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Let X, Y be Banach spaces and fix a linear operator T ∈ L(X, Y ) and ideals I, J
on the nonnegative integers. We obtain Silverman–Toeplitz type theorems on
matrices A = (An,k : n, k ∈ ω) of linear operators in L(X, Y ), so that

J - lim Ax = T (I- lim x)

for every X-valued sequence x = (x0, x1, . . .) which is I-convergent (and bounded).
This allows us to establish the relationship between the classical Silverman–Toeplitz
characterization of regular matrices and its multidimensional analogue for double
sequences, its variant for matrices of linear operators, and the recent version (for the
scalar case) in the context of ideal convergence. As byproducts, we obtain
characterizations of several matrix classes and a generalization of the classical
Hahn–Schur theorem. In the proofs we use an ideal version of the Banach–Steinhaus
theorem which has been recently obtained by De Bondt and Vernaeve [J. Math.
Anal. Appl. 495 (2021)].
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1. Introduction

An infinite matrix with real entries A = (an,k) is said to be regular if it transforms
convergent sequences into convergent sequences and preserves the corresponding
limits (details will be given in § 2). A classical result due to Silverman–Toeplitz
provides necessary and sufficient conditions, depending only on the entries of A,
which characterize the class of regular matrices, see e.g. [5, Theorem 2.3.7]:

Theorem 1.1. An infinite real matrix A = (an,k) is regular if and only if:

(i) supn

∑
k |an,k| < ∞;

(ii) limn

∑
k an,k = 1;

(iii) limn an,k = 0 for all k.
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Several extensions and analogues of the characterization above can be found
in the literature. First, a ‘ multidimensional” version of theorem 1.1 for double
sequences has been proved by Robinson [39] and Hugh J. Hamilton [19]. Second, in
1950 Abraham Robinson [38] proved the operator analogue of theorem 1.1 replacing
each an,k with a (possibly unbounded) linear operator An,k acting on a given Banach
space, cf. theorem 2.2. Third, in a different direction, the author and Connor [11]
recently studied the ideal/filter version of the notion of regularity in the scalar case
and proved that the analogue of theorem 1.1 holds in several, but not all, cases.

The aim of this work is to provide a unifying framework which allows to shed light
on the relationship between all the above results, to extend the latter ones, and to
obtain, as a byproduct of the employed methods, several related characterizations.
This will require us to deal with the theory of infinite matrices of linear operators
and to prove a certain number of intermediate lemmas. Most results are formulated
in the context of ideal convergence. We remark that this choice is not done for the
sake of generality: indeed, for the above purposes, we exploit the simple facts that
c(I) ∩ �∞ is c if I = Fin and equals to �∞ if I is maximal, that the Pringsheim
convergence of double sequences coincides with I-convergence for a suitable ideal
I, etc. An additional motivation comes from the fact that the study of ideals on
countable sets and their representability may have some relevant potential for the
study of the geometry of Banach spaces, see e.g. [6, 7, 23, 25, 29].

Informally, we provide an operator version of the characterization of regular
matrices in the context of ideal convergence, together with some sufficient condi-
tions which allow for several substantial simplifications. The results depend on the
boundedness assumption on the sequence spaces in the domain and/or codomain
of such matrices. In addition, we provide a characterization of the matrix classes
(�∞, c0(J ) ∩ �∞), (c(I), c0(J ) ∩ �∞) (�∞, �∞(J )), and (c, �∞(J )) for certain ide-
als I, J on ω, see corollary 2.12, theorems 2.18, 3.8, and 3.10, respectively. Lastly,
we obtain an ideal version of the Hahn–Schur theorem (which is used to prove that
weak and norm convergence coincide on �1), see theorem 4.6.

The proofs of the main results are given in § 5.

2. Notations and main results

Let I be an ideal on the nonnegative integers ω, that is, a collection of subsets
of ω which is closed under subsets and finite unions. Unless otherwise stated, it is
assumed that it contains the collection Fin of finite sets and it is different from the
power set. Denote its dual filter by I� := {S ⊆ ω : Sc ∈ I} and define I+ := {S ⊆
ω : S /∈ I}. Among the most important ideals, we find the family of asymptotic
density zero sets:

Z :=
{

S ⊆ ω : lim
n→∞

|S ∩ [0, n]|
n + 1

= 0
}

. (2.1)

We refer to [21] for a recent survey on ideals and associated filters.
Let V be a real Banach space, and denote its closed unit ball by BV and its unit

sphere by SV . Given a sequence x = (xn) taking values in V and an ideal I on ω,
we say that x is I-convergent to η ∈ V , shortened as I- lim x = η or I- limn xn = η,
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if {n ∈ ω : xn /∈ U} ∈ I for all neighbourhood U of η; for the clarify of exposition,
all sequences taking values in V will be written in bold. Note that Z-convergence
is usually called statistical convergence, see e.g. [17]. As remarked in [14, Example
3.4], the notion of I-convergence include the well-known uniform, Pringsheim, and
Hardy convergences for double sequences. In addition, if y is a real nonnegative
sequence, we write I- lim sup y := inf{r ∈ R ∪ {∞} : {n ∈ ω : yn � r} ∈ I}.

