mT;j) with T'=(2,3,...,4,n + 1) is equal to M1,

(3) the automorphism o defined by mr,; — mq.j11 (j, j + 1 are under-
stood modulo /) is a P,-crystal automorphism.

Here, for J C I and m € M we denote by M j(m) the set of monomials
obtained by applying €;, f; with j € J to m. It is a crystal for the Lie
subalgebra g; associated with J.
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From (2) all M; (and hence my,; by (1)) are in M(Mj) by induction.
Computing the weights, we find that M; = (z;)77/(Mp) as explained above.
In particular, 7,41 = (2¢) . In the case £ = r+1, we have 75 = z; '. There-
fore M(My) /12 ~ B(W (ww,+1)). By the same reason mentioned above, o is
equal to zg. Therefore M(My)/o ~ B(W (wy)).

Let us describe Kashiwara operators é;, fl in terms of tableaux. This
can be done by transfering the definition of those operators on monomials
to tableaux. For i # 0 we have é;mp,; = mp/; or 0. Here T’ is obtained
from T by replacing i by ¢ — 1. If it is not possible (say, when we have both
i—1 and i in T), then it is zero. Similarly f; = mpn.; or 0, where T is
given by replacing ¢ by ¢ + 1. We can also describe the action of €, foz

0 ifiy #lorig=n-+1,

Mg, igmt1)j—1  if i1 =1 and ip #n +1,

éo(mryj) = {

~ 0 ifio=1o0riy #n+1,
fO(mT;j) = e . .
m(17il,,,,,il71);j+1 lf 11 ;é 1 and by =N + 1

Here we extend the definition of mp,; from 0 < j </ —1to all j € Z so
that MTj4+ = Tn+1MT;5-

As a corollary we get a description of B(W (wy)) in terms of tableaux.
This coincides with one in [14]. We also get an isomorphism of Iy-crystals
B(W (wy)) ~ By, (wg). This is a well-known result.

Comparing the above descriptions with the tableaux sum expressions
of g-characters in [32], we see that there is a bijection between M (My)/o ~

B(W (wy)) and monomials appearing the g-characters of W(wy). In fact,
the bijection is simply given by putting Yy . = 1 in mr.o.

85. Finite dimensional crystals — classical types
In this section we treat all classical types.
5.1. Type Dq(zl)
Let B={1,...,n,m,...,1}. We give the ordering < on the set B by

noo_____ _
1<2<---<n—-1< <n—-1<---<2<1
n

Remark that there is no order between n and 7.
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For p € Z, mimicking the definition in [32], [15], we define

p = Yopa¥1o, p = Yo pr2 Y1 pra Yot
P - Yij,pﬂ‘yi,pﬂﬂ (3<i<n-—2),
Y*l

—_y-1 | = —1
"711, = Yn72,p+nf1Y"*17P+"*2Y",p+n*27 "7110 = n*27p+"*1ynfl,p+n n,p+n’

_v—1 _ _ —1
p - Ynfl,p+nYn7P+n*27 p - nfl,p+n72Yn7p+n,
1 _v -1 -
p - }/;—17P+27L—2—l}/vi,p+2nflfi (3 <i<n-— 2)7
=1 ~1 -1 _ ~1
p - }/pr+2n74}/17p+2n74Y2,p+2n737 p - YO,p+2n74Y1,p+2n—2~

We define the i-grade gri(p) as the grade of the variable Y; , appear-

ing in p. If Y; , does not appear, it is not defined. As variables appear
at most once, it is well-defined. When the suffix is clear from the context,

we may omit it and simply write gri().

5.1.1. First consider the case £ = 1. We take M = Yl,pYoTp1+2- It follows
from Corollary 3.3 that M(M) ~ B(w;). The crystal graph of M(M) is
given in Figure 2.

0[2n—4]
1 2 n—2 np L -2 20— 11—
EREE S = = “EE,
b 0[2n—4]

Figure 2: (Type Dg)) the crystal B(wi) of the vector representation

We have
fO(p) - Yl,p+2n—4Y0,_p1+2n—2 - p+2n—4’
fO(p) = }/E)jp1+2n—2Y1_1+2n—2Y27p+2n_3 = p+2nf4'

)

Therefore M(M) is preserved under 79,—4. Computing weights as above,
we find that z; = 74_2, and so we have M(M)/79,—4 ~ B(W (w1)). We
also get an isomorphism of Iy-crystals B(W (w1)) ~ By, (w1).

5.1.2. Preliminary results for crystals of finite type D

As is illustrated in examples in type Ag), we first need to describe the
Ig-crystal structure on the monomials. This will be given in this subsection.
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All the results on the Ip-crystal are independent of the information on
Yo+, so we set Yp, as 1 in this subsection. Note also that results can be
modified in an obvious manner so that the suffixes of I:L can be shifted
simultaneously. We will use the results in these modified forms in later
subsections.

THEOREM 5.1. Let1 </<n-—2 and

M = —1—3 . 'l—ﬁ'

Then My, (M) is isomorphic to By,(wy) and is equal to the set of monomials

mr = —1—3 o '14’

indexed by the set Dy o of tableauxr T' = (i1, ..., 1) satisfying the conditions

(1) iQEB, 11 ilgi %ig,
(2) there is no pair a, b such that 1 < a < b </l and i, =k, iy = k and
b—a=n—-1-k.
Moreover the map T' — mr defines a bijection between Do o and My, (M).

This result follows from [32, 3.4, 5.5]. It was also proved by Kang-Kim-
Shin [15] in the present form. We briefly recall their argument for a later
purpose. They checked the following statements:

(a) The set of monomials my with T satisfying (1), but not necessarily
(2), is preserved by é;, fi.

(b) If a monomial my satisfies é;my = 0 for all ¢ = 1,...,n, then mp
must be equal to M.

(c) For a tableau T satisfying (1), there exists a tableau T" satisfying (1),
(2) and mp = myp.

(d) The tableau T satisfying (1), (2) is uniquely determined from the
monomial my.

The statement (d) is not explicitly stated in [15], but follows from [15,
Prop. 3.2] or the argument below.
Let us give an example for the procedure (c). Suppose n =7 and T' =

(2,3,4,3,2). Using the relation pp—2(n—1—k‘) = pp72(n717k)

several times, we get

4@9’7‘0’?‘79’7‘74 = ZJTU?H?L?’?‘%-
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Thus 7" = (4,5,6,6,5). In general, we replace the pair pp—2(n—1—k:)

by pp—2(n—1—k) repeatedly from k =1 to n — 2.

As we saw in examples in type Ag), we need to study a tableau whose

suffixes may jump. For 1 </ <n—-2 0<r<n—f¢—-1,0<h</let

-1
MZ,h,r = Yh,éfhyhlfhfgryé,f%

= (7173 o '72h+1>
X (—2h—2r—1—2h—2r—3 " '14727")

h ¢
g | (EXSSE N | R
—2p+1 +1—-2p—2r
p=1

p=h+1

and consider a monomial

mr = (_1—3 N '—2h+1)
(e L)
(—2h—2r—1"2l_on—2r—3 1-0-2r

appearing in My (M p,). When h = 0 or £, these are obtained from
M, (M) in Theorem 5.1 by the simultaneous shift of grades.

We should consider T' as a tableau of shape (h,¢ — h) (one column
with h boxes and one column with ¢ — h boxes), where the second col-
umn is shifted below by h + r boxes. But we simply denote it by T =
((i1,---4in), (dpt1y--.,10)) or by T = (i1,...,1g) for the sake of spaces.

From the proof of Theorem 5.1 in [15], we have

i1 g i in,
iht1 L g2 o e

Let us study the order between i; and ip4+1. The following example
shows that 45 % 4541 may not be satisfied in general: Let n = 7, £ = 3,

r=n—4{—2=2. Consider the starting monomial M = 27476.
It gives in the crystal My (M) the monomial m = 27 476 =

Y2T51Y3,4Y3T01KL,1}§72Y4T;. If we apply fs3, we get the monomial m’' =

(D.1)

33*611/4,5}{;01}@7,1}@72)/4*31 and this monomial can only be written in the

form m/ = 27476‘
The condition (2) in Theorem 5.1 also needs to be modified for the
pair a, b with a < h, h + 1 < b as the suffix jump. A naive guess is
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to replace n — 1 — k by n —r — k — 1, but this change does not work as
indicated by the following example: Consider the case n =6, £ =4, r =1

and the starting monomial m = 3_1_3_5. Then consider the
monomial m’ =[1 [ 2] [3] 1] =¥13V;'¥'¥5 1. For b=4and
a=1, we have b—a =n —r — k —1 = 3. Thus this monomial violates
the condition (2) of Theorem 5.1. But if we replace the pair (i1,44) = (1,1)
o (2,2) as before, we get 3_1_3_5, which does not satisfy
the condition (1) of Theorem 5.1. In the original situation we can further
replace the pair (ig,14) = (2,2) to (3,3), and then further (i3,44) = (3,3) to
(4,4) to achieve the condition (1). But we cannot make this replacement

8“S- 1- 75- 1- 5

We modlfy the condition (2) as follows.

(D.2) There is no pair a, b such that 1 < a < b < h and i, = k, i, = k and
b—a=n—-—1-—k.

(D.3) There is no pair a, b such that h +1<a<b</land i, =k, i, =k
andb—a=n—1-—k.

(D.4) There is no pair a, b such that a < h, h +1 <b, i, = k, i, = k and
b—a=n—max(r,1) — k.

The conditions (D.2), (D.3) can be achieved without changing the cor-
responding monomial by the procedure explained above. For (D.4) (when
r > 1), we replace a pair (iq,i,) = (k,k) with b —a = n — max(r,1) — k
by (k — 1,k — 1). If there are several such pairs or this procedure yields a
new such pair, we replace them repeatedly starting from k = n — 1, then
k=n—2,..., and finally to k = 2. (Note that this is converse to the order
of the procedure for (D.2), (D.3).) As r < n — /¢ — 1, the condition (D.4)
always holds for k = 1.

Our approach to determine all monomials appearing in M, (My ) is
to relate them to monomials in My, (M r—1). Since we understand the
case r = 0, we know a general case inductively.

In order to accomplish this approach, we first remark that the crys-
tal structure on the monomials can be transfered to that on the tableaux
satisfying (D.1)—(D.4).

LEMMA 5.2. There exists a unique crystal structure on the set of
tableaur T' satisfying (D.1)~(D.4) such that T' — mr is a strict morphism,
€., it preserves €, i, wt and commutes with fi, €.
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Proof. We transfer ey, ¢, wt on monomials to those on tableaux via
T — mp.

Let us define f; on tableaux. (éx can be defined in the same way.) In
general, fka # 0 can be written as m7 for a tableau 7" which is obtained
by replacing an entry i, in 7" by a new one according to the rule described
in Figure 2. To define fk on tableaux, we need to specify the entry i, to be
replaced. There might be ambiguity when we have a pair (i, i) = (k, k + 1)
with grk() = grk(). This happens when b—a =n—1—Fk for a,b <h
orh+1<abandb—a=n—1—k—rfora<h, h+1<b. In the first
case (or the second case with r = 0) we replace k by k& + 1. In the second
case with r # 0 we replace k + 1 by k. Note that we are forced to take
these choices by (D.2)—-(D.4). Now the assertion is clear. 0

Let us prove the statement (d) after Theorem 5.1 as we promised. From
(a), (c) we have a surjective map T +— myp. Since it commutes with é;
and f;, the injectivity follows if we check that &7 = 0 for all ¢ implies
T = (1,...,¢). But the proof of the statement (b) in [15], in fact, gives this
statement.

Let us next define a map oy, from tableaux satisfying (D.1)—(D.4)

to those where we increase r by 1, i.e., each 721_20“ is replaced by

72“2671 for ¢ > h + 1. Almost all the cases, oy (T) is just T. But
the condition (D.4) is violated if there is a pair (i4,i5) = (k, k) such that
a<h,h+1<bandb—a=n—r—k—1. Wereplace it by (k+ 1,k + 1).
If there are several such pairs or this procedure yields a new such pair,
we replace them repeatedly starting from £ = 1 to n —r — 1. We define
T" =04 p,(T) as the final result. As we have

—2a+1—2r—2b+1 = Mg M or—opt1o

the procedure keeps the corresponding monomial unchanged if we do not
change 7 for the map T +— myp.

