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DISCRETE SCHRODINGER OPERATORS ON A GRAPH

POLLY WEE SY* AND TOSHIKAZU SUNADA

In this paper, we study some spectral properties of the discrete
Schrόdinger operator — Δ + q defined on a locally finite connected graph
with an automorphism group whose orbit space is a finite graph.

The discrete Laplacian and its generalization have been explored from
many different viewpoints (for instance, see [2] [4]). Our paper discusses
the discrete analogue of the results on the bottom of the spectrum estab-
lished by T. Kobayashi, K. Ono and T. Sunada [3] in the Riemannian-
manifold-setting.

§ 1. Discrete Laplacians

Let X = (V, E) be a locally finite connected graph without loops and
multiple edges. Here V and E are, respectively, the set of vertices and
the set of unoriented edges of X. In a natural manner, X is regarded as
a one-dimensional CW complex. We assign a positive weight to each
vertex and also to each edge by giving mappings m : V—>H+ and w : E
—>R + . Let C0(V) and C0(E) be the space of all complex-valued functions
on V and E with finite support, respectively. Define inner products on
CIV) and CIE) by

(1.1) </, £> = Σ
xev

(1.2) <ω,?> = ΣΛω{e)v(e)w{e).
eeE

The completions of C0(V) and CQ(E) with respect to those inner products
will be denoted by L\V) and D(E), respectively.

Each edge has two orientations. We use the symbol Eor to represent
the set of all oriented edges, so that forgetting orientation yields a two-
to-one map p : Eoτ -> E. Reversing orientation gives rise to an involution
on Eor, which we denote by e \->e. We shall use the same symbol w for
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142 POLLY WEE SY AND TOSHIKAZU SUNADA

the composition wop, which is a function on Eor. For an oriented edge

e, o(e) and ϊ(e) denote the origin and terminus point of e, respectively.

Let Θx = {e e Eor; o(β) = x}.

We fix an orientation on each edge by giving a subset 2?0 of Eoτ such

that Eor = EQUEQ (disjoint) and we identify Eo with E by the map p.

Define the operator d : Co( V) -> C0(E) by

(1.3) df(e) = f(t(e)) - f(o(e)),

which is a natural analogue of the exterior derivation on a manifold.

A simple calculation gives the following formula for the formal ad-

joint d* of d:

d*ω(x) = m{x)-ι{ Σ ω(e)w(e) - Σ ω(e)w(e)} .
eeEo eeEo
t(e)=x o(e)=a?

The discrete Laplacίan Δ = Δx is now defined by

(1.4) Δf{x) = - d*df(x) = m(x)-χ{ Σ f(t(e))w(e) - ( Σ w(e))f(x)}.
eeox ee<Px

Note that Δ is independent of the choice of orientation on edges.

Remark 1. Let h : V—>R be a function defined by

Then the operator J is bounded as an operator acting in L\V) if and

only if h is bounded. For the sake of completeness, we shall give a proof.

Suppose that h is bounded. Then for any fe C0(V),

< 2

Σ |/(t(e))|2u;(e) + Σ Σ
F eeίΌ .ΐGF eeA'o

t() ()

where c = 2 sup^eF{(l/m(x)) ΣeeΘX ̂ (^)} Thus J is bounded. Conversely,

assume that J is bounded. If h is unbounded, then for every positive

real number K, there is an x e V such that (l/m(x)) Σeeox

 w(e) > ̂  We

see that | |d^ | | 2 = Σee^wfe) > ̂ ^ W = K\\δx\\\ where ^( j) equals 1 when

y = x a n d z e r o e l s e w h e r e . I t f o l l o w s t h a t \\Δδx\\ \\δj > \(d*dδx, δx)\ = \\dδx\\2

> K\\δx||
2. Thus Δ is unbounded. This contradicts our hypothesis that

Δ is bounded.

Remark 2. The discrete Laplacian defined above is a bit generalized
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one of [2].