Now, define the following sequence spaces:

�∞(V ) := {x ∈ V ω : ‖x‖ < ∞} ,

�∞(V, I) := {x ∈ V ω : I- lim supn ‖xn‖ < ∞} ,

c(V, I) := {x ∈ V ω : I- lim x = η for some η ∈ V } ,

c0(V, I) := {x ∈ V ω : I- lim x = 0} ,

c00(V, I) := {x ∈ V ω : suppx ∈ I} ,

where ‖x‖ := supn ‖xn‖ stands for the supremum norm and suppx for the support
{n ∈ ω : xn �= 0}. Clearly, �∞(V ) = �∞(V, Fin); sequences in �∞(V, I) are usually
called I-bounded. If V = R and I = Fin, the above sequence spaces correspond
to the usual �∞, c, c0, and c00, respectively. Every subspace of �∞(V ) will be
endowed with the supremum norm. It is clear that c00(V, I) ⊆ c0(V, I) ⊆ c(V, I) ⊆
�∞(V, I). However, unless I = Fin or V = {0}, c00(V, I) is not contained in �∞(V ).
Hence it makes sense to define the subspace:

cb(V, I) := c(V, I) ∩ �∞(V ),

and, similarly, cb
0(V, I) and cb

00(V, I). The symbol V will be removed from the nota-
tion if it is understood from the context so that, e.g., c00(I) = c00(V, I). Similarly,
we may remove I in the case I = Fin.

At this point, let X, Y be two Banach space and denote by L(X, Y ) and B(X, Y )
the vector spaces of linear operators from X to Y and its subspace of bounded linear
operators, respectively. We assume that L(X, Y ) and all its subspaces are endowed
with the strong operator topology so that a sequence (Tn) of linear operators in
L(X, Y ) converges to T ∈ L(X, Y ) if and only if (Tnx) is convergent in the norm
of Y to Tx for all x ∈ X.

Let A = (An,k : n, k ∈ ω) be an infinite matrix of linear operators An,k ∈
L(X, Y ). Moreover, for each n ∈ ω and E ⊆ ω, let us write

An,E := (An,k : k ∈ E)

and An,�k := An,{k,k+1,...} for the kth tail of the nth row of A. In particular, An,ω

is the nth row of A (and use an analogue notation for a sequence (Tk) of operators
so that, for instance, T�2 = (T2, T3, . . .)). For each n ∈ ω and E ⊆ ω, define the
the group norm:

‖An,E‖ := sup
{∥∥∥∑

k∈F
An,kxk

∥∥∥ : F ⊆ E is finite and each xk ∈ BX

}
,

cf. [33, 34] (in fact, every xk can be chosen on the unit sphere SX : this depends
on the fact that, given distinct a, b ∈ X, the function f : [0, 1] → R defined by
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f(t) := ‖a + t(b − a)‖ has a point of maximum in t = 0 or in t = 1: indeed, the
segment {a + t(b − a) : t ∈ [0, 1]} is contained in the closed ball with centre 0 and
radius max{‖a‖, ‖b‖}, which is convex). Note that the value ‖An,E‖ is possibly
not finite. In addition, if X = R and An,E is represented by the real sequence
(an,k : k ∈ E) then ‖An,E‖ =

∑
k∈E |an,k|.

Given an X-valued sequence x = (xn), let Ax be its A-transform, that is, the
sequence Ax := (Anx : n ∈ ω) where

∀ n ∈ ω, Anx :=
∑

k
An,kxk,

provided that each series is convergent in the norm of Y . Accordingly, let dom(A)
be the domain of A, that is, the family of those sequences x such that Ax is well
defined. For each sequence subspace A ⊆ Xω and B ⊆ Y ω, let (A , B) be the set
of matrices A = (An,k) of (not necessarily bounded) linear operators in L(X, Y )
such that

A ⊆ dom(A) and Ax ∈ B for all x ∈ A .

We refer to [34] for the theory of infinite matrices of operators. In the scalar case, the
relationship between summability and ideal convergence has been recently studied
in [16].

2.1. Bounded to bounded case

The main definition of this work follows:

Definition 2.1. Let I, J be ideals on ω and fix T ∈ L(X, Y ). Then a matrix
A = (An,k) of linear operators in L(X, Y ) is said to be (I, J )-regular with respect
to T if

A ∈ (cb(X, I), cb(Y,J )) and J - lim Ax = T ( I- lim x) for all x ∈ cb(X, I).

If T is the identity operator I on X (namely, Ix = x for all x ∈ X), we simply
say that A is (I, J )-regular. Note that if I = J = Fin, X = Y = R, and T = I,
then definition 2.1 corresponds to the ordinary regular matrices.

The following result, essentially due to Robinson [38, Theorem VII], is the
(unbounded) operator version of theorem 1.1, cf. also [32, Theorem 1].

Theorem 2.2. Fix a linear operator T ∈ B(X, Y ), where X, Y are Banach spaces.
Then a matrix A = (An,k) of linear operators in L(X, Y ) is (Fin, Fin)-regular with
respect to T if and only if there exists k0 ∈ ω such that:

(S1) supn ‖An,�k0‖ < ∞;

(S2) limn

∑
k An,k = T ;

(S3) limn An,k = 0 for all k ∈ ω.

A variant for continuous linear operators between Fréchet spaces has been proved
by Ramanujan in [37], cf. also [30, Corollary 6].
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Notice that (S3) can be rewritten as limn

∑
k∈E An,kxk = 0 for all sequences

x ∈ �∞(X) and E ∈ Fin, which is also equivalent to A ∈ (c00(X), c0(Y )).

Remark 2.3. Condition (S3) may look equivalent also to:

(S4) limn ‖An,k‖ = 0 for all k ∈ ω.