Let us check that o/, intertwines fk By definition, o/, fkT is pos-
sibly different from froy T if there is a pair (iq,4) with a < h, h+1<b
such that the order of k-grades p = gr;, (), qg= grk() are changed by
o¢hr- If both i, and i contribute to Y} , in positive or negative powers,
the rule for fkT is changed accordingly. (See the proof of Lemma 5.2 how
fkT is defined.) Thus it is enough to study the case when one contributes
in positive, and the other in negative. For £k = n — 1, n such a change
cannot occur. As grades can only be shifted by 2, for £ < n — 2 we have
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a possible change only when p + 2 = ¢ for (i,,4,) = (k, k), and p = ¢ for

(ta,ip) = (k 4+ 1,k + 1). These are equivalent to

b—a=n—r—k—1 if (iq,i) = (k, k),
b—a=n—r—k—2 if (i, i) = (k+ 1, k+1).

Therefore if there is no pair (iq,i5) = (k,k) with @ < h, h +1 < b and
b—a=n—r—k—1for any k, then fka is unchanged when we increase r
by 1. But we have defined oy, exactly so that this condition is achieved.
Thus we have

Ué,h,rfkT = fko'é,h,rT for all k£ € Ij.

This equality holds even if fkT =0.

Similarly we define o7, (T') as follows. When r = 1, we simply set it
T. Assume r > 1 hereafter. Suppose that there is a pair (iq,i) = (k, k)
such that a < h, h+1 < band b—a =n—r—k+ 1. We replace it
by (k — 1,k —1). If there are several such pairs or this procedure yields
a new such pair, we replace them repeatedly starting from k = n — r to
3. We define o, (T) as the final result. As r < n —¢— 1, we have
l+k>b—a+k+1=n—1r+22>/¢+3. Therefore k£ < 2 cannot happen,
sok—1¢€B.

These maps are somewhat similar to one defined in [15, Prop. 3.2].

Now we introduce new conditions:

(D.5) Suppose that i1 =k € {1,...,n— 1} and ij, = ip41. Then iy =k
is also in {1,...,n — 1}, and the successive part (k/,k’ —1,...,k)
appears as (iy, iy 41,...,0p) Withn—r—k<b—h<n—k—1.

(D.6) Suppose that iy, 1 =k € {1,...,n— 1} and i}, = ipy1. Then i =k’
is also in {1,...,n —1}, and the successive part (k', k¥ + 1,... k)
appears as (lg/,iq/ 41, ---,0q) Withn—r—k<h—a<n-—Fk—1.

(D.7) If ipy1 = n or @, then ij % ipi1.

Note that (D.1) implies that the successive part in (D.5) occurs in

b’ > h + 1. This together with the second inequality (and b+ k = 0" + k)

implies k' < n—2. Thus i, = n—1,n—2 cannot happen in (D.5). Similarly

iny1 =mn — 1,n — 2, cannot happen in (D.6).

DEFINITION 5.3. Let Dy, be the set of tableaux T satisfying (D.1)-
(D.7).
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Remark 5.4. When r = 0, the conditions (D.1)-(D.7) are equivalent
to (1), (2) in Theorem 5.1.

PROPOSITION 5.5. 0y, defines a crystal isomorphism from Dy p, . to
Dy pyry1. Its inverse is given by Jé,”,_H.

As a corollary we have

THEOREM 5.6. The map T — mr induces a crystal isomorphism be-
tween Dy p, . and My, (Mgp,r).

Proof. We first prove that the image of Dy, is contained in
My (Myp ) by the induction on r. This is true for r = 0 by Theorem 5.1.
Suppose it is true for r. First note that ogp, maps T = (1,...,¢) to
(1,...,¢). Take T' € Dy r41. By the induction hypothesis Mg; . (1) Can
be written as s .

My @) = firfin o fin Mepr

for N >0, i, € Iyp. We then have
mr = filfi2 T fiNM@,h,T+1'

This shows mp € My, (Mppr41)-

As the crystal graph of My (Mg, ,) is connected by its definition, the
map is surjective.

By the induction on r, it follows that the only tableau T" with ¢;T = 0
for all i € Iy is the highest one T = (1,...,¢). This shows that the strict
crystal morphism 7" +— mp is injective. b

Proof of Proposition 5.5. It is enough to show that oy, , is a set theo-
retical bijection, as we already observed that it is a strict crystal morphism.

When 7 = 0, there is no pair (i4,45) = (k, k) to replace by (D.2)—(D.4).
Thus oy ,0 is just an identity. Also 027}171 is an identity by definition. On
the other hand, the conditions (D.1)—-(D.7) are the same for » = 0 and 1.
Therefore the assertion is true for » = 0. We assume r > 0 hereafter.

Suppose T satisfies (D.1)~(D.7). We show that oy (T") also satisfies
(D.1)~(D.7). The condition (D.1) is clearly satisfied. The condition (D.4)
with r replaced by r + 1 is satisfied by the definition of oy, ;.

We study the cases ip, = 541 and i, % ip+1 separately.

Case (1): ip = ipt1-
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We assume i1 =k € {1,...,n—1}. By (D.5) i, =k € {1,...,n—1}
and there exists a successive part (k/,... k) = (i,...,4) with h +1 < ¥,
n—r—k<b—h<mn—1-k. The condition (D.2) automatically holds as
ine{l,...,n—1}

Suppose that iy is replaced during the procedure. Then in the middle
of the procedure, we find an entry iy with i’y = k, B> h+1, B—h =
n—r—k—1. As i’y is obtained by replacing i g, we have i3 < ip. Therefore
B > b. But this contradicts with (D.5) as

n—r—k—1=B—-h>b—h>n—-r—k.

Therefore ij, remains unchanged during the procedure. Therefore the pro-
cedure is performed for pairs (K, K) with K < k, so all (ip,ip11,...,4p) are
also unchanged. Thus (D.5) remains true. Suppose (D.3) is violated, i.e.,
there exists (i4,ip) = (K,K) with B> A>h+1, B-A=n—-1-K.
As K > k, such a pair can appear only in (ip11,...,%). But this part is
unchanged, so (D.3) for r implies that this cannot happen. Thus (D.3) is
also satisfied.

We can similarly check the assertion when iy € {1,...,n — 1}.

Case (2): i % iht1-

Suppose that we apply the above procedure to a tableau T =

((i1y---,in), (ipa1,.--,0¢)) to get a new tableau 7' = ((j1,...,Jn),
(Jh+1s---,Je)). We separate the cases according to the order among jp
and jh41.

Subcase (2.1): jp = jp+1 and ipy1 € {1,...,n}.

As ip11 is unchanged, j; >~ jpy1 can happen only when iy is replaced
during the procedure. Suppose that ij is replaced from k' to m with
m > k' + 1. Then the procedure yields a successive part (jp,...,J) =
(m,...,k"+1) with b —h=n—r —m. We have

m=jp = jht1 =tn41 B in =K.

Thus j,41 can appear only in the successive part, so (D.5) is satisfied with
r replaced by r + 1.

The condition (D.2) is automatic. Suppose that (D.3) is violated, i.e.,
there exists (ja,jp) = (K,K) with B> A>h, B—A=n—-1-K. We
have K > jpi1 = ipt1 2 ip = k. Therefore jp can occur only in B < b".
If jp appears outside of the successive part, then jp = ip and we have
a contradiction with (D.3) for the original tableau. If jp appears in the
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successive part, we have
n—1-K=B—-A<B—-h=n—-—r—-K.

As r > 1, we have a contradiction.

Similarly we can check the assertion j, = jn,i1 and i, € {1,...,7}.
When i, € {1,...,n}, ins1 € {1,...,7}, the inequality j, = jno1 cannot
happen. Thus we checked the assertion when jj = jp+1-

Subcase (2.2): jp 7 jht1-

The conditions (D.5)—(D.7) are satisfied by the assumption. Let
(Jasjo) = (k+ 1,k +1) with b —a = n —r — k — 1 be the pair obtained
by the last replacement in the procedure. We suppose that (D.2) is vio-
lated, i.e., we have a pair A < B < h such that j4 = K and jgp = K
and B—A=n—-1—- K. As i, for a < ¢ < b is unchanged by the above
procedure, the condition (D.2) for 7" implies that j4 can appear only in
A<a Thenn—-1-K=B—-A=(a—-A)+(B-b+n—r—k—1,s0
K+a—-A=b—B+r+k>k+1. This inequality contradicts with (D.1)
as

k+1=j,>ja+(a—A) >k+1.

Thus (D.2) is satisfied. In the same way (D.3) is satisfied.

Next we show that o, .(T') also satisfies (D.1)—~(D.7). We may suppose
r > 2. The condition (D.’1)7 is clearly satisfied. The condition (D.4) with r
replaced by r — 1 is satisfied by the definition of o7, ..

Suppose that we apply the above procedufe’ to a tableau T =
((i1y---yin), (ipa1,---,0p)) to get a mnew tableau T' = ((j1,..-,75n),
(Jhats---,70)). Let (iq,dp) = (k, k) witha < h, h+1 < b,b—a =n—r—k+1
be the first pair replaced in the procedure. Suppose that (D.2) is vio-
lated, i.e., we have a pair A < B < h such that j4 = K and jgp = K
and B— A =n—-1-—K. As i. for a < ¢ < b is unchanged by the
above procedure, we have A < a. If ig = ja, i.e., i4 is not unchanged,
we have a contradiction with (D.2) for 7. Therefore iy > ja + 1. We
hawve n—-1—-K =B—-A=(a—-—A)+B-b+n—-—r—k+1, so
K+a—A=b—B+r+k—2>k—1. This inequality contradicts
with (D.1) as

k=ig>ia+(a—A)>ja+1+(a—A) >k

So (D.2) is satisfied by 7”. In the same way (D.3) is satisfied by T".
In order to check the remaining conditions, we treat the cases separately
according the ordering among ip, 441.
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Case (a): ip % ipt1-

This inequality is preserved during the procedure. Therefore we have
Jn % jn+1, so (D.5)—~(D.7) are preserved.

Case (b): ip = ipy1 and ipp =k € {1,...,n —1}.

Take the successive part (', k' — 1,...,k) = (ip, iy 41, ... ,1) with i, =
K as in (D.5). Suppose that an entry in the successive part is replaced
during the procedure, i.e., we replace a pair (i4,ip) = (K, K) with A < h,
bV < B<bwith B—A=n—r— K+ 1. The inequality in (D.5) implies

n—r—K+1<b—-h+k—-K=B—-h<B-A

So this can happen only when two inequalities are equalities, i.e., n —r —
k+1=b—hand A= h. And in such case, we really replace the pair by
the definition of o, ...

Subcase (b.1): 4 is unchanged.

As we observed above, the successive part remains unchanged. By (D.5)
we haven—r—k<b—h<n—-—k—1. Andthecaseb—h=n—r—-k+1
is excluded as we have just observed. Therefore the left hand side of the
inequality can be improved to n — r — k + 1. This shows that (D.5) with r
replaced by r — 1 is satisfied.

Subcase (b.2): i is changed.

Suppose that i, is changed, say from k' to j, = m with m < k¥ — 1.
Then iy = k’ is replaced by k — 1, iy is replaced by k — 2, and so on.
This procedure continues at least until we replace i, by & — 1. Thus m < k.
This is equivalent to jj, < jp4+1. Thus we have (D.2)—(D.4).

If 45, % ipg1, we get jn % Jjny1 as the procedure preserves this in-
equality. Thus if i; > ip41, we have a successive part (K',k' +1,...,k) =
(igy G/ 41, - - -, Ga) With i441 = k. Therefore the procedure continues at least
until ip41 is replaced by k' — 1, i.e., m < k. Therefore jp, %# jp+1-

Case (c): i = ipy1 and ipy1 € {1,...,70}.

This case can be proved in the same way as in case (b).

Finally it is clear that oy, and JZ,W 41 are mutually inverse. All
replaced pairs (k + 1,k + 1) are returned back to (k,k). And we do not
have extra replacements by (D.4). U

When r = 0, My, (M) is independent of h. Therefore we get a

crystal isomorphism between any pair My, (Mg ) and My, (M p ) as a
composite of various oy p v and oy i -
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For a later purpose we explicitly write down the crystal isomorphism
Tehr: Dopr = Mpy(Mepyr) — Dopirr = Mipg(Mopgir)-

This is the composite oy p41,r—10¢h 41,02 U€7h+1,002,h,102,h,2 e Ué,h,r' All
replaced pairs (k — 1,k — 1) are returned back to (k,k) except for those
ip+1 = k — 1. Also we may have extra replacements for i, = k — 1.

Let T' = ((i1,...,%), (iht1,---,1¢)). We describe 74 (T') in the fol-
lowing three cases separately.

(D.a) ipy1 =k € {1,...,n—1} and there is an entry i, = k with n —r —k <
b—h<n-—1-—k.

(D.b) ipy1 =k € {1,...,n — 1} and there is an entry i, = k withn—r—k <
h—a<n—-1-k.
(D.c) Neither (D.a) nor (D.b) is not satisfied.