§ 2. Bottom of the spectrum

Let M = (V, E) be a finite connected graph, and let π : X-+M be a

normal covering map as CW complexes with the covering transformation

group Γ. The covering space X has a graph structure (V, E) such that π

is a morphism of graphs. Then Γ acts freely on E and V and Γ\E ~ E,

Γ\V~V. We assume that M has weights on vertices and edges. The

weights on vertices and edges of X are naturally assigned by using the

map π so that they are left invariant under the Γ-action. If we fix

orientation on edges of M, then the induced one on E is preserved by

the Γ-action. Take any real-valued function qMeC(V). We see that

q~qM o π is invariant under the Γ-action. Since Mis finite, HM= — ΔM + qM

is identified with a hermitian matrix of finite size and its spectrum con-

sists of real eigenvalues.

The operator Hx = — Δx + q is just the lift of the operator HM on

M by the map π and is therefore bounded (see Remark 1) and self-adjoint.

We denote by λQ(H) the greatest lower bound of the spectrum of a self-

adjoint operator H. Note that λQ(HM) is just the minimal eigenvalue of HM.

LEMMA 1. λQ{HM) is simple and has a positive eigenfunction.

Proof. Let V = {1, , n). For 1 < i < n, set

<Pt(x) = -7=7^ if x = ί
/m(i)

= 0 otherwise .

Then {<pi} is an orthonormal basis of L\V). Let A = (aiά) be the matrix

of ΔM with respect to this basis. If (i,j) is an edge of M with ί Φj, then

atj = (ΔMψj, φt) = (ll</m(i)m(j))w(ί,j). Hence the off-diagonal entries of

the matrix A are nonnegative real numbers. Let A' = (α^) be the matrix

with a'υ = ai3 for i Φ j and a'u = 0. Since M is connected, the matrix Ar

is irreducible. Thus the operator ΔM — qM has the form A' + D, where

D is a diagonal matrix with entries du 6 R. The facts that the maximal

eigenvalue — λ^A' + D) ( = — λo(HM)) is simple and there exists a positive

eigenfunction associated with it, follow readily by applying the Perron-

Frobenius Theorem [5] to the matrix A' + D -J- xl for large enough x e JR.

THEOREM 1. λ^(HM) < λo(Hx). The equality holds if and only if the

covering transformation group Γ is amenable.
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To prove this, we will employ a representation-theoretic technique.

We fix orientation Eo on E induced from an orientation of edges of M.

We also identify EQ with E.

Let p be a unitary representation of Γ on a Hubert space W and

Up(V) = {s : VH-> W; s(σx) = p(σ)s(x) for all x e V and σ e Γ} with the natural

inner product

<s1? s2> = 2 (sλ(x), s2(x))wm(x),

where @v is a finite fundamental subset in V for the F-action; i.e., Qsv

is a subset of V such that for every x e V, there exists a unique pair

(σ, x ' ) e Γ χ ^ F satisfying σx = Λ/. Note that V = Π r e r ^ F and γ@vf)@v

= ^ for ^ =£ id. One can easily check that the inner product is independent

o f t h e c h o i c e o f 3 V . L e t L2

P(E) = {φ : E*-+ W; φ(σe) = p(σ)φ(e) f o r a l l e e E

and σ e Γ} with the following inner product

= Σ

where Q)E is a finite fundamental subset in E for the Γ-action. This

definition also does not depend on the choice of 3ιE.

The bounded operator dp : L2

P(V) ->L2

P(E) is defined by

dps(e) = s(t(e)) - s(o(e)).

LEMMA 2. 7%e adjoint operator of dp is given by

(dfφ)(x) = m(x)~\ Σ φ(e)w(e) - Σ φ(e)w(e)).
eβEo eelSo
t(e)=x o(e)=0

Proof. First note that the correspondences

dx :sι >φ, φ,(e) = s(t(e))

d2 : s i > φ2 <p2(e) = s(o(e))

give rise to operators of VP{V) into LJ(JE), and dp = dι — d2. Let ^ F be

a fundamental set in V, and put

QE = {eeE 0 ; t (β)e^ F } .

Then ^ ^ is a fundamental set in E = Eo, and

<<*!*, ^> = Σ <β(t(e)), φ(e)}ww(e)

= Σ, Σ <s(x),ψ(e))ww(e).
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Thus we have

dfφ(x) = m(x)'1 2] φ{e)w{e).

Similarly, we obtain

d}φ(x) = m(x)"1 2ϋ ^(e)w (e).

This completes the proof.