This is correct if X is finite dimensional, cf. lemma 3.4 below. However, (S4) is
strictly stronger in general. For, set X = �2 = {x ∈ �∞ :

∑
t x2

t < ∞}, and define
An,0x = (0, . . . , 0, xn+1, xn+2, . . .) for all n ∈ ω and x ∈ �2, and An,k = 0 whenever
k > 0. Then ‖An,0‖ = 1 for all n ∈ ω, and limn An,0x = 0 for all x ∈ �2.

Remark 2.4. Another difference from the finite-dimensional case is that a
(Fin, Fin)-regular matrix does not necessarily belong to (�∞(X), �∞(Y )). For, sup-
pose that X = Y = �2, and let ek be the kth unit vector of X for each k ∈ ω.
Building on the above example, consider the matrix A = (An,k) of linear operators
in L(�2, �2) such that A = Id + B, where Id is the identity matrix and

∀n, k ∈ ω,∀x ∈ �2, Bn,k(x) :=

{
(0, . . . , 0, xn+1, xn+2, . . .) if k = 0;
−xn+ken+k if k > 0.

Then A satisfies conditions (S1)–(S3) with T = I and k0 = 0, hence by theorem 1.1
A is a (Fin, Fin)-regular matrix. However, the sequence x := (e0, e1, . . .) ∈ �∞(�2)
does not belong to dom(A), indeed A0x = e0 − e1 − e2 − · · · is not norm convergent
in �2. Therefore A /∈ (�∞(X), �∞(Y )), cf. theorem 3.8 below.

Our first main result, which corresponds to the operator version of [11, Theorem
1.2], follows.

Theorem 2.5. Fix a linear operator T ∈ L(X, Y ), where X, Y are Banach spaces.
Let also I, J be ideals on ω. Then a matrix A = (An,k) of linear operators in
L(X, Y ) is (I, J )-regular with respect to T if and only if there exists k0 ∈ ω such
that:

(T1) supn ‖An,�k0‖ < ∞;

(T2) supn ‖An,kx‖ < ∞ for all x ∈ X and k < k0;

(T3)
∑

k An,kxk converges in the norm of Y for all x ∈ cb(X, I) and n ∈ ω;

(T4) J - limn

∑
k An,k = T ;

(T5) A ∈ (cb
00(X, I), c0(Y, J )).

In addition, if each An,k is bounded, it is possible to choose k0 = 0.

For the sake of clarity, condition (T4) means that An(x, x, . . .) is norm con-
vergent for all n ∈ ω and x ∈ X (which is weaker than (T3)) and, in addition,
J - limn An(x, x, . . .) = Tx for all x ∈ X. Lastly, condition (T5) can be rephrased
as: Anx is norm convergent for all n ∈ ω and all bounded sequences x supported
on I and, for such sequences, J - lim Ax = 0.
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Remark 2.6. Note that (T5) could be replaced also with the stronger condition:

(T5′) A ∈ (cb
00(X, I), cb

0(Y, J )).

Indeed by definition 2.1 the transformed sequence Ax is necessarily bounded for
all x ∈ cb(X, I). Also, the latter condition (T5′) would imply automatically (T2).
Therefore, A is (I, J )-regular with respect to T if and only if (T1), (T3), (T4),
and (T5′) hold.

However, we chose to state it in the former version for two reasons. First, if
each An,k is bounded, then (T2) is void so that our characterization holds with the
weaker condition (T5). Second, most importantly, condition (T5) will be used also
in the unbounded analogue given in theorem 2.14 below: this allows to highlight
the differences between the two cases.

Even if theorem 2.5 may look quite complicated, the reader should keep in mind
that it deals with (possibly unbounded) linear operators and general ideal/filter
convergence. We are going to see that, in some special circumstances, it may be con-
siderably simplified because either some of conditions (T1)–(T5) are automatically
satisfied or the latter ones collapse to simpler properties (in particular, recovering
the classical ones). Several related results may be found in the literature in the case
X = Y equal to R or C, T equals to the identity operator I or the zero opera-
tor, and I, J being certain Fσδ-ideals (where ideals are regarded as subsets of the
Cantor space {0, 1}ω), see e.g. [10, 13, 14, 24, 43].

We remark also that, if T is not bounded, then an (I, J )-regular matrix A with
respect to T may not exist: indeed, if each An,k is bounded and J = Fin, condition
(T4) and the Banach–Steinhaus theorem imply that T is necessarily bounded.

In the case that T = 0, we obtain the following immediate consequence, cf. also
corollary 2.12 below for the finite-dimensional case with I maximal.

Corollary 2.7. Let X, Y be Banach spaces, and let also I, J be ideals on ω. Then
a matrix A = (An,k) of linear operators in L(X, Y ) belongs to (cb(X, I), cb

0(Y, J ))
if and only if there exists k0 ∈ ω such that (T1)–(T5) hold, with T = 0.

In addition, if each An,k is bounded, it is possible to choose k0 = 0.

It will be useful to define also the following properties:

(T3�) limk ‖An,�k‖ = 0 for all n ∈ ω;

(T6�) J - limn ‖An,k‖ = 0 for all k ∈ ω.

It is clear that (S4) corresponds to (T6�) in the case J = Fin. Some implications
between the above-mentioned conditions are collected below.