In the case (D.c) we simply have

To o (T) = ((015- -y ihg1), (Bna2s - - -5 00))-

Next suppose we are in the case (D.a). As was explained in the para-
graph just after (D.7), the inequalities imply b > h+1 and k < n—2. Start-
ing from 4, we go back 4;_1, 7p_2, ... while entries are successive. Let iy be
the ending entry, so (iy, 4741, ...,1,) are successive as (K, k" +1,...,k)
and iy_1 # k” — 1. Also by the same reasoning as above, we have k” <
n — 2. We then have

Tg7h7r(T) = ((il, R K+ 1),
(ih+2, ey, KT+ 1,@, vk + 100, ,ig)).
Similarly in the case (D.b), we take ig,» so that (igr,igri1,...,0,) =
(K" K" +1,... k) and i,v_1 # k" — 1. We have k < n — 2. We then have
Tthf,‘(T) = ((il, . ,ia//_l, /{Z” — 1, e ,k — 1,ia+1, . ,ih, k" — 1),

(ihg2, - 500))-

5.1.3. Now we study Bwé) for 2 < £ < n—2 Let Myy =

YeoYoi 1 Yor = [ll2]_s[e]i_p Then M(Myp) =~ B(wy) by
Proposition 3.4.
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For 0 < j < ¥, we set

Mo = (2n7£+2j752n7£+2j77 o 'zn—e—3>
X <7173'“1—€+2j>

J 0
= HIZl2n—£—2a+2j—3 X H IZIZ—Qa—i—Qj—H
a=1

a=j+1
—1 y-1 e
YooYy 1Yo, if j =0,
-1 -1 -1 e
YeoYo 1Yo 0n—0-1Y1 p41Y1,2n -3 if j =1,
-1 -1 -1 .
Ye25Y0 on—012j-5Y0,2n—e42j-3Yj04jYi2n—t+j—4  otherwise.

Note that MAO = Tgn_4(M070).
For a tableau T = ((i1,...,4;), (¢j41,...,%)) we define mr,;o by re-
placing the a'M-entry by i,.

CrAamM. We have Mj70 € M(M0,0) for 0 <5 <V

In fact, by Theorem 5.6 we have mp.jo with T = (3,...,¢+1,2) is con-
tained in My, (M; o) as Mjo = m,. ¢).j0- Thenweget fomr.j0 = mr 410
with 7" = (1,3,4,...,£ + 1). Again by Theorem 5.6 this is contained in
My (Mji10) as Mjy10 =mq,. ¢)j+1,0- By induction we obtain the claim.

We have Wt(Mj’o) = Wy —j(S Thus Ml,O = ZZI(M070). As ng() =
Ton—4(Mo ), B(Mo,0) is preserved under 73,4 and we have (20) ¢ = Ton_4.
As in type Ag), it is enough to study M(Mo)/Ton—4. We extend the
definition of Mj o from 0 < j < £ to all j € Z so that Mj 40 = T2,—4M; .
The same applies to other various other monomials introduced below though
we do not mention it hereafter.

If we apply €g to Mo, we get the monomial given by replacing * by

4—2n+>k’ that is
j 4
éO(MJ',O) = H IZ|2n—£—2a+2j—3 X H IZIZ—2a+2j+1
a=3

a=max(j+1,3)

—1—2n+1 if j =0,
X 2n—€—3—2n+3 lfj =1,
2n7z+2j754+2j,3 if 2<j <V

https://doi.org/10.1017/50027763000009326 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000009326

LEVEL 0 MONOMIAL CRYSTALS 113

Let N;1 denote ** in the right hand side. We have

-1 p o
YO,@%SYE)I_H 1f] =0,
1 _ P
Nja = Yoo Yoo, o 1Y Yion—e—s ifj =1,
}/(),2n—€+2j—7§/()72n_€+2j_3 if 2 < J< L.

We define Mj; by replacing IZL by * for a > 3 and * by
4_2n+* in Mj, that is

j—2 -2
1= HIZl2n—€—2a+2j—7 X H @—2a+2j—3 X Nj1
a=1

a=max(j—1,1)

We have
—2
wt(Mj1) =@ — jo + a0+ > (g + Aat1)
a=1
=wp—(J—1)0 —ap1—2ap —2ap41 — -+ — 202 — Qp—1 — Qi

= Wyp—2 — (j - 1)(5

We recursively define M ;. by replacing IZ| by H fora >3 and -

by 4_2n e in Mj 1 until all boxes are elther -* or - We have
k=0,...,14/2] Where |¢/2] is the largest integer which does not exceed
(/2 (the integer part of £/2). We define N;; in the same way. We have
wt(M; ) = we—or — (j — k)0.

Let us give M;, N;; explicitly.

(1) k< [7/2):

Jk - H(-Qn l—4a+25— 1- {— 4a+2]+1)

= Yo on—t—akt2j— 3Y0 m—+2j—3)

j—2k {—2k
Mj = Njp x H E2n7€f4kf2a+2j73 X H @72(a7j+2k)+1’
a=1 a=j—2k+1

_ . 1
=Y ok 2172kY0 2n—f—4k+25— 570 ,2n—0+25—3

1
XY, ok ito—okYj—2k2n—t+j—2k—4
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(2) jisodd and k= (5 —1)/2:

N;.i-1/2 = Yo 2n—i— 5Y0 42§ -3
—j+1

M;—1y2 = Nj—nyj2 X [1],_p_5 X H Lol sars

-1 -1
0,0+110,2n—0425— 3Y1 e+1Y1 2n—0—3Y0—j+1,j+1,

(3) jis even and k > j/2:

k—35/2

Njk = Njjj2 % H ( (— 4a+374a72n+5>

:Y(-),£74k+2j+1yb g+1YO,2n7Z 3Y0_2n 42§38
-2k

ik = Njk X H @72a74k+2j+1
a=1

Yo,—e42j+1Y) e+1Y0 2n—L0— 3Y0 2n—~0+2j—3 if k=1¢/2,
0}%‘_15/(),271—6—3}/072”_34_23'_3Y1,—£+2j+1 if k=(-1)/2,

-1
Yo i ka1 Yo 41 Y020 0-3

X Yogn _e42j—3Ye—2k2j—2k otherwise,
(4) jisodd and k> (5 +1)/2:

Njk = Njj-1)/2 X n2n47372n+3

k—(j+1)/2

X H (_4a+1—4a—2n+3)

:Y0,€—4k+2j+ly 0,2n—£+25— 37 z+1Y1 2n—{0-3,
0—2k

Mjk = Njj x H IZIZ—Qa—4k+2j+1
a=1

Yo, €+2j+1Y0,_21n—£+2j 3Y1_£1+1Y1 om—t—3 if k=1/2,
Yo on—t42j—3Y1,—042j+1Y] g+1Y1 on—t—g fk=(L-1)/2,

—1 Y*l
0,0—4k+2j—-1%0,2n—0+2;j—3 o
X Y1 2n—0-3Ye—2k,2j—2k otherwise.
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All Mj, satisfy e;M; = 0 for all i € I. The monomials appearing in
My, (M) = Bry(we—ok) can be described as in the previous subsection.
Indeed for k # £/2 let us define a monomial m; j, associated with a tableau

T = ((i1,---1%5—2k)s (bj—2k41s - - - s 50—2k)) € Do—ok j—2kn—t—2 by

(1) k< [j/2):

j—2k 0—2k
mrjk = Njk H 2n—€—4k—2a+2j—3 X H —2(a—j+2k)+1’
a=1 a=j—2k+1

(2) jisoddand k= (5 —1)/2:

—j+1

mrj -1)/2 = Njk X anefzs H —2a+3’
a=2

(3) jis even and k > j/2:

-2k

mryjk = Njk X H 72a74k+2j+1’
a=1

(4) jisodd and k> (j+1)/2:

{—2k

mrijk = Njjg X H _2a_4k+2j+1'
a=1

(For the case (4) the Yljel_"_lYLQn,g,g does not change anything because all
other Yfr satisfy r < £ +1.) For k = £/2 we set Do j_¢n—s—2 = {0} and
define my,; ;, by the same formula as in (3), (4) where the last product is
understood as 1. If k > j/2, we set Dy_op j_okn—t—2 = Do—2k0,0, i-e., the
set of tableaux whose suffixes do not jump.

As Mo € M(Myyp), it becomes clear by induction on k that all M;
are in M(My), and so by using Theorem 5.6 all mp.;; are in M(Mo)
(the argument is similar to one for the type Ag)).

As wt(M; ) = @y — j6, we have 2, (M) = M;ji10 by the reason
explained in the beginning of this section. Then from the definition of M j
we have zgl(ijk) = Mj41 . Let us consider 7y_of j—2kn—¢—2, Wwhere we
understand it as the identity map when £ > j/2. It maps M; to M1
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and respects the Iy-crystal structure. Since such a map is unique, we have
2= Toookjoakn—t—2: Mi,(Mj k) — My (M1 1).

We can describe Kashiwara operators €;, f; in terms of tableaux as in
type Aq(zl). For i # 0, it is basically explained in the proof of Lemma 5.2.
So let us consider the case €, fo. We get that éo(mT;j,k) is equal to

M(is,...ig—on)j k41 if io =2 and ip_op—1 £ 2,
m(il,...,ig_gk,é,T);j—2,k‘—1 lf 7/2 ﬁ 2’ Z£—2k i 2 a‘nd k > 07
Mg ig3—i1)ij—1,0 if iy 2,40 £2,4 % 2and k=0,

0 otherwise,
and that fb(mT;M) is equal to

M(1,2,41 ... 50—o1)1jk—1 if 21 ﬁ 2, 1—ok—1 i 2 and k > 0,
My iy ona)ij42.k+1  if tp—op—1 = 2 and ip A 2,
3—Tg,i1,si0-1)15+1,0 if il ﬁ 2, ig_l i §, Z'g > i and k = 0,
0 otherwise,

my

where we denote 1 = 1 and 2 = 2, and we extend the definition of mr,; x
from 0 < j </—1toall j € Z so that my,j ¢ = Top_amr;;. We understood
that the condition ‘i = 2’ is not satisfied when k£ = [¢/2] (and hence there
is no entry 42). Similarly ‘ia A 2’ is satisfied when k = |¢/2]. The same
rules apply to other conditions. And we will use the same conventions for
other classical types.

As we have checked the stability for operators ég, fo, all the monomials
appearing in M(My ) are the 79,_4-images of the mr.j 1.

In particular, we can describe the Ip-crystal structure of B(W (wy)) as

B(W (we)) ~ M(Mo,o)/ze
= My, (Mo,o) UMy (Mo,1) U -+ UMy (Mo /2))
B, (w1) if £ is odd,

1, (we) 1o (e—2) {BIO(O) if ¢ is even.

In fact, this last result is well-known.

As an application of the description of what we just obtained, we con-
struct an explicit bijection between two sets of monomials, one is
M(Moyp)/ze, the other is those appearing in the g-characters of W (wy)
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counted with multiplicities. Recall the conditions (1), (2) in Theorem 5.1.
In [32] we proved that the g-character of W (wy) is given by the sum of
monomials corresponding to 7' = (i1, ..., i) satisfying (1) alone. We then
defined {(T") as the number of pairs as in (2). Now we define the bijection

{T = (i1,...,1p) | T satisfies (1),{(T") = d}
——{T" = (i1,...,i¢_24) | T satisfies (1), (2)}

by letting 7" be the tableaux obtained by removing all the pairs violating
(2)in T.

This bijection cannot be expressed in terms of monomials in a simple
way unlike type A case.

As another application, we get a description of the crystal B(W (wy))
in terms of tableaux. Namely we identify it with {mz,x |0 <k < [€/2]}.
Then we express egmr.,o , fomT;o,k as mrr.o. 5, M0k by the above for-
mula composed with the crystal automorphism 7y, - for suitable h, r. This
description is similar to one in [24], [37], probably the same if we use the
isomorphism between our Dy and Kashiwara-Nakashima’s tableaux [23]
in [15]. Note that the uniqueness of the crystal base of W (w,) was proved
in [24].

5.1.4. Spin representations

Finally we consider the case £ = n — 1 or n. Following [32], [15] we
define the half size numbered box as

Yip-1 ifi =1,
-1 -1 e -
Yipr¥opYop =2
. _ —1 . .
p =Y i1 Yiprie f3<i<n—2,
-1 ip s
Yn727p+n72 ifi=n—1,
Yn,p—f—n—l if i = n,
( e
}/O,eranl ifi =1,
1 if2<i<n-—2,
7 pu—
ip -1 -1 e
Yn—l,p+n+1Yn,p+n+1 ifi=n-—1,
Ynfl,p+nfl if it =n.