The Laplacian Δp acting on L2

P(V) is now defined by — dfdp which

is equal to

Δps(x) = m W - ' I Σ s(t(e))u;(β) - ( £ u;(e))s(*)}.

The twisted discrete Schrδdinger operator is then defined as the self-

adjoint operator Hp — — Δp + q.

LEMMA 3. If p is the right regular representation of Γ, then (Hp, L
2

P(V))

is unitarily equivalent to (Hx, L2(V)); and if p is the trivial representation

1, then (Hp, L
2

P(V)) is unitarily equivalent to (HM, L2(V)).

Proof. Let W = L\Γ) = {φ : Γ->C|Σ σ 6 Γ | ^(<7) | 2 < 00} and p be the

right regular representation ρr of Γ on W. From now on, we simply

write p for pr. To prove that Hp and Hx are unitarily equivalent to each

other, we have to show that there exists a unitary map Φ : L\V) *-*L2

p(V)

such that Hpoφ = φoHx.

Define the map φ : CO(V)^DP(V) by

where the function 5 is defined to be s(x)(σ) = f(σx) for xe V, σ e Γ. One

can check that s(μx) = p(μ)s(x) for any μeΓ, xe V. By the definition

of fundamental set, we have

N I 2 = Σ\\s(*)\\wm(x)
xes>v

= Σ Σ \f(σx)fm(x)

for any fe C0(V). Thus s e L2

P(V). Hence the map Φ is extended uniquely

to an isometry of L\V) into L2

P(V).

Next, we claim that Φ is onto. Take any seLHV), define / : V—>C
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by fix) = s(x)l, where 1 is the identity element of Γ. Since

Z\fix)fmix) = Σ\Φn\2mix)
xev xev

= Σ Σ \p(σ)s(x)lfm(x)
x£9γ σ£Γ

- Σ Σ Hx)σfm{x)

therefore fe L\V). Put s' = Φ(f). Then s'(x)(σ)=f(σx)=s(σx)l = [

= s(x)(σ) for every xe V and a € Γ. Hence Φ(f) = s' = s.

For any feL2(V), we have

({H,

^ { Σ s(t(e))σ«;(e) - ( Σ «»(β))β(ac)ff} + q(x)s(x)σ
m{X)

= - - | τ ί Σ f(σt(e))w(e) -

m{X)
Σ Λt(β))κ;(β) - ( Σ w(β))/(σ*)} + q(σx)f(σx)

This proves the first part of the theorem.

The second part of the theorem is easy to prove.

The Kazhdan distance δip, 1) (or δAip, 1)) between p and 1 is defined by

δ(p, 1) = inf sup \\piσ)v - v\\,
II HI = 1

where A is a fixed finite set of generators of Γ. The following lemma

shows that the distance does not depend essentially on the choice of A.

LEMMA 4. Suppose that A and B are any finite sets of generators of

Γ. Then there exist positive constants kx and k2 such that

k,δBip, 1) < δΛ(p, 1) < KδB(p, 1).

Proof. Let C = A (J B. Choose an integer N large enough such that

every σ e C can be expressed as

o = μi μ2 ' μn >

where ^ e A and n < N. Then
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\\p(σ)υ - v\\ < Wpiμt)- - ρ(μn)v - piμd -ρ(μn-i)v\\

i)v - v\\

< \\p(μn)v - v\\ + \\p(μι)' >p(μn-i)υ - υ\\

ϋ - υ\\

< N$\iy\\p(μ)v - υ\\ .

It follows that OA^C^C for some constant cx. Similarly, one can also

show that δB>c2δc for some constant c2. On the other hand, since

A, B c C, we have δc > δA, δB. These inequalities together prove the result.

To prove Theorem 1, it suffices to establish the following Theorem (cf.

[4] [7]). For, in the next theorem, when p is the right regular represen-

tation pr, Theorem 1 follows from the fact that δ(ρτ, 1) = 0 if and only if

Γ is amenable.

THEOREM 2. There exist positive constants cx and c2 such that

cΛp, I)2 < UHP) - UHd < c2δ(p, I)2

for all p. In particular, λo(Hp) = X0(Ht) if and only if δ(p, 1) = 0.

Proof. Note that

= inf <&h&.