Proposition 2.8. With the same hypothesis of theorem 2.5, the following hold:

(i) If I = Fin then (T1) and (T4) imply (T3);

(ii) If J = Fin then (T5) implies (T2);

(iii) (T1) and (T3�) imply (T3);
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(iv) If each An,k is bounded, it is possible to choose k0 = 0, hence (T2) holds;

(v) If dim(X) < ∞ each An,k is bounded. Moreover, (T1) implies (T3�);

(vi) If dim(X) < ∞ and A is (I, J )-regular with respect to T , then (T6�) holds;

(vii) If each An,k is a multiple of A0 ∈ L(X, Y ), then (T1) implies (T3�) and
A0 ∈ B(X, Y );

(viii) If each An,k is a multiple of A0 ∈ L(X, Y ), then (T1) and (T5) imply (T6�).

It is immediate to check that theorem 2.2 comes as a corollary, putting together
theorem 2.5 and proposition 2.8(i) and (ii).

However, the usefulness of a characterization of (I, J )-regular matrices with
respect to T comes from the practical easiness to check whether conditions
(T1)–(T5) hold together. Taking into account the implications given in proposi-
tion 2.8, it is evident that (T5) is the most demanding in this direction. Hence it
makes sense to search for sufficient conditions which allow us to simplify it. In the
same spirit of [11, Theorem 1.3], which studies the case X = Y = R and T = I, we
obtain characterizations of such matrices which avoid condition (T5). We need the
new and much “easier” condition:

(T6) J - limn ‖An,E‖ = 0 for all E ∈ I.

Directly by the definition of group norm, it is clear that (T6) implies (T5) (and also
(T6�)). This means that we are allowed to replace (T5) with the stronger condition
(T6) provided that the latter is satisfied for matrices A which are (I, J )-regular
with respect to T , possibly under some additional constraints.

Theorem 2.9. With the same hypotheses of theorem 2.5, suppose, in addition, that
J is countably generated and that conditions (T3�) and (T6�) hold.

Then A is (I, J )-regular with respect to T if and only if there exists k0 ∈ ω such
that (T1), (T4), and (T6) hold. In addition, if each An,k is bounded, it is possible
to choose k0 = 0.

On a similar direction, recall that, if X, Y are vector lattices, then a linear
operator T ∈ L(X, Y ) is said to be positive if Tx � 0 whenever x � 0. In addition,
a Banach space V is called an AM-space if V is also a vector lattice such that 0 �
x � y implies ‖x‖ � ‖y‖, and ‖x ∨ y‖ = max{‖x‖, ‖y‖} for all x, y � 0; we say that
e ∈ V is an order unit if, for all x ∈ V there exists n ∈ ω such that −ne � x � ne.
Accordingly, if V �= {0}, then necessarily e > 0. Examples of AM-spaces with order
units include �∞ and C(K) spaces, for some compact Hausdorff space K. We refer
to [2, 3] for the underlying theory on vector lattices.

Theorem 2.10. With the same hypotheses of theorem 2.5, suppose, in addition,
that X is an AM-space with order unit e, Y is a Banach lattice, each An,k is a
positive linear operator, and that condition (T3�) holds.

Then A is (I, J )-regular with respect to T if and only if (T1), (T4), and (T6)
hold with k0 = 0.
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In the finite-dimensional case, everything is simpler. Indeed, suppose that X =
Rd and Y = Rm, for some integers d, m � 1. Then each linear operator An,k is rep-
resented by the real matrix [ an,k(i, j) : 1 � i � m, 1 � j � d ] and T is represented
by the real matrix [ t(i, j) : 1 � i � m, 1 � j � d ].

Corollary 2.11. With the same hypotheses of theorem 2.5, suppose that X = Rd,
Y = Rm, and that I = Fin or J is countably generated or an,k(i, j) � 0 for all
1 � i � m, 1 � j � d, and n, k ∈ ω. Then A is (I, J )-regular with respect to T if
and only if:

(F1) supn

∑
k

∑
i,j |an,k(i, j)| < ∞;

(F2) J - limn

∑
k an,k(i, j) = t(i, j) for all 1 � i � m and 1 � j � d;

(F3) J - limn

∑
k∈E

∑
i,j |an,k(i, j)| = 0 for all E ∈ I.

It is remarkable that the “easier” characterization with condition (F3) does
not hold uniformly for all ideals I, J : indeed, it has been proved in [11,
Theorem 1.4] that, even in the simplest case X = Y = R and T = I, there exists
a (Z, Z)-regular matrix which does not satisfy (F3), where Z is the asymptotic
density zero ideal defined in (2.1). In addition, condition (F3) can be simplified if
T is the zero operator and I a maximal ideal:

Corollary 2.12. With the same hypotheses of corollary 2.11, A ∈ (�∞(Rd), cb
0

(Rm, J )) if and only if condition (F1) holds, together with:

(F3′) J - limn

∑
k

∑
i,j |an,k(i, j)| = 0.

This provides a generalization of [8, Lemma 3.2] in the case d = m = 1, T = 0,
and J equal to the countably generated ideal IP defined below in (2.3).

A similar result can be obtained if each An,k is a multiple of a given linear
operator:

Corollary 2.13. With the same hypotheses of theorem 2.5, suppose that each An,k

is a multiple of a nonzero A0 ∈ L(X, Y ), so that An,k = an,kA0 for all n, k ∈ ω.
In addition, assume that I = Fin, or J is countably generated, or that X is an
AM-space with order unit e, Y is a Banach lattice, and an,k � 0 for all n, k ∈ ω.

Then A is (I, J )-regular with respect to T if and only if:

(M1) A0 ∈ B(X, Y );

(M2) supn

∑
k |an,k| < ∞;

(M3) T = κA0, with κ = J - limn

∑
k an,k;

(M4) J - limn

∑
k∈E |an,k| = 0 for all E ∈ I.