_ ~1 -1
Let M = Yrg,()YO’nl_Q = HZ:l n4-1—2a X l—n (€ = n) or HZ:l n+1-2a X
l—n (¢ =n—1). We have M(M) ~ B(wy) by Corollary 3.3.

Let BY, (resp. BS,) be the set of tableaux T' = (i1,... i) satisfying
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1
2

(1) ig €B, iy <ig < -+ < iy,

(2)

(3) if ig =n, n —a is even (resp. odd),
(4)

i and i do not appear simultaneously,

4) if i, =7, n — a is odd (resp. even).

We define m7 by
n
mr = l_IanrlZa'

Then Bj (M) is {mr | T € BE}, where £ is — if £ = n — 1 and + if
€:n.LetT—(3,4,5,...,n—1n21)for€—norT (3,4,5,...,n —
1,m,2,1) for £ = n — 1. Then my = YQTanYéAYE),n- Applying fo to myp,
we get }/574}/07_711_’_2 = 74(M). As this has weight wt(M) — 0, it follows that
74(M) = z;'(M) as before. As a consequence, we have z; = 7_4 and
B(W (wy)) ~ M(M) /4. )

We describe the action of €y, fo. We have

. Toa(myy oa1)) ifi2 =2,
enlm — yeeeybny 4y
o(mz) { 0 otherwise,
5 (M2, in2)) i Ino1 =2,
m —
folmz) { 0 otherwise.

So the above are all the monomials in M(M)/74. So we recover a well-
known result B(W(Wg)) ~ B, (w¢). The map Y. — 1 gives a bijection
between {mr | T € B} and the monomials appearing in g-characters of
W (wy), where all the multlphcmes are 1 in these cases.

5.2. Type Bq(zl)

We can describe monomial crystals of other classical types by a similar
method. We just state the result without proofs.

Let B={1,...,n,0,m,...,1}. We give the ordering < on the set B by

1<2<--<n<0<n<---<2=<1.

For p € Z, we define

Yo_p+2Y1,pv }/E)_p+2Y1_p+2Y27p+17
= Y_l p—&—zY,er’i*l (3 <t<n-— 1)’
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p - Yn_—ll,p-i-nYnQ,ernfla

Izlp = Yn_,lernJrlyn,ernfla

p = nfl,ernYnngrnJrla

p = Y;fl,p+2n7iy;‘;i_2n+1_i B3<i<n-—-1),

p = YVO,p+2n72Y1,p+2n72§/gjp1+2n71a p = Yv(],p+2nf2§/1jp1+2n.

5.2.1. First consider the case £ = 1. Let M = YLOYE{QI. It follows from
Corollary 3.3 that M (M) ~ B(wy). The crystal graph of M(M) is given
in Figure 3. We find 72,0 = 2, ! and M(M)/79,_2 = M, (M).

0[2n—2]
L -le ] e —{n =l f—ln ] —{2 {1},

M
Figure 3: (Type BS)) the crystal B(w)

5.2.2. Preliminary results for crystals of finite type B
Let 1</ <n—1,0<r<n—fand 0 < h < /. Consider the monomial

—1
My = Ynoe—nYy, o p_o,Ye,~2r

= (—173'”72h+1>
X <72h72r7172h72r73 . '1—12—2r)
h ¢
=11l o x 11 [2] -
—2p+1 +1—-2p—2r
p=1 p=h+1

For T'= ((i1,...,%4), (ih+1, - -, 1¢)) such that i, € B, we define the mono-
mial

T =" 423 R T VA | VS WV O A S Y12

Let By, be the set of tableaux T satisfying the following conditions

(B.1) i, € B, i3 <19 < -+ < iy but 0 can be repeated, and ip+1 < ip12 <
-+ <1y but 0 can be repeated.
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(B.2) There is no pair a, b such that 1 < a <b < h and i, = k, i, = k and
b—a=n—k.

(B.3) There is no pair a, b such that h+1 <a <b</landi, =k, iy = k
and b—a=n—k.

(B.4) There is no pair a, b such that a < h, h+1 < b, i, = k, i, = k and
b—a=n+1—max(r,1) — k.

(B.5) Suppose that i1 = k € {1,...,n} and i, = ip41. Then i = K is
also in {1,...,n}, and the successive part (k/,k’ —1,... k) appears
as (iy, iy 41,---,0p) Withn —r—k+1<b—h<n-—k.

(B.6) Suppose that ip,; = k € {1,...,7} and 45 = ip41. Then iy = K is
also in {1,...,m}, and the successive part (k’,k’ + 1,..., k) appears
as (ig/ylg/ 41y -+ lg) Withn —r—k+1<h—a<n-—k.

(B.7) If ip41 = 0, then i, < 0.

Note that the conditions above are the same as the ones in [15] when
r=20.
For T = ((i1,..-,4n), (ihg1,---,%)) € Byp, we define the tableau

Te.hr(T') in the following three cases separately.

(B.a) dp11 =k € {1,...,n} and there is an entry i, = k withn—r —k-+1 <
b—h<n-—k.

(B.b) ipy1 =k € {1,...,n} and there is an entry i, = k withn—r—k+1 <
h—a<n—k.

(B.c) Neither (B.a) nor (B.b) is not satisfied.

In the case (B.a), let b” such that (ip,ipr41,...,17) are successive as
(K", k" +1,...,k) and iyr_; # k" — 1. We have k" < n — 1. We set
(

(Zla s TRy k" + 1)7
(2h+27 ce ,Z'bufl,k'”—l—l,ﬁ, vk + 1000, .. ,i@)).

Teh(T) =
Similarly in the case (B.b), we take i,/ so that (igr,ig7i1,.-.,0a) =
(K" K" +1,...,k) and i4r_1 # k" — 1. We have k < n — 1. We then set

Tehr(T) = ((i1, ... vigr 1,k =1,k — 1 dgg1, . i, KT — 1),
(tht2,---,10)).

In the case (B.c) we set

Tf,h,T(T) - ((ih .. )ih-i-l)) (ih+27 .. )if))‘
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THEOREM 5.7. (1) The map T — mr induces a crystal isomorphism
between By p ., and My, (Mop,y).

(2) 7oy induces a crystal isomorphism  from My, (Myp,) to
My (Mg psir)-

5.2.3. Now we study B(wy) for 2 < ¢ <mn—1. Let Myy = YgOY('” 1

Vit = [T (2 g [0 For £ n— 1 we s fofa - obloo =
Yy, e+1Y1f 1Y2£ Yé+1 1 and for £ = n — 1 we have f2f3 - feMoo = Y(TZH
Yie-1Y,, le. By a method similar to the proof of Proposition 3.4 we have
M(Mo,o) =~ B(wy).

For 0 <j <¢,0 <k <{/2,let us define the monomial mr; , associated

with T' = ((i1,...,45-2&), (ij—2k+1, " »ie—2k)) € Be—ok j—2kn—t—1 by

(1) k<[j/2):

j—2k
MTy5k = YOQ”*@*A"”QJ*1Y0T21n4+2j71 H 2n—£—4k—2a+2j—1
a=1
(—2k
X H 72(a7j+2k)+1’
a=j—2k+1

(2) jisodd and k= (j —1)/2:
—j+1
mry,i-1)/2 = Yo2n—0-3Y 02n 0425 — 1n2n —1 H a3’
(3) jis even and k > j/2:

-1 -1
Mgk = Yoe-ak+2j41Y0 11 Y0,20-0-1Y0 201951
{—2k

o | R
a=1

(4) jisodd and k> (5 +1)/2:

Mgk = %76_4]“"‘2]"5‘1}/0 2n—0+25— 1}/17@+1Y1,2n—€—1
L2k

< T Lo s aisngr
a=1
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For ¢ = k/2 we set Boj_¢n—¢—1 = {0} and define my,;; by the same
formula as in (3), (4) where the last product is understood as 1. We extend
the definition of my,; for all j € Z so that mqp.j 1o = Ton_2mr,j k-

We describe the action of €&, fo. We get that éo(mr,; k) is equal to

(i, o1 )3 k1 it iy =2 and i op1 7 2,
Moy o BT -2 k-1 182 2, o) 7 2 and k>0,
Mg, i0,3=11)3j—1,0 if iy 22,42 £2,4¢ £ 2 and k =0,
0 otherwise,

and that fo(mT;j,k) is equal to

TN(1,2,i1,... 50— a%)i5,k—1 if 41 ﬁ 2, tp_ok_1 % 2 and k > 0,
Mg ono)ij42,k+1  If de—op—1 = 2 and ig A 2,

3 Tpivis )0 i1 A 2041 F 2,00 = 2 and k =0,
0 otherwise.

my

So all monomials of M(Mjy) are connected to either M;; (0 < j < £,
0 <k < |¢/2]) or their T9,_2 images in the Ip-crystal, thus

M(Moo)/Ton—2 = |_| My (Mjp).
0<j<¢,0<k<|¢/2]

Moreover for 0 < j </¢—1,0<k < |¢/2| we have

-1
(z¢) (mT;jvk) = My opj—okn—e—1(T)j+1,k:

We have T, 2 = ()¢, and all monomials in M(Mo)/Ton—2 are written
as mr.; . The crystal automorphism z, is given by 7'[_1% %k n—t—1-
So we get

B, (w1) if £ is odd,

B(W (wy)) ~ Biy(wy) U By (wp—2) L --- U {BIO(O) if £ is even.

Our crystal structure described here is probably the same as one in [24]
if we use the isomorphism between our By and Kashiwara-Nakashima’s
tableaux [23] in [15]. Note that the uniqueness of the crystal base of W ()
was proved in [24].
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5.2.4. Finally we consider the case ¢ = n. Let M = TLOYO,_nl—l‘ It
follows from Corollary 3.3 that M(M) ~ B(wy).
Let
(Y11 if i =1,
Y1T1+1Y2,pyojp1+1 iti=2,
p = Y;:i,p—&—i—lygvlﬂri*? f3<i<n-— 17

1 e
Yn—l,p+n—1 if i =mn,
Yo pin ifi=0,
Yoptontr ifi=1,
i, =141 if2<i<n-—1,
—92 op -
LYn,p-HH-? if i = n.

Then the monomials appearing in My, (M) are mp = HZ;I n o g ASSO-

ciated with a tableau T' = (i1, ...,iy+1) satisfying the conditions
(1) iq €B, i1 <ig <+ < ipy1,
(2) i and 7 do not appear simultaneously.

We have z; = 7_4. We describe the action of €, foz we have

X Ta(My, i 3ny) iz =2,
enl(m — yeensln4-1,4,
o(mr) {0 otherwise,

; Ta(M(1,2,01,in_)) i Gn =2,
my =
Jo(mz) {0 otherwise.

So all monomials in M(M)/74 are written as my. As an application, we
recover a known result B(W (wy)) = By, (wy).

By the condition (2) there is always an entry i, = 0. If we remove this
entry, we get the tableaux description in [23].

5.3. Type 07(11)

Let B={1,...,n,m,...,1}. We give the ordering < on the set B by

1<2<--<n<n<--=<2<1.

For p € Z, we define

p = Y1 pyi¥ip+ict (1<i<n),
P - iil’pH”*iYi;ﬁﬂnH—i (1<i<n)
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5.3.1. First consider the case £ = 1. Let M = Y7'V1 0. It follows from
Corollary 3.3 that M(M) ~ B(wy). The crystal graph of M(M) is given
in Figure 4. We find 79, = zgl and M(M)/ron, = My, (M).

1 2 —1 -1 2 1
S ERCE— Ll e b

Figure 4: (Type 07(11)) the crystal B(w)
5.3.2. Preliminary results for crystals of finite type C

Let 1</ <n,0<r<n-—/{and 0<h </ Consider the monomial

—1
Mf,h,r = Yh,é*th’[7h72rn,72T

= (—1—3 o '—2h+1)
X (—2h—2r—1—2h—2r—3 o '174721”)

h L
=)o 1 [ -
—2p+1 +1—-2p—2r
p=1

p=h+1

For T' = ((i1,...,p), (ih+1,- - -,%¢)) such that i, € B, we define the mono-
mial

=1l al2 37" "L p—op 1™ty 1 —op 2,2l op 30, L p1-2r

Let Cyp,» be the set of tableaux T' satisfying the following conditions

(Cl) iq € B, i1 <i9 < -+ < 1p, and Thel = thya < -0 < Gy

(C.2) There is no pair a, b such that 1 <a < b < h and i, = k, i, = k and
b—a=n—k.

(C.3) There is no pair a, bsuch that h +1 <a<b</land i, =k, i = k
and b—a=n-—k.