By Lemma 1, we may take a positive solution feL\V) to the equation

HJ=λΛHt)f. We have

(2.1) <J,(/s), fs} = Σ < Σ /(t(e))β(l(e))u»(e)

-(Σ>Me))f(x)s(x),f(x)s(x)).

Substituting the following equality

Σ w(e)f(x) = λlHx)f(x)m{x) - q(x)f(x)m(x) + Σ f(t(e))w(e)
eGΘx eGΦx

into (2.1), we obtain

(2.2) <J,(/s), fs) = Σ < Σ /(t(β))(β(t(e)) - s(x))w(e), f(x)s(x)}

f8} + (qfsjs).

We now set B = {e e Eov; eeΘx for some x e Θγ\. It is easy to check that

Θ and 9 = {e; e e Q)} are fundamental sets in EOΐ for the natural Γ-action.
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Note that, if gi(σe) = p(σ)gi(e), ί = 1, 2, for every a e Γ and e e Eor, then
the summation

does not depend on the choice of a fundamental set 2ΰ. Therefore we find

Σy < Σ fd(e))(s(t(e)) - s(x))w(e), f(x)s(x))

= Σ </(t(e))(s(t(e)) - s(o(e)))w(e),f(o(e))s(o(e)))

= Σ_</(t(e))(s(t(e)) - s(o(e)))w(e),f(o(e))s(o(e))}

= Vj ^/(o (β)) (s (o (β)) — s (t (β))) î  (β), /(t (β)) s (t (β)))>

= ^ <eΣ /W(«W - 8(t(e)))w(e),f(t(e))8(t(e))y ,

so that

^ Σ /(t(e))/(x)||s(t(e)) - 8(x)||^^(β)

Σ r e Σ {<f(x)(8(t(e)) - s(x))w(e),f(t(e))s(ϊ(e)))

- (f(x)(s(t(e)) -

Σ

= - 2^Σ r <eΣ f(He))(s(ϊ(e)) - s(x))w(e),f(x)s(x)y .

Combining this with (2.2), we deduce

\ Ap/S, jS/ -f \Q\/S), fS/ J/ΓJ\ i 1 p

where

T\ / C. Gίi / C

There are positive constants ku k2 such that

k,Pf < inf P<k2P',

where

fseL2

p(V)

Thus, it is enough to show that

cΛp, lf<mtP'<c2δ(p,iy.
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We now let $1(0) be the set of vertices xeV such that there exists e e §

with t(e) = x. It follows from the definition of fundamental set that for

every y e °tt(0), there is a unique σyeΓ with yeσy@v. Consider B =

{σy; y 6 °U{0)\ UA, another finite set of generators of Γ. From the defini-

tion of δB(p> 1), it follows that for every ε > 0, there exists a υ e W with

||u|| = 1 such that \\p(σ)υ -v\\< δB(p, 1) + e for all σ e 5. For this fixed

u, we define a function s : V-> VF by setting s(x) = v for all x e ^ Γ and

s(σx) = |o(a)u for every <7xe<7^F. It is clear that seL2

p(V). Thus

Σ ||β(x)||*w(*) = Σ m(x)

and

Σ Σ \\dps(e)fw(e) < {max w(e)} Σ \\p(σ)v - y||2 < C{δs(p, 1) + ε}2.
xe®v e£Θχ eeE σGB

Since ε is arbitrary, we obtain

for some positive constant c2.

We next show the inequality c^ip, l ) 2 <infP / for some positive con-

stant Cj. Since for a unit vector v,

by substituting v = s(x)/||s(x)||, we have

(2.3) δfo, I)2 Σ ||s(jc)||2m(x) < Σ Σ \\s(σx) - s(x)\\*m(x)
XG®V xQSγ σeA

for every s e L2

P(V). For each x e Q)v and a e Γ, we choose a path C(x, (7#)

in X joining x and <7X. Let |C(x, σx)\ — # {edges in the path C(x, σx)} and

K = max x e ^ maxffe^|C(x, σx)j. The inequality (2.3) and

eeC(x, σx)

imply

δ(p, I)2 Σ \\s(x)\\2m(x) < c§9)K* Σ Σ \\dps(e)fw(e),

where c = mdiXxev m(x) X (mine e^ w(e)Yx X (#A). Thus the proof of the

theorem is complete.
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