In particular, under the hypotheses of corollary 2.13, if A is (I, J )-regular with
respect to a linear operator T , then T is necessarily bounded.
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In the following sections, we obtain the analogues of theorem 2.5 where we replace
the bounded sequence spaces cb(X, I) and cb(Y, J ) of definition 2.1 with their
unbounded versions c(X, I) and c(Y, J ).

2.2. Bounded to unbounded case

An ideal J on ω is said to be a rapid+-ideal if, for every S ∈ J + and F ∈ Fin+,
there exists S′ ⊆ S such that S′ ∈ J + and |S′ ∩ [0, n]| � |F ∩ [0, n]| for all n ∈ ω.
Moreover, J is called a P+-ideal if, for every decreasing sequence (Sn) in J+,
there exists S ∈ J+ such that S \ Sn is finite for all n ∈ ω. The class of rapid+ and
P+-ideals have been studied also, e.g. in [12, 18, 21, 35]. The ideal J is said to be
countably generated if there exist a sequence (Qj) of subsets of ω such that S ∈ J
if and only if S ⊆ ⋃

j∈F Qj for some F ∈ Fin.
Moreover, an ideal J on ω is said to be selective if, for every decreasing sequence

(Sn) in J +, there exists S ∈ J + such that S \ [0, n] ⊆ Sn for all n ∈ ω, see e.g. [42,
Definition 7.3]. (They were introduced by Mathias in [36] under the name of happy
families.) It is easy to see, directly from the definitions, that every selective ideal is a
rapid+ P+-ideal. More precisely, it is known that an ideal J on ω is selective if and
only if J is a P+-ideal and, in addition, for every sequence (Fn) of finite subsets of
ω with F :=

⋃
n Fn ∈ J+, there exists S ⊆ F such that S ∈ J+ and |S ∩ Fn| � 1

for all n ∈ ω, see e.g. [42, Lemma 7.4]. We refer to [26, Section 1] for a list of known
examples of selective ideals. It is a folklore fact that every Fσ-ideal is a P+-ideal,
see e.g. [22]. However, the summable ideal I1/n := {S ⊆ ω :

∑
n∈S 1/(n + 1) < ∞}

is an Fσ-ideal which is not rapid+, and Z is neither a rapid+ nor P+-ideal (hence,
they are not selective). This does not mean that the topological complexity of
selective ideals is low: indeed, under Martin’s axiom for countable posets, there
exist uncountably many nonisomorphic maximal selective ideals (on the other hand,
their existence is not provable in ZFC), see [12, Section 5.1].

For the next results, we need a slightly stronger version of selectivity: an ideal J
on ω is called strongly selective if, for every decreasing sequence (Sn) in J +, there
exists S = {xn : n ∈ ω} ∈ J + such that xn+1 ∈ Sxn

for all n ∈ ω. (Here, we are
using (xn : n ∈ ω) for the canonical enumeration of S. We are not aware whether this
naming has been used somewhere else.) Of course, every strongly selective ideal is
also selective. Note that every countably generated ideal is strongly selective (hence
also rapid+ and P+); in particular, Fin is a strongly selective ideal, cf. remark 2.16
below. More generally, it is easy to see that, if J is an ideal on ω with the Baire
property, then J is selective if and only if it is strongly selective. Moreover, as
pointed out by the referee, maximal strongly selective ideals coincide with maximal
selective ideals, thanks to known characterizations of the latter ones (in particular,
by the observations above, their existence can be shown under Martin’s axiom).

Lastly, we need the following weakening of condition (T1) (and they coincide if
J = Fin):

(T1�) There exists J0 ∈ J � for which supn∈J0
‖An,�k0‖ < ∞ and, for all n ∈ ω \

J0, there exists f(n) ∈ ω such that ‖An,�f(n)‖ < ∞.

This condition has been suggested by the example given in [11, Section 4].
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10 P. Leonetti

With these premises, we state the analogue of theorem 2.5 for the unbounded
codomain sequence spaces.

Theorem 2.14. Fix a linear operator T ∈ L(X, Y ), where X, Y are Banach spaces.
Let also I, J be an ideal on ω such that J is a strongly selective ideal.

Then a matrix A = (An,k) of linear operators in L(X, Y ) satisfies

A ∈ (cb(X, I), c(Y,J )) and J - lim Ax = T ( I- lim x) for all x ∈ cb(X, I).
(2.2)

if and only if there exists k0 ∈ ω such that (T1�), (T3), (T4), and (T5) hold.
In addition, if each An,k is bounded, it is possible to choose k0 = f(n) = 0 for all

n ∈ ω \ J0.

During the proof, need an ideal version of the Banach–Steinhaus theorem which
has been recently proved in [12], see theorem 3.5 below. Interestingly, the latter
result provides a characterization of rapid+ P+-ideals [12, Theorem 5.1], which
suggests that theorem 2.14 cannot be improved with the current techniques.