(C.4) There is no pair a, b such that a < h, h+1 < b, i, = k, i = k and
b—a=n+1—max(r,1)— k.

(C.5) Suppose that ipr 1 = k € {1,...,n} and iy, = ippq. Then i = K is
also in {1,...,n}, and the successive part (k/,k’ —1,...,k) appears
as (ly, iy 41,-.-,0p) Withn —r—k+1<b—h<n-—k.
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(C.6) Suppose that iy, 1 = k € {I,...,7} and s = ip11. Then ip = K is
also in {1,...,7m}, and the successive part (k’,k’ +1,... k) appears
as (lg/ylg/41y .- s0q) Withn—r—k+1<h—a<n-—k.

Note that the conditions above are the same as the ones in [15] when
r = 0. Note also that we only have r = 0 when ¢ = n.

For T = ((i1,...,in), (int1,---,%0)) € Cpp, we define the tableau
Te.hr(T) in the following three cases separately.

(C.a) ipr1 =k € {1,...,n} and there is an entry i, = k withn—r—k+1 <
b—h<n-—k.
(C.b) ipy1 =k € {1,...,n} and there is an entry i, = k withn—r—k-+1 <
h—a<n-—k.
(C.c) Neither (C.a) nor (C.b) is not satisfied.
In the case (C.a), let b” such that (iyr,iyr41,...,%) are successive as
(K" k" +1,...,k) and iyr_1 # k” — 1. We have k" < n — 1. We set
Tg7h7r(T) = ((il, T k' + 1),
(ih+2, e i1, KT+ 1,@, vk + 100, ,ig)).

Similarly in the case (C.b), we take i,» so that (igr,igri1,...,%,) =
(K" K" +1,... k) and i,v_1 # k" — 1. We have k < n — 1. We then set

Tf,h,T(T) = ((ih ooy lar—1, K" — L.k — Lidat1s---sin, K" — 1)7
(tha2y---yi7)).
In the case (C.c) we set
Tonr(T) = (i1, -+ s ing1), (s, - - - 0)).
THEOREM 5.8. (1) The map T — myp induces a crystal isomorphism
between Cyp,, and My (Myp.r).

(2) 7oy induces a crystal isomorphism  from My, (Mgp,) to
My (Mg psir)-

5.3.3. Now we study B(wy) for 1 < £ < n. Let My = Y;0Y; )} =

7173 . ~17£. It follows from Corollary 3.3 that M(My) ~ B(wy).
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For 0 < j < /, let us define the monomial m7,; associated with T =
(GGt vy 00—j), (Be—jg1s- -1 %0)) € Cro—jm—e by

(—j ¢
mrij = H —2j+€+1—2a X H 3£+1—2n—2j—2a'
a=1

a=l—j+1

We extend the definition of mr; for all j € Z so that mr. ;1o = To,mr;.
We describe the action of €y, fo by computation on monomials. We get
that éy(mr;) is equal to

m(i27...,il7T);j+1 1f 7;1 =1 and Z[ # T,
0 otherwise,

and that fb(mT;j) is equal to

M1, ip 1)1 i i1 # 1 and ig =1,
0 otherwise.

We have 1, = 2, ¢ and all monomials in M(My) /Ty, are written as
my.j. The case £ = n is exceptional. We have 1o = 2,1, so M(Mp)/m2 ~
B(W (w,)). The P-crystal automorphism z; is given by 7'[741_]._17“_ ‘-

As an application, we have

B(W(YD[)) ~ Bfo (Wg)

A conjectural description of the crystal of B(W (wy)) was proposed in

[36]. As their description is given by relating the crystal to an Agln) 41-crystal,

it is not clear, at least to authors, whether their conjecture is true or not.

5.4. Type Agg (n>1)
Let B={1,...,n,7m,...,1}. We give the ordering < on the set B by

1<2<--<n<n=<---<2<1.
For p € Z, we define
_ -2 e —1
p - }/LP}/O,erl’ p - }/E),p+2n—1Y1,p+2n7
) -1 .
p =Yiptri-1Y; 1 pps (2<i<n),

p = ifl,p+2n7iy;;}|_2n_i+l (2 <i<n).
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5.4.1. First consider the case £ = 1. Let M = Y170Y07_12. It follows
from Corollary 3.3 that M(M) ~ B(wy). Let M' = éy(M) = }/b,_l%}l.

The crystal graph of M(M) is given in Figure 5. We find 79, = 2, L and
M(M)/Tgn = M]O(M) (| M]O(M,).

e
1 2 —1, —1 2 1
e P —{2 {1},

/

Figure 5: (Type Agi)) the crystal B(w:)

5.4.2. Now we study B(wy) for 1 < ¢ < n. Let Myy = YMY(')}Q

= _1_3 . '1—(‘ It follows from Corollary 3.3 that M(Mg) ~
B(wp).

For 0 < j </,0 <k </, let us define the monomial mr.;; associated
with T = ((41,. .. ,ig_j_k), (ij—2k+17 ceyio—g)) € Co—kp—j—kn—e Dy

(1) 0<k<l—j—1:

1—j—k
—1 .
mrijk = (Yo f2jY0,€—2j—2k) H —2j+€+1—2a—2k
a=1

—k
X H 3€+172n72j72a72k’

a=0—j—k+1
@) —j<k<l-1:

_ 1 1
sk = (Yo, 0;%0,-0Y0 100 Y0,~2n-+30-2j-2k)
l—k

X H 3£+1—2n—2j—2a—2k’

a=1

For k = £ we set Cy_jn—¢ = {0} and define my;; by the same formula
as in (1), (2) where the last product is understood as 1. We extend the
definition of mr.; ;. for all j € Z so that mr.j ¢k = Tonmr.j k-
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We describe the action of &g, fo. We get that éo(mr,j k) is equal to

m(iQ,,,,7i£7k);j,k+1 if Z'l =1 and if—k‘ ;é T,
My ip— e D)1, k—1 ifi; # 1,4 #1 and k > 0,
0 otherwise,

and that fo(mT;M) is equal to

My, e go1)ij—tk+1 if i1 # Land iy =1,
V(1 iy oip)ijik—1 ifiy #1, 49— # 1 and k > 0,
0 otherwise.

We have 73, = (2)~¢ and all the monomials in M(Mo)/T2n are writ-

ten as mr.j. The case £ = n is exceptional. We have 7o = 2z, L so

M(My) /12 ~ B(W (w,,)). For ¢ # n, the crystal automorphism z, is given
by 7,7 = jmk—1n—t" As an application, we have

B(W(YD[)) ~ B[O(Wg) (] B[O(ngl) L. B[O(wl) ] B[O(O).
A conjectural description of the crystal of B(W (w/)) was proposed in

[36]. As their description is given by relating the crystal to an A(QQ y1-crystal,
it is not clear, at least to authors, whether their conjecture is true or not.

5.5. Type Agzﬁ (n>1)
Let B={1,...,n,0,7m,...,1}. We give the ordering < on the set B by

1<2<--<n<0=<n<--=<2<1
For p € Z, we define
L], =Yl Yiprin (1<i<n—1),
p = Ynill,p+nY7’?,p+n—17
IZ|p - Yn—7131+n+1Y”7P+”—1’
(7], = Yoorptn¥ooinin
i ] =Ygt iV hon s (1<i<n—1).

5.5.1. First consider the case £ = 1. Let M = Y71 0. It follows from
Corollary 3.3 that M(M) ~ B(wy). The crystal graph of M(M) is given
in Figure 6. We find 72, = 2z, * and M(M) /72, = M, (M).
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1 2 —1 —1 2 1
L -le ] e [ P I e [ —{2 {1},

Figure 6: (Type AgQ)T) the crystal B(w)

n

5.5.2. Now we study B(wy) for 1 < ¢ < n—1. Let My = Y&OY(';; =

_1_3 . '1—(' It follows from Corollary 3.3 that M(My) ~ B(wy).

For 0 < j < /, let us define the monomial my,; associated with T" =
((i1y- v yto—j), (B—jg1s- - 1%2)) € Bro—jn—s by

—j ¢
mrsj = H 72j+z+172a X H 3Z+172n72j72a'
a=1 a=0—j+1

We extend the definition of my,; for all j € Z so that mp. ;4 = Topmy,j.
We describe the action of ég, fo by computation on monomials. We get
that éy(mr;;) is equal to

m(i27...7i£7T);j+1 lf 7;1 =1 and Z[ # T,
0 otherwise,

and that fo(mr.;) is equal to

m(17i17___7i£_1);j_1 if Z'l ;é 1 and ig = T,
0 otherwise.
We have 7o, = z[z and all monomials in M(My) /72, are written as mr;.
The P,-crystal automorphism z; is given by Te_,él—j—l,n— ¢~ As an application,
we have
B(W (wy)) ~ Br,(wg).

A conjectural description of the crystal of B(W (wy)) was proposed in
[36]. As their description is given by relating the crystal to an Agln) 41-crystal,
it is not clear, at least to authors, whether their conjecture is true or not.

5.5.3. Finally we consider the case { = n. Let M = Yr?,oyo_gl =

n_ln_3~-1_n. It follows from Corollary 3.3 that M(M) ~

B(wy,). Let us define the monomial mp = [])_, n+ 1o, associated with
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T = (i1,...,iy) satisfying (1) i, € B and iy < 42 < -+ < i, but 0 can
be repeated, and (2) there is no pair a, b such that i, = k, i, = k and
b—a =n— k. The above exhausts all monomials in M (M) (see [15,
Proposition 2.10]). We describe the action of &, fo on these monomials:
we have

éo(mrp) = To2(mg,, 1) ifi1=1and i, #1,
’ 0 otherwise,

~ {Tg(m(17il"”’in_l)) if Zn = T and il 7& 1,
0

otherwise.

So the above exhausts all the monomials in M(M) /7. We have 75 = 2,1, so

M(M) /1y ~ B(W (w,)). As an application, we have B(W (w,,)) =~ By, ().
Note that o, is identified with the twice of the n'" fundamental weight of
9Io-

5.6. TypeA 1 (n>3)
Let B={1,...,n,m,...,1}. We give the ordering < on the set B by

1<2<--<n<n<--=<2<1.

For p € Z, we define

1 1 1
= Yopr2¥1p, = Yo pr2Y1pra¥apt1,
= Yil p—‘,—zYyp‘H'*l (3 S 7 S n),
p =Y 1pton— ZY@;—FQH-H , (3<i<n),

p = Yopton—2Y1pr2n—2Ys pron_1> p = Yopton—2Y1 ) on-

5.6.1. First consider the case £ = 1. Let M = YLOYOle. It follows from
Corollary 3.3 that M (M) ~ B(w;). The crystal graph of M (M) is given
in Figure 7. We find 79,,_5 = z[l and M(M)/ropn—2 = My, (M).

5.6.2. Now we study B(wy) for 2 < £ < n—1. Let My = }QOYM 1

Y0_€+1 - 7173 o '174- As fafs-- fé(MO,O) - Y0£+1Y07€—1Y1,e
Yi41,1, we see as in Proposition 3.4 that M(Mg ) ~ B(wy).
For0 < j < ¢,0 <k < {/2,let us define the monomial m,; j, associated

with T = ((i1,...,%j-2&), ((j—2k+1, - - -y i0—2k)) € Co—2k j—2k,n—t—1 bY
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0[2n—2]

1 2 —1, —1 2 1
B e el e —{z2 {1},

H

Figure 7: (Type Aé?z)—l) the crystal B(w)

(1) k<[j/2):

j—2k
. ‘ -1 .
MTsjk = %72"*@*4’”23*1Y0,2n—£+2j—1 H 2n7£74k72a+2j71
a=1
=2k
x H —2(a—j+2k)+1’
a=j—2k+1
(2) jisodd and k= (j —1)/2:
—j+1
_ —1 ‘ .
mr;j,-1/2 = %72”—5—3%,271—5-1—2]'—12n7Z71 H —2a+3’
a=2

(3) jis even and k > j/2:
=Y Y LY 1
mrjk = Y0,0-4k4+2j+140 ¢4110,2n—L—110 2n—p425-1
-2k

X H 72a74k+2j+1’
a=1

(4) jisodd and k> (5 +1)/2:

_ -1 —1
NIk = Y0,0-ak+2j+1Y0 21251 Y1 04112001
-2k

< T Lol saaisngn
a=1

For k = £/2 we set Cg j_¢n—r—1 = {0} and define myg,; ;. by the same formula
as in (3), (4) where the last product is understood as 1. We extend the
definition of mp.jk for all j € Z so that M0k = Ton—2MT;j k-
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We describe the action of &g, fo. We get that éo(mr,j k) is equal to

Mg, i on)sjik+1 if iy = 2 and ip_ok—1 7 2,
Miyoip_o 2 D)sj—2,k-1 if 12 A2, dgop £ 2 and k>0,
My, ... i0,3=01);j—1,0 if iy 2,40 £2,4 % 2and k=0,

0 otherwise,
and that fo(mT;j,k) is equal to

12,01, o)ijk—1 AL 01 A2, ig_op_1 % 2 and k >0,
MM(i,ie—ok—2)ij+2,k+1 if ig_op—1 = 2 and iy ﬁ 2,
Msrmiroir et i1 A2 i1 2 i = 2and k=0,
0 otherwise.