We remark that theorem 2.14 sheds light on the substantial difference between
the classical Silverman–Toeplitz characterization stated in theorem 1.1 and its
‘ multidimensional” analogue proved by Robinson [39] and Hamilton [19] for
double sequences, namely, the weakening of (T1) to (T1�). For, recall that a
double sequence (xm,n : m, n ∈ ω) has Pringsheim limit η ∈ X, shortened as
P- limm,n xm,n = η, if for all ε > 0 there exists k ∈ ω such that ‖xm,n − η‖ < ε for
all m, n � k. At this point, define the ideal:

IP := {S ⊆ ω : supn∈S ν2(n) < ∞} , (2.3)

where ν2 is the 2-adic valution defined by ν2(0) := 0 and ν2(n) := max{k ∈ ω :
2k divides n} if n > 0. Note that the ideal IP is countably generated by the sequence
of sets (Qt : t ∈ ω), where Qt := {S ⊆ ω : supn∈S ν2(n) = t} for all t ∈ ω. Hence,
IP is a strongly selective ideal. Let also h : ω2 → ω be an arbitrary bijection with
the property that h[{(m, n) ∈ ω2 : min{m, n} = k}] = Qk for all k ∈ ω. Thus, we
obtain

P- limm,n xm,n = η if and only if IP- limn xh−1(n) = η, (2.4)

as it has been observed in [28, Section 4.2], cf. also [14]. In other words, IP is an
isomorphic copy on ω of the ideal on ω2 generated by vertical lines and horizontal
lines, cf. remark 2.16 below. Relying on equivalence (2.4), the classical definition
of RH-regular matrix A coincides with (2.2) in the case X = Y = R, T = I, and
I = J = IP. With the same notations of corollary 2.11, we can state the following
consequence in the finite-dimensional case.

Corollary 2.15. Suppose that X = Rd, Y = Rm, and let I, J be ideals on ω
such that J is countably generated by a sequence of sets (Qt : t ∈ ω).

Then a matrix A satisfies (2.2) if and only if there exists t0 ∈ ω such that:

(R1) supn∈ω\Qt0

∑
k

∑
i,j |an,k(i, j)| < ∞;

(R2)
∑

k |an,k(i, j)| < ∞ for all n ∈ Qt0 , 1 � i � m, and 1 � j � d;
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(R3) J - limn

∑
k an,k(i, j) = t(i, j) for all 1 � i � m and 1 � j � d;

(R4) J - limn

∑
k∈E

∑
i,j |an,k(i, j)| = 0 for all E ∈ I.

It is clear that, if also I is countably generated by a sequence (Et : t ∈ ω), which
is the case of RH-regular matrices, then (R4) can be rewritten as:

(R4′ ) J - limn

∑
k∈Et

∑
i,j |an,k(i, j)| = 0 for all t ∈ ω.

Another special instance of corollary 2.15 has been proved in [9, Theorem 5] for
the case where X = Y = R, T = I, A is a RH-regular matrix with nonnegative real
entries, I is a P -ideal (i.e. if (Sn) is an increasing sequence in I, there exists S ∈ I
such that Sn \ S ∈ Fin for all n), and J = Fin.

Other consequences of theorem 2.14, in the same vein of the ones given in § 2.1,
may be obtained here, and they are left to the reader.

Remark 2.16. An ideal I on ω is countably generated if and only if it is isomorphic
to one of the following:

(i) Fin;

(ii) Fin × ∅ := {S ⊆ ω2 : ∃n ∈ ω, S ⊆ [0, n] × ω};
(iii) Fin ⊕ P(ω) := {S ⊆ {0, 1} × ω : |S ∩ ({0} × ω)| < ∞}.

(Recall that two ideals I1 and I2 on countable sets H1 and H2, respectively, are
called isomorphic, written as I1 � I2 if there exists a bijection h : H1 → H2 such
that h[S] ∈ I2 if and only if S ∈ I1 for all S ⊆ H1; accordingly, it is easy to see that
IP � Fin × ∅, and that the ideals in (i)–(iii) are pairwise nonisomorphic.) This has
been essentially proved in [15, Proposition 1.2.8], however the correct statement
appears in [4, Section 2].

We include its simple proof for the sake of completeness. Suppose that I is
countably generated by a partition {Qj : j ∈ ω} of ω, and define J := {j ∈ ω : Qj ∈
Fin}. If J is empty then every Qj is infinite, hence I � Fin × ∅. If J is nonempty
finite then Qj is infinite for infinitely many j ∈ ω, hence I � J , where

J := Fin ⊕ (Fin × ∅) := {S ⊆ ω ∪ ω2 : S ∩ ω ∈ Fin, S ∩ ω2 ∈ Fin × ∅}.

However, J � Fin × ∅, with the witnessing bijection h : ω ∪ ω2 → ω2 defined by
h(a, b) = (a, b + 1) and h(a) = (a, 0) for all a, b ∈ ω. Hence, let us assume hereafter
that J is infinite. If Jc is empty then I � Fin. If Jc is nonempty finite then I �
Fin ⊕ P(ω). Lastly, if also Jc is infinite, then I � J � Fin × ∅.

2.3. Unbounded to bounded case

In this section, we may assume that I �= Fin, otherwise we go back in the previous
cases. Differently from the other results, we are going to show that, quite often, there
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12 P. Leonetti

are no matrices A which satisfy

A ∈ (c(X, I), cb(Y,J )) and J - lim Ax = T ( I- lim x) for all x ∈ c(X, I), (2.5)

unless T is the zero operator. To this aim, recall that an ideal I is said to be tall if,
for every infinite set S ⊆ ω, there exists an infinite subset S′ ⊆ S which belongs to
I (note that countably generated ideals, hence also Fin, are not tall; for a necessary
condition in the case of countably generated ideals J and arbitrary I, cf. remark
2.23 below).

Theorem 2.17. Fix a nonzero linear operator T ∈ L(X, Y ), where X, Y are
Banach spaces. Let also I, J be an ideals on ω such that I is tall.

Then there are no matrices A = (An,k) of linear operators in L(X, Y ) which
satisfy (2.5).

Of course, if T = 0, then the zero matrix A (namely, the matrix with An,k = 0
for all n, k) satisfies (2.5). However, this is essentially the unique possibility:

Theorem 2.18. Let X, Y be Banach spaces. Let also I, J be ideals on ω such that
I is tall.

Then a matrix A = (An,k) of linear operators in L(X, Y ) belongs to
(c(X, I), cb

0(Y, J )) if and only if there exists k1 ∈ ω such that:

(B1) An,k = 0 for all n ∈ ω and k � k1;

(B2) supn ‖An,kx‖ < ∞ for all x ∈ X and k < k1;

(B3) J - limn An,k = 0 for all k < k1.

As it will turn out, condition (B1) is satisfied also for all matrices in the larger
class (c00(X, I), �∞(Y )), provided that I is tall.

2.4. Unbounded to unbounded case

In this last section, we study the analogue condition for a matrix A = (An,k) of
linear operators in L(X, Y ) to satisfy

A ∈ (c(X, I), c(Y,J )) and J - lim Ax = T ( I- lim x) for all x ∈ c(X, I). (2.6)

Remark 2.19. In some cases, it is easy to provide examples of matrices which
satisfy (2.6). Indeed, suppose that T ∈ B(X, Y ) and I ⊆ J . We claim that the
matrix A = (An,k) such that An,k = T if n = k and An,k = 0 otherwise has this
property. For, set x ∈ c(X, I) with I-limit η. Then I- limn Anx = I- limn Txn =
T (I- lim x) = Tη, which implies J - lim Ax = Tη. Here, we used the fact the T
preserves I-convergence: this is clear if T = 0, otherwise {n ∈ ω : ‖Txn − Tη‖ < ε}
⊇ {n ∈ ω : ‖xn − η‖ < ε/‖T‖} ∈ I� for all ε > 0.

In the next results, we need a further weakening of (T1�) and stronger versions
of conditions (T3) and (T5), that is,

(T1��) For all n ∈ ω, there exists f(n) ∈ ω such that ‖An,�f(n)‖ < ∞;
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(T3�)
∑

k An,kxk converges in the norm of Y for all x ∈ c(X, I) and n ∈ ω;

(T5�) A ∈ (c00(X, I), c0(Y, J )).

Theorem 2.20. Fix a linear operator T ∈ L(X, Y ), where X, Y are Banach spaces.
Let also I, J be an ideals on ω. Then a matrix A = (An,k) of linear operators in
L(X, Y ) satisfies (2.6) if there exists k0 ∈ ω such that (T1�), (T3�), (T4), and
(T5�) hold.

Conversely, if A satisfies (2.6) then (T1��), (T3�), (T4), and (T5�) hold.

It turns out that we obtain a complete characterization if J is a strongly selective
ideal:

Theorem 2.21. Fix a linear operator T ∈ L(X, Y ), where X, Y are Banach spaces.
Let also I, J be an ideals on ω such that J is a strongly selective ideal.

Then a matrix A = (An,k) of linear operators in L(X, Y ) satisfies (2.6) if and
only if there exists k0 ∈ ω such that (T1�), (T3�), (T4), and (T5�) hold.

In addition, if each An,k is bounded, it is possible to choose k0 = f(n) = 0 for all
n ∈ ω \ J0.

Some additional properties can be obtained in special cases:

Remark 2.22. Suppose that I is tall ideal. Then (T3�) implies, thanks to lemma
3.14, that A is row finite, namely, {k ∈ ω : An,k �= 0} ∈ Fin for all n ∈ ω.

Remark 2.23. Suppose that J is a countably generated ideal. Then (T5�) implies,
thanks to theorem 3.15, that for every infinite E ∈ I there exists J ∈ J � such that
{k ∈ E : An,k �= 0 for some n ∈ J} is finite.

3. Preliminaries

Unless otherwise stated, we assume that X, Y are Banach spaces. We recall the
following results on the so-called Köthe–Toeplitz β-duals:

Lemma 3.1. Let (Tk) be a sequence of linear operators in L(X, Y ). Then
∑

k Tkxk

is convergent in the norm of Y for all sequences x ∈ �∞(X) if and only if:

(N1) ‖T�k0‖ < ∞ for some k0 ∈ ω;

(N2) limk ‖T�k‖ = 0.

In addition, if each Tk is bounded, it is possible to choose k0 = 0.

Proof. See [34, Proposition 3.1 and Proposition 3.3]. �

In particular, (N1) implies that Tk is bounded for all k � k0. We remark that, if
X = R and each linear operator Tk can be written as Tkx = xyk, for some yk ∈ Y ,
then the sequence (Tk) of lemma 3.1 is also called “bounded multiplier convergent,”
see e.g. [41].
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Lemma 3.2. Let (Tk) be a sequence of linear operators in L(X, Y ). Then
∑

k Tkxk

is norm convergent in Y for all x ∈ c(X) if and only if (N1) holds for some k0,
together with:

(N 2′)
∑

k Tk converges in the strong operator topology.

In addition, if each Tk is bounded, it is possible to choose k0 = 0.

Proof. See [34, Proposition 3.2]. �

A characterization of the Köthe–Toeplitz β-dual of a sequence space which is
strictly related to c(Z) can be found in [27, Theorem 4].

However, if X is finite dimensional, we have a simpler characterization:

Corollary 3.3. Let (Tk) be a sequence of linear operators in L(X, Y ) and assume,
in addition, that X is finite dimensional. Then the following are equivalent:

(i)
∑

k Tkxk is norm convergent in Y for all sequences x ∈ �∞(X);

(ii)
∑

k Tkxk is norm convergent in Y for all sequences x ∈ c(X);

(iii) ‖Tω‖ < ∞.