We have 79,5 = (2¢) ¢, and all monomials in M(Mo)/Ton—2 are written
as mr; . The crystal automorphism 2, is given by 7'[_1% %k n—t—1" As an
application, we have

B[O(wl) if £ 1is Odd,

B(W (wy)) ~ Bry(we) U Bry(we—2) U - - - U {510(0) £ 0 s oven.

A crystal base on W (wy) was constructed in [12]. A key fact used there
is that W (w) remains irreducible when it is restricted to U,(g) for the
finite dimensional Lie algebra g obtained by removing the vertex n. They
showed that the crystal base for the restriction is preserved also by €,, fn
By the uniqueness of the crystal base for an irreducible U,(g)-module we
conclude that their crystal base is isomorphic to the B(W (wy)). However
their description of the Kashiwara operators was given in terms of g, it is
not obvious to compare our description to theirs.

5.6.3. Finally we consider the case £ = n. Let My = Yn,OYOTn{l =

| Eln—i—l—Qa' It follows from Corollary 3.3 that M (M) ~ B(wy).
For 0 < k < |n/2], let us define the monomial mq.;, associated with

T = (i1, in—2k) € Cr_ok0,0 by

n—2k

_ -1 :
Mk = Yo n_1Y0nt1-4k X H n+1—4k—2a’
a=1

where the case n = 2k is understood as before.
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We describe the action of &y, fo. We get that €o(mr.) is equal to

My(is,...in_ok)ik+1 if iy = 2 and in_ok—1 7 2,
Toa(My i aiyk—1) i G2 A2, ip—ox 2 and k >0,
T_g(m(i%“’imﬁ);o) if iy 22,00 £2,4, #2and k=0,
0 otherwise,

and that fo(mT;k) is equal to

T1,2,41, iy o )ik 1 if i1 A2, ip_ok—1 7 2and k>0,
Ta(Miy i o o)ikt1)  if in_op—1 = 2 and i £ 2,
T2(Ma_7ir g o) 01 A 201 £ 2,0 = 2 and k =0,
0 otherwise.

We find that z; = 7_2 and the monomials appearing in M (M) /7o are
written as mq.,. As an application, we have

B, (w1) if ¢ is odd,

B(W (w¢)) ~ Byy(woe) U Bry (we—2) L -+ - U {310(0) if ¢ is even.

5.7. Type Dq(i)_l (n>2)
Let B={1,...,n,0,7,...,1}. We give the ordering < on the set B by

1<2<---<n<0<n=<---<2<1.

For p € Z, we define

Yl,pYo p+D

_YW Yl (2<i<n—1),
Y_ 1 p+nYn p+n—1s

Izlp = Yopn-1Yy, I}+n+17

p = nfl,p+nynip+n+17

p = Li—1,p+2n— ZY;—}—Qn i+1 (2<i<n-—1),

p = YE)2,p+2n— 1 }/1,p+2n .
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Iy R Iy g [T,

Figure 8: (Type D7(12421) the crystal B(w)

5.7.1. First consider the case £ = 1. Let M = YLOYOTE. It follows
from Corollary 3.3 that M(M) ~ B(wy). Let M’ = & (M) = Yo 1Y
The crystal graph of M(M) is given in Figure 8. We find 79, = 2, ' and
M(M)/Tgn = M]O(M) U M[O(M,).

572.NMVWHMMyB@w)brlgﬁgrw—L]mtﬂhozlaﬁﬁf:

7173~--14. It follows from Corollary 3.3 that M(Mpo) =~
0)-

B(w
For 0 <j </,0<k </, let us define the monomial mr.; associated
with T = ((i1, ..+, 0—j—k)s (le—j—k41s- - 00-k)) € Br_gp—j—kn—t Dy

(1) 0<k<l—j—1:

1—j—k
_ -1 ) ;
mrijk = (Yo, 72]'}/(-]75*%*2]“) H —2j+€+1—2a—2k
a=1
1—k
x H 3€+1—2n—2j—2a—2k’
a=0—j—k+1

(2 t—j<k<l—1:

-1 -1
mrijk = (Yo =0 Y0,~0Yg 0, Y0,~2n+30-2j—2k)

—k
X H 3€+172n72j72a72k'
a=1

For k = £ we set By _jn—¢ = {0} and define my,;; by the same formula
as in (1), (2) where the last product is understood as 1. We extend the
definition of mr.; ;. for all j € Z so that mr.j 1ok = Tonmr.j k-
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We describe the action of &y, fo. We get that éo(mr,j k) is equal to

Mg )id k41 if i =1and i # 1,
My i Tk i # 1 gy # T and k>0,

0 otherwise,
and that fo(mT;j,k) is equal to

Mo 1)ij—1h1 31 # 1Land dg_p =T,
m(l,’il,...,i[,k);j,kfl if ’L.l ;é 1, 7;@,]{ ;é 1 and k > 0,

0 otherwise.

We have 79, = (z)~¢ and all monomials in M(Moy)/T2n are written as
mr.; k- The crystal automorphism z, is given by Téilk k1t As an
application, we have

B(W(YD[)) ~ B[O(Wg) (] B[O(ngl) L. B[O(wl) L B[O(O).

A conjectural description of the crystal of B(W (wy)) was proposed in
[36]. As their description is given by relating the crystal to an Agln) 41-crystal,
it is not clear, at least to authors, whether their conjecture is true or not.

5.7.3. Finally we consider the case f =n. Let M = Yn,O}/E]TTLl- It follows
from Corollary 3.3 that M (M) ~ B(wy).

Let
—1 . .
Yo pri1Yipti—2 f1<i<n—1,
P -1 ap .
p - Ynfl,ernfl if i =n,
Yn,p+n if 1 = 0,
i, =41 if2<i<n-—1,
)| e
Yoptnie ifi=mn.

Then the monomials appearing in My, (M) are mp = HZill n Lo g ASSO-

ciated with a tableau T = (i1,...,i,+1) satisfying the conditions

(1) iQEB, i1-<i2-<"'-<in+1,

(2) i and 7 do not appear simultaneously.
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We describe the action of €, fo on these monomials. We have

. T2(My 1) =1
enlm — PR A () )
o(mr) { 0 otherwise,

: (M, i) if Gy =1,
mr) =
folmz) {0 otherwise.
We have 7 = (z;)~! and the above monomials are those appearing in

M(M)/73. As an application, we have B(W (w,,)) ~ B, (wy).

§6. Finite dimensional crystals — exceptional types

In this section we treat all exceptional cases (except some nodes of
type Egl), EE(;I), and for one node of type Eé2) where we do not get the
decomposition in Iy-crystals at this moment). We enumerate the nodes of

the Dynkin diagram as explained in Section 3.2.

6.1. Type Egl)
Recall Vi, (A) denotes the irreducible U, (g, )-module with the highest
weight A. To save the space, we write 7, instead of Y;, in some places.

6.1.1. Let ¢ be a nonzero vertex with ay = 1, i.e., £ = 1 or 5 for Eél)

and ¢ = 6 for Eél). In these cases it is known that the corresponding level 0
fundamental representation W (wy) is restricted to the irreducible U, (g, )-

module Vi, (wy). Let us consider M (M) for M = Y&OYO_(}(Z where 0, is the

distance of 0 and ¢. By Corollary 3.3 we have M (M) ~ B(w;). Moreover
an explicit calculation shows that Yf,pyo_elg +p = Tp(M) appears in M(M)

where p = 6 for Eél) and p = 8 for Eél). By the weight calculation we have
2 = T_p. Hence M(M) /1, ~ B(W (w/)). We can check that all monomials

are connected to some Tév (M) in the Ip-crystal. This recovers the above

mentioned result that W (wy) is restricted to Vi, (wy).

Let us explain the Eél) case for an illustration. Let M = Y570Y0T41. Then
a calculation shows that the following 27 monomials appear in By, (M):

50051, 41551051, 3245101, 63233;10, 1, 65123, 146325107,
1465125134, 1516305 ", 1565734, 1435 45, 1512535 45, 1445156,
2 M5, 1512547156, 14557, 2713647 56, 1512555, 6735 56,
2- 13655 ", 65 5608, 6735 '4755", 64 4755105, 674g ", 64 '3g4y 0s,

20310 0s, 11021, 08, 175 0s.
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Applying fo to 655608, we get 5607, = 76(M). It is also clear that all
monomials are connected to either M or its 7¢-images in the Iy-crystal.

Remark 6.1. (1) For a level 0 fundamental representation W (wy) the
corresponding quiver varieties are moduli spaces of vector bundles of rank
ap on ALE spaces. In particular, they are moduli spaces of line bundles for
the cases studied here. Then each component is a single point, and it is a
geometric reason why W (wy) is restricted to the irreducible representation

of Uy(gr,)-
(2) This crystal has been studied in [27].

6.1.2. Let £ be the vertex adjacent to the vertex 0, i.e., £ = 6 for
Eél), 1 for Eél) and Eél). We have ay = 2. It is known that W (wy) is
restricted to the direct sum of the adjoint representation Vi, (wy) and the
trivial representation Vi, (0) of Uy(gs,). We can check this, for example, by
using the algorithm for the t-analog of g-characters [29]. All the coefficients
of monomials are 1 except one, whose coefﬁcient is 14 t2. The exceptional
monomial is Y35Y3 for E( ) YggY3 for Eé ) and Yj 14Y5 116 for Eél), if
the [-highest welght rnonornral is Yy 0.

Let M = Yg,OYOTllYEfpl where p = 5 for Eél), 7 for Eél) and 11 for Eél).
We have
fsfeM = Yi2Ya2Ys3 Yis,
D fafaf1M = Yr3YasYs Yo7,
s fsfufsfafiM = Yo 5Ys 5Yse Yoih-
By the same argument as in the proof of Proposition 3.4, we see that M is
extremal. Therefore M(M) ~ B(wy). A direct calculation shows that the

monomial corresponding to the lowest weight vector in the adjoint repre-
sentation is m = Yé thO nV—pYopv—1 Where hY is the dual Coxeter number,

ie., BV = 12 for Egn, 18 for BV and 30 for E{". Applying fo to m, we
get Y07hv,pY0_hlv 41, which corresponds to the trivial representation

We have foég'm Yb v +2Yg B —p+1 Yo pv — 2Y hV—1> where ¢ is the ver-
tex adjacent to ¢ different frorn 0. A direct calculation shows that

Yot —py) 2 Y0 (hV—p1) 2o (0 p-5)/2 Yy (v psy 2 = T— (¥ —p+1)/2(fo€em)

is in My, (M). (Note that (h¥ — p+1)/2 is 4 for E{", 6 for EXY and 10
for Eél).) Therefore 7(,v_p,41)/2(M) is contained in M(M). The weight of
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T(hv—p+1)/2(M) is equal to wt(M) — 0. Therefore this is z; 1 (M) and we
have 7(,v_pi1y/2 = zg_1 and M(M) /T4y —pi1)/2 = B(W (wy)).
We can also check that M(M)/7,v_pi1y2 = My (M) U {Yynv—p
Yojhlv 1) Therefore we recover that W (cwy) is restricted to Vi, (@) © Vi, (0).
Let us give Eél) case for an illustration. The following monomials
appear in M, (6007105 1):
60071051, 65131051, 2035140051, 132, 14905 1, 204,15505 7,
15049051, 132,1334, 153051, 20551051, 151334, 15305,
136435 '5305 ", 132513355 1051, 151642435 155051, 15133551051,
1365 *53, 136435 44551051, 156512453, 6425155057,
1564243514455 1051, 1365144551, 1364451051, 651253553,
1506512444551, 6425144551051, 1516424451051, 136513545,
314653, 65125 1354455 1, 15165 1243545 1, 6425135451051,
1326371, 4515357, 37144debs !, 65125132451, 1512426377,
646637 1051, 1317251, 535!, 444515157, 35371, 151172425
64651051, 13150, 445515571, 3545145 57, 662637 %46, 172512535,
65165 13507, 15115124, 35451551, 662637 '45 157, 6572637 14407,
176625 137 46, 15125135, 662637155 1, 652645 "5707, 176512514407,
176625 145 '57, 1516637 146, 65 2655 107, 1765125 374515707,
156514607, 176625 1551, 1516645157, 1765 2513755107,
1565374515707, 173515707, 156654 ", 1565 3755107,
151283515707, 17351455507, 1512835 4854 107, 2795707, 1747507,
2104859 107, 151254707, 2730475 07, 61037707, 675 0701;.
There is 64663, 105_1 as claimed. We can also check that all monomials

are connected to either M, 0701*31 or their 74-images in the Iy-crystal.

Remark 6.2. (1) In this example, the corresponding quiver varieties
are either a single point or an ALE space of type E,. The graded quiver
varieties, which are fixed point sets of a C*-action, are single points or
a complex projective line. The latter gives the monomial with coefficient
1+ 2.

(2) The crystal structure here is isomorphic to one studied recently in
[3]. As the crystal graph is connected, we conclude that the crystal base
constructed in [3] are isomorphic to B(W (wy)).
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6.1.3. Let g = Eél) and ¢ = 2. The t-analog of g-character of W (w2)
has 351 monomials among which the following 27 monomials have coeffi-
cients 1+ ¢2 and others have 1:

3335 153, 3335144551, 33dgt, 642435144451 651244445,

156425 144dg !, 1565125 ' 3544dg ", 171644445 ", 17765 1354445,

1537 M4y, 17263714y, 15353714555, 251 4a, 171263537 145155,
1535371521, 2013545155, 1712635371551, 25735571, 662625 137 155,
662625 137 14657 1, 652625 155, 6512625 46571, 662625 145",

65 2625 3745 ", 2635, 1725137357, 1513735

From this (or by other methods) we can see that W (w2) is restricted
to Vi, (w2) & Vi (w5).

Let us consider the monomial crystal M (M) with M = 250305, From
fﬁ fg ng = 114261105_1, we see that M is extremal by the argument in the
proof of Proposition 3.4. Therefore M(M) ~ B(w3).

There is a monomial

in My, (M). We have €96366 fom = 15115220g10§1. By the weight calcula-
tion, we find that this is z, ' (M). Let us denote this by M.
In My, (M;) we can find a monomial

We have é283¢ forn' = 2605 071" = 76(M). This is equal to z, 2(M).
We have

in M(M). Write this Mo,;. Then My, (Mo,1) consists of the following 27
monomials:

53077, 4455707, 354 1011, 662635707, 6512607017, 1766251077,
1765 1251370707, 1516607, 151651370707, 17351450701,
1512835 1450707, 174795907077, 275480707, 1128474 590707,
175170707, 279 39479 5907077, 1912577 07077, 2753957 07077,
610311 5907011, 610371 410571 0707}, 6155007077, 6754105, 07,
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610415 07017, 675311475 07, 212373 07, 11327407, 17507

consists of

151551051, 1511540571051, 1511531451051, 1511529356205,
15M5206,105 1, 152, 162051, 1525336, 03051, 1512,1266205 ",
1712126336, 10305 1, 15351440305, 171263544030, 1,

1545 15503051, 25135 1374403051, 1512645 15503051, 155510305,

25 13745 1550305 1, 171265103051, 251375510505,

39 1dg 14855650305 1, 3514571650305 ", 45 1ds5567, 03, 4857 167503,
47557 159680305, 39474 57 15961903, 21037157 5903, 111275 57 '5903,
11457 15903.

These have different weights, so there is only one way to make a bijec-
tion to the above polynomials with coefficients 1+ ¢2 preserving weights. It
is the bijection given in order.

Also it should be possible to make the bijection between M, (M) and
My, (M) explicit, though we do not do here, as both are 351 monomials.

Thus we have

M(M) /76 =2 My (M) L My, (M) U My, (Mo) U M, (M),

and we have a crystal isomorphism 7 interchanging M, (M) < My, (M)
and My, (Mo,1) < My, (My,1). These follow from the known results, but
should be possible to check directly from the above computation.

6.1.4. Let g = Eél) and ¢ = 3. It is known that W (w3) restricts to
Vfo (w;»,) D Vfo (w6)®2 D Vfo (wl + W5) D Vfo (0) as a L{q(gjo)-module.
Let M = 300,'0;,'05'. We have

By the same argument as in the proof of Proposition 3.4, we see that M is
extremal. Therefore M(M) ~ B(w3s).
We have
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in My, (M). Then

E36462838686 forn’ = 32071051051 = mo(M).
By the weight calculation, this is z, Y(M), so we have zy = 7_5 and
M(M) /o = B(W ().

Let
My = éséoma(M) = 6,05 105"
Then My, (M) is the crystal of the adjoint representatlon of gr,. By 6.1.2
the lowest weight vector is 613 08012 % 0208 = 613 02012. Applymg T_ Qfo,
we get Mo = 00012 Applying fo again, we get M3 = 6102 012 Looking at
monomials in 6 1.2, we find 1467 5406012 in Mj,(Ms). Applying fo, we get

My = 145408 012 This monomial generates the Iy-crystal of Vi, (w1 + ws).
Thus

M(M)/TQ = M]O(M) I_IM[O(Ml) LIM[O(MQ) |_|M[O(M3) LIM[O(M4).

This follows from Res Wy(w3) ~ Vi, (w3) BV}, (we) P2 DV, (ww1+w5) BV, (0),
but it is probably possible to check directly from the above computation.

Remark 6.3. The authors do not find the last two examples in the
literature. One can probably check their perfectness, though we have not
done yet.

6.2. Type Ggl)

6.2.1. First we consider ¢/ = 1. Let M = YI,O%}IYOT;- As fi(M) =
Y1T21Y23’1Y0j31, we see as in Proposition 3.4 that M(M) ~ B(wy).

As €1838260fiM = T_o(M), M(M) is preserved under 7_5. It has
weight 0, so zy = 7_2 and hence M(m) /1o >~ B(W (wy)).

Let M' = é(M) = Yy, 14 . We have My, (M') = {M'}. The follow-
ing 14 monomials appear in M, (M):
1,07 031, 231 *103;1, 212;1051, 2125715051, 25713051, 212315, 121;1,
21251, 1;72303, 2572512, 2525117705, 2325203, 2570314, 030514

By direct calculation, we find that these 14 monomials and M’ are all
monomials of M(M)/m,. As an application, we get

B(W(WZ)) ~ B[O(WZ) (] B[O(O).

This crystal was described in [38], [3]. The crystal base is isomorphic
to ours by the same reason as in 6.1.2.
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6.2.2. Now we consider the case £ = 2. Let M = ngoYO}l. It follows
from Corollary 3.3 that M (M) ~ B(w;). The following 7 monomials appear
in My, (M):

M =200y, mo = 112,101, mg = 15123, my = 227",
ms = 25 %13, me = 152404, my = 251 04.

The crystal graph of M (M) is given in Figure 9. We find z; = 7_4 and
M(M) /14 = My, (M).

The authors do not find a description of this crystal structure in the

literature (probably because it is not perfect), but one can easily obtain it
from the description of its Iy-crystal structure in [16].

0[4]

M — My — M3 — My — yj — Mg — M7

Figure 9: (Type G(Ql)) the crystal B(ws)

6.3. Type F4(1)

6.3.1. First let = 1 and M = YLOYOQIY()?. We have fgflM =
YOjIYQT;Kf,Q and so we see as in Proposition 3.4 that M(M) ~ B(wy). As
E16963E36983E369618180fLM = T_4(M), M(M) is preserved under 74, which
has weight §. Therefore we have zp = 7_4 and M(m)/74 ~ B(W (wy)).

Let M' = éy(M) =Yy 1Yy, . We have My, (M') = {M'}.

The following 52 monomials appear in M, (M):

10071051, 15121051, 25182051, 303, 143051, 233,24205 1, 32451051,
1,25 142051, 2337143451051, 15143, 142514345 13,051, 23452051,
1518443451, 1425145233051, 1435143051, 157253545, 15133452,
143435 7451051, 218645, 151253513445 1, 1425352051, 35 4743,
213634451, 15122352, 141627105, 49143, 3513445147, 25271,
1415107051, 3445140, 2535135 47, 1625232, 1511512507, 2535 457,
07157127182, 162713635147, 162713645 ", 153635 4707, 1635242,
1513640 107, 1635 d7dg ", 151273524207, 1527354745707, 164472,
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29 14207, 291384745107, 1512745207, 3744707, 2 3245207,
3831049 107, 2937707, 110211107, 135-0701;.
These 52 monomials, M’ and their 74-images are all monomials of
M(M). As an application we have
B(W(wl)) ~ B[O(wl) (| B[O(O).
The crystal base is isomorphic to one in [3] by the same reason as in
6.1.2.
6.3.2. Let us consider £ = 2 and M = Y0¥y, Yy /Y. We have

that M(M) ~ B(wy). As é636083¢x8385638%60 f1f3f3f1faM = T_o(M),
M(M) is preserved under 79, which has weight 6. Therefore M(M) /19 ~
B(W (wy)).

Let My = é1egM = Y0T41YE)T61Y17—1' The following 52 monomials appear
in My, (Ma):

11051051, 1712000051051, 25132000, 105, 313542000, 105",

2933243000, 105 1, 314,000,105, 1321430001051,

2035 14041000, 1051, 1514300051, 1325 1424, 133051000, 1057,

204, 2000, 1051, 15133434,10005 1, 152, 14,23305 1000, 1057,

1335 149051000, 1051, 1512435 14500051, 151334,20005 %,

13333514, 1000, 1051, 251354200051, 15124351334, 100057,

132435205 100051051, 35146420005, 25135334, 10005 !,

15122320005, 131525 1057000, 105 1, 45 14200057,

371334, 14600051, 242510005, 1317100051, 334, 14510005 ",

2435 1371460005 1, 152523200051, 1511772400051, 2435145100057,

1712513200, 152513537 1460005 1, 152513545 10005,

171353714600, 15372420005, 1713545100, 1537 1464510005 ",

171263224200, 1772637 464500, 154520005, 25 4200,

2g 374745100, 1712645200, 3414600, 25" 3245200, 373, "45 100,

2839 200, 1927500, 17;'00010-

Let My = €16283¢26763626160My = Y1, 5Y;¢ Yy 1. The following 52
monomials appear in M, (M3):

1-505107), 17324051, 27332505, 333714205, 2-237342,05 ",
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3_345 051, 1.12514%,05 1, 293714045051, 17142,0005 %,
1-125 14040 13-105 1, 2045205 ", 173149450005,
1125145232050, 1-13714 505", 1712037420005,
1713214520005 1, 1213137145105, 25131490005,
171203713145 10005 1, 1120372057, 3542450005 1,

25 1313149 10005, 1712337200051, 111125105, 4,450,005,
3313145 4200051, 2025100051, 1-11510205", 3_145"4,10005 ",
2037 135 1420005 1, 112523700051, 1711520020005, 2037 14,0005,
1525132000205 1, 112513135 1490005 1, 11251314, 10005,

1513135 149000205 1, 113524200051, 151314, 0200057,

1135 1404, 100051, 1512235243020005 1, 1572235 M404, 1020005 1,
114,20005 ", 25143090005 ", 25 *33424, 1020005 ", 1512242090005,
35149020005 1, 25 1324,2020005 1, 3335 14, 10200051, 24352020005,
15251020005, 1710200.

Yy 4. We have My, (My) = {My}. We do not give the list of monomials of
/\/iIO(M) and My, (Ms) (a total of 1598 monomials).

All monomials of M(M)/79 are connected to either M, My, Ms, My,
Ms5 in the Iy-crystal (it is possible to check from the above computation; or
it also follows from Res W (w3) = Vj, (w2) ® Vi, (1) P2 @ V1, (0) © Vi, (2004)).

6.3.3. Let us consider £ =3 and M = Y30Y; Y5 . We have fifofsM
= Y4,1}§72Y1T41Y0T51 and so we see as in Proposition 3.4 that M (M) ~ B(wy).
Let M| = €3626363¢16063¢363¢0 f1 fofsM = (Ya_1Y; Y5)Y3 _4Y;4 Y, Y. This
has weight wtM + 6 and hence zo(M) = M;. As ’ o

E38063E161898565€10 f1 fafsMy = Y3 _6Yy Yy Ly = 7_6(M),

M(m) is preserved under 74 and we have (z;)~? = 7¢.

the operators é;, it follows from zy(M) = M; that z,(Msz) = M.
The following 26 monomials appear in My, (Ms3):

4 3051, 30477051, 24351051, 1027130051, 1035141051,
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1513005101, 10451051, 15124351410510;, 1512,45105104,
25 1324105101, 2513345105101, 31414305101, 323,105 104,
4145105101, 233524305101, 3245145105101, 142514305104,
233, 145105101, 154301, 142513445105 101, 1513445104,
1435705101, 1572535101, 2713601, 3514701, 4570;.

The following 26 monomials appear in My, (My):

4147347031, 3647341473051, 2537341473051,

142733 441473031, 143734 103", 1733 4414730303,

1437330471051, 173233704 10305, 1752 3373304, 10305,

271394 103051, 2713_9304710_305 ", 3,54%,0_505",

2712139350305, 4147703051, 2135135410505,

3047203051, 19251351324_10_305", 21351470305,

1,135182410_3, 1925324710305, 1;1324710_3,

153, 14,1 4305051, 1,233,147 14503, 251344714503,

3¢ tdsdy 1450 3, 471471430 ;.

The crystal isomorphism z, is given in order.

It should also be possible to make explicit the bijection between
My, (M) and My, (M) (but we do not write it in the paper as there are
273 monomials).

All monomials of M(M)/1¢ are connected to either M, My, Ms, My

in the Ip-crystal (it is possible to check from the above computation; this
follows also from Res Wy(ws3) = Vi, (w3) & Vi, (w4)).

6.3.4. Finally consider £ =4 and M = Y470ij41. It follows from Corol-

lary 3.3 that M(M) =~ B(wy). As €4636961636964E3626160M = 1_¢(M),
M(M) is preserved under 74, which is of weight §. So z; = 7_¢ and
M(M) /76 ~ B(W (w¢)).
The following 26 monomials appear in M, (M):
400, Y, 31451051, 29351051, 132,1330; ", 13354401, 15133,
13451001, 151243514y, 15124451, 2513544, 257324, 37444,
35371, 44dgt, 2637746, 354 45", 172546, 2637145, 1514408,
1725137451, 1513745108, 17351, 1512835108, 2753008, 317 41008,
475 0s.
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These are the monomials appearing in M(M)/7¢. We thus have
B(W (wy)) ~ B, (wg).

Remark 6.4. The authors do not find the last three examples in the
literature. One can probably check whether they are perfect or not, though
we have not done yet.

6.4. Type Eé2)
6.4.1. First let £ = 1 and M = Yi0Y;1'Yys. We have fLiM =
YOT51Y2T31Y3,2 and so we see as in Proposition 3.4 that M(M) ~ B(wy). As

of weight 6. Thus we have zy = 7_4 and M(m) /74 ~ B(W (wy)).
Let M’ = éM =Yy 1Y, . We have My, (M') = {M'}.
The following 26 monomials appear in M, (M):

1007051, 2015105, 32251051, 43312305, 4325114051,
45125051, 45150, 4513425114051, 45134151, 3512514051,
35122151, 211416051, 25271, 1415105107, 3627716, 2515115107,
473516, 3627115107, 41, 473512715107, 412715107, 4725707,
4513825107, 3192907, 21711007, 175 07011.

These 26 monomials, M’ are all monomials of M(M)/74. As an appli-
cation we have

B(W (w1)) ~ Biy(w1) U Bi, (0).

The crystal structure here is isomorphic to one studied recently in [3].
As the crystal graph is connected, we conclude that the crystal base con-
structed in [3] are isomorphic to B(W (wy)).

6.4.2. Now we consider £ = 2 and M = Y0¥, Yy, Yy We have

that M(M) ~ B(wy). As éy836983¢26483836%¢0 f1f3f3f1faM = T_o(M),
M(M) is preserved under 7o, which is of weight §. Therefore we have
zg = T—9 and M(M) /1o ~ B(W (wy)).

Let My = é160M = Y1, 1Y} Yy . The following 26 monomials appear
in My, (Ma):

1-10,105", 201710005105, 3125100051051, 4235122000, 1057,
4921130005 1051, 412200051051, 4215100051, 451352, 113000, 105 Y,
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4713315100051, 3524130005105 1, 351221510005 1, 25 11315000, 1051,
2425100051, 1317100051, 352521500051, 2415115100, 46351150005 ",
3525 117100, 4g 1150005 ", 463712615100, 45 12615100, 462500,
4513725100, 3412500, 279 1900, 17700010-

monomials appear in M, (Ms):

15073051, 24173051, 33273051, 4-237712.905", 492511105,
4512 505", 4-91710005 1, 4913-12511105 1, 451311710005,
3712011071, 371221710005, 2511 11,051, 202510005t

1 <01-1Yg » 91 <4017 Y0oVYg , 49 1-111Yg , 4049 Y0OVg >
1115105102, 31252110005, 20171151051 0002, 423571100057,
312511510005 102, 4;1110005 ", 4935 1221510005 10,
471291510005 102, 42210005 109, 45 1332,10005 109, 351240005102,
25 1150005 102, 171000s.

Let My = égMs =Yy, ¢Yy4 . We have My, (My) = {My}.
Let Ms = éé3é3éié0f1faM =Yy oY, Yy4'. The following 52 mono-
mials appear in M, (Ms3):

45051051, 45131051050, 37123805105, 202511105105,
3125213051051, 20151050, 4235113051051, 312511115105,
4711705105 Y, 4931111512505 1, 3115200051, 451221515105,
4933115223000, 1, 422, 111051, 4,352, 111051, 4,1231520005 1,
49292, 115102051, 3512411050, 451352, 12215102051, 42332,20005 ",
26 1511051, 35124201510005 1, 4,13352,20205 ", 424435102057,
171, 25122151150005 1, 3335102051, 424510205, 2915115102,
332, 1251150005 1, 443522702051, 4, 14513500051, 332, 115109,
451312200051, 443512425 11500051, 443512417100, 4124351150205 1,
442521209051, 4512417100, 44251151502, 45135252120005 1,
4513525 11515102, 441720206, 371120205, 371261515102,
451351520906, 2511509, 371221720206, 262511510206, 372520206,
483410206, 47 0206.
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We do not list the 273 monomials of My, (M), but we can check that
all monomials of M (M) /719 are connected to either M, My, Ms, My, Ms in
the Iy-crystal. As an application we have

B(W(WQ)) ~ B[O(WQ) (] B[O(wl) (] B[O(wl) (] B[O(O) (] B[O(W4).

6.4.3. We consider £/ = 3 and M =Y3 0Y0_32Y0_52 We have f2f3fsM =
Yi1Ys2Yy ) YO = and so we see as in Proposition 3.4 that M(M) ~ B(wy).
As 326,28l e2e2e3e3e3edet el M = 7_g(M), M(M) is preserved under
76, which is of weight —40 = —2dy6. Therefore we have (z)™2 = 75. Let
M, = &38383¢38383e3e58iet ff3faM = Y .2Yy % Ys 4. This has weight

wt(M) + dyd, hence we have zp(M) = My.

We do not determine the Ip-crystal components of M(M)/7s at this
moment.

6.4.4. Finally let us consider £ = 4. Let M = Yj,Yj, 42 It follows

from Corollary 3.3 that M(M) ~ B(w,). As é,183626265626,62638282M =

T_6¢(M), M(M) is preserved under 74, which is of weight —2§ = —d,é.
Therefore we have zy = 7_¢ and M(M) /76 ~ B(W (wy)).
The following 52 monomials appear in M, (M):

40052, 251310,2, 351230,2, 222,150, 2, 332,2130,2, 221510,
443511302, 332115151051, 45113052, 4435 11315124051, 35152
45124131510, 1, 4435115223, 4425115051, 45135251150,
45123152, 4424251151, 37126130, 4518525 12415, 4435257

6 <41y » 4444 L1y 5 97 4613V , Fg 954 <441ly 5, F49545
25 17150, 1, 37126241571, 451322, 4446371, 151130505,

25 12415117, 35371, dydgt, 2415115108, 3525125 1, 4637722,
45145135, 3525115108, 45137122, 463712625 M 17, 463512615105,
4512625 17, 4625212, 4512615108, 4625 117151 0g, 4513725712,
4513725 11715105, 4614203, 35112, 39—128171—108, 4513715202,
2;011708, 3912315202, 28274 1y 108, 30203, 41037703, 4750703

als appear in MIO(M’)

13073051, 2917701, 3125105 Y, 403712005, 4025114051,
45120051, 4015102051, 4513125115051, 451311510005,
331221,0; Y, 351221510001, 2,1 101505 1, 202,1020, Y, 1415t
3 241Yyq 5 I3 243 2Vq » 4y 1143Y4 » 4224y 2V » 1115
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3325 21302051, 2015115100, 443511300051, 332, 115100, 4g 1130005,
44351241510, 4512415100, 4425109, 4513525102, 3712602, 2511700,
1610208.

Let M = &M’ =Yy, _4Y;, . We have My, (M") = {M"}.
The above exhausts all monomials of M(M)/7¢. As an application we
have

B(W (w4)) ~ Bry(w4) U Biy (w1) U Br, (0).

Remark 6.5. The authors do not find the description of the examples
£ =2,3, 4 in the literature.

6.5. Type Df’)

6.5.1. First we consider £ = 1. Let M = Y0 'Yo3. As fiM =
Y17_2Y(;31Y2,1 we see as in Proposition 3.4 that M (M) ~ B(wy). The follow-
ing 7 monomials appear in M, (M):

M = 10071051, mo = 15105121, mg = 25113051, my = 1511,

mys = 1222303, me — 2g11403, mr7 = 1510305.

Let M’ = m5(60M) = Yp1Yy5. We have My, (M') = {M'}. The
crystal graph of M(M) is given in Figure 10. We find that z; = 7_9 and
M(M) /7y = My (M) UM, (M').

This crystal was described in [11].

1 2 1 1 2 1
M _— My — M3 — My — M5 — Mg — M7
—
0[2]

Figure 10: (Type Df)) the crystal B(w)

6.5.2. Now we consider ¢/ = 2. Let M = YQ,O}/OT23. It follows from
Corollary 3.3 that M(M) ~ B(wy). As é&éiezeseqM = 7_4(M), M(M) is
preserved under 74, which is of weight 36 = dsd. Therefore zy = 7_4 and so

M(m) /1y =~ B(W (wy)).
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The following 14 monomials appear in My, (M):

20053, 25115057, 13151052, 2215152051, 15713, 2, 1111505 7,
22,1, 1115105104, 2,213, 1511512504, 2,11315104, 1315207,
1520324, 25107

Let My = e1egM = YbﬁYL_l. The following 7 monomials appear in
M]O (MQ)I

0521-1, 0905717 20, 0005215251, 00051115, 1522500,
2, 11300, 150004.

Let M3 = &1626160Ma = Y1, _3Y; ',Y5, . The following 7 monomials
appear in My, (Ms):

07505113, 05117729, 0;112,25%, 00051 1117Y, 1722002057,
2511703051, 15103

Let M4 = éoMg = %7_4%}1. We have M[O (M4) = {M4}

By direct calculation we can see that all monomials of M(M)/74 are
connected to either M or My or M3 or My in the Ip-crystal. As an appli-
cation we have

B(W(WQ)) ~ B[O(WQ) (] B[O(wl) (| Bfo (wl) (| Bfo (0)
The authors do not find the description of this example in the literature.

§7. Discussions

(1) As we saw in the simply-laced type examples (except the last one in
6.1.4) in this paper, we can construct explicit bijections between monomial
crystals M(m) and the set C(mg) of monomials in g-characters counted
with multiplicities. (Here mg is obtained from m by setting Yy, as 1.)
Their origin is combinatorial and we do not understand their representation
theoretical meaning yet. In the example in 6.1.2, the global crystal base
element corresponding to the exceptional monomial does not belong to a
single [-weight subspace.

Also we can check that the bijection is compatible with the crystal
structure in the following sense: Let M, (mg) be the component of the
monomial crystal for g7, containing mg. Let p: M(m) — My, (mg) be
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the composition of the above mentioned bijection and the map obtained
by forgetting multiplicities. Then p is a morphism of the crystal (but not
strict). This is not true in general.

Counterexample: In the g-character of W (ws) for Eg we have mono-
mials my = Y34Y54 YasYsy Yia and my = Y2,V 'V Y5,Y, Y14 with
coefficients 1 + 2t% 4+ t* and 1 + t2 + t*. We have f4m1 = my in the mono-
mial crystal. If we had a crystal morphism which preserves the weight, the
4 vectors corresponding to m; would necessarily satisfy ¢4 > 1, and each
of them would be sent by f4 to vectors corresponding to mo. As there are
only 3 of them, we have a contradiction.

(2) In [35] Naito-Sagaki proved that the crystal of Lakshmibai-Seshadri
paths of shape wy is isomorphic to B(wy). This result is better than Theo-
rem 3.2 in the sense that they determine all paths, not in a recursive way
as ours. Therefore it would be nice if we could give an explicit map from
the path crystal to the monomial crystal.
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