Proof. The implication (i) =⇒ (ii) is clear and (ii) =⇒ (iii) follows by lemma
3.2. Indeed, since d := dim(X) < ∞, each Tk is bounded.

(iii) =⇒ (i) It follows by lemma 3.1 that it is enough to prove that condition (N2)
holds, provided that ‖Tω‖ < ∞. To this aim, suppose for the sake of contradiction
that there exists ε > 0 such that lim supk ‖T�k‖ > ε. Then there exist a sequence
x taking values in the closed unit ball BX and a partition {Ij : j ∈ ω} of ω in
consecutive finite intervals such that

∀ j ∈ ω, ‖(Tk : k ∈ Ij)‖ �
∥∥∥∥∑

k∈Ij

Tkxk

∥∥∥∥ > ε.

Assume without loss of generality that X = Rd and, since every norm is equiv-
alent, endow it with the 1-norm ‖x‖ :=

∑
i |xi|. Define the sequence y by yj :=∑

k∈Ij
Tkxk for all j. Let {Q1, . . . , Q2d} be the collection of all closed quadrants

of Rd. Since
⋃

i�2d Qi = Rd, there exist i0 ∈ [1, 2d] and an infinite set J ⊆ ω such
that yj ∈ Qi0 for all j ∈ J . It follows that

‖Tω‖ � ‖(Tk : k ∈ J)‖ � sup
F⊆J,F∈Fin

∥∥∥∑
j∈F

yj

∥∥∥
= sup

F⊆J,F∈Fin

∑
j∈F

‖yj‖ � sup
F⊆J,F∈Fin

|F |ε = ∞,

which contradicts the standing hypothesis. �

Lemma 3.4. Let (Tk) be a sequence of linear operators in L(X, Y ) and assume, in
addition, that X is finite dimensional and J - limk ‖Tkx‖ = 0 for all x ∈ X, where
J is an ideal on ω. Then J - limk ‖Tk‖ = 0.
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Proof. Since d := dim(X) < ∞, each Tk is bounded. Assume without loss of gen-
erality that X = Rd and endow it with the 1-norm as in the proof of corollary 3.3.
Note that the set E of extreme points of the closed unit ball is finite. Hence, for
each k ∈ ω, there exists ek ∈ E such that ‖Tk‖ = ‖Tkek‖. It follows that

J - limk ‖Tk‖ �
∑

e∈E
J - limk ‖Tke‖ = 0,

which completes the proof. �

As anticipated, we need an ideal version of the Banach–Steinhaus theorem, which
has been recently obtained in [12].

Theorem 3.5. Let J be a rapid+ P+-ideal on ω. Also, let (Tn) be a sequence of
linear operators in B(X, Y ) and suppose that

∀ x ∈ X, J - lim supn ‖Tnx‖ < ∞.

Then J - lim supn ‖Tn‖ < ∞.

Proof. It follows by [12, Theorem 3.1(b)]. �

The following result on unbounded operators is due to Lorentz and Macphail [31]
in the case J = Fin, see also [34, Theorem 4.1] for a textbook exposition.

Theorem 3.6. Let (Tn) be a sequence of linear operators in L(X, Y ). Let also
(Mn) be a decreasing sequence of closed linear subspaces of X such that each Tn is
bounded on Mn.

Lastly, fix a strongly selective ideal J on ω and suppose that (Tnx) ∈ �∞(Y, J )
for all x ∈ X. There there exist n0 ∈ ω and J� ∈ J � such that Tn is bounded on
Mn0 for all n ∈ J�.

Proof. For each n ∈ ω, define

Sn := {k ∈ ω : Tk is not bounded on Mn} .

Note that (Sn) is a decreasing sequence and Sn ∩ [0, n] = ∅ for all n ∈ ω. First,
suppose that there exists n0 ∈ ω such that Sn0 ∈ J . It follows that Tk is bounded
on Mn0 for all k ∈ J� := ω \ Sn0 ∈ J �. Hence, suppose hereafter that (Sn) is a
decreasing sequence in J +. Since J is strongly selective, there exists S ∈ J + with
increasing enumeration (kn) with the property that kn+1 ∈ Skn

for all n ∈ ω. In
other words, we have

{kn : n ∈ ω} ∈ J + and Tkn+1 is not bounded on Mkn
for all n ∈ ω.

It follows by the proof in [34, Theorem 4.1] that there exists x ∈ X such that
‖Tkn+1x‖ � n for all n � 2. This contradicts the hypothesis that the sequence (Tnx)
is J -bounded. �

Theorem 3.7. Let A = (An,k) be a matrix of linear operators in L(X, Y ). Let J
be a strongly selective ideal on ω. Then A ∈ (c(X), �∞(Y, J )) only if there exists
k0 ∈ ω which satisfies (T1�).
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In addition, if each An,k is bounded, it is possible to choose k0 = f(n) = 0 for all
n ∈ ω \ J0.

Proof. Thanks to lemma 3.2, for each n ∈ ω, there exists an integer f(n) ∈ ω such
that ‖An,�f(n)‖ < ∞. Without loss of generality, we can suppose that the sequence
(f(n) : n ∈ ω) is weakly increasing. Now, for each n ∈ ω, define

Mn := {x ∈ c(X) : xk = 0 for all k < f(n)}.
Then (Mn) is a decreasing sequence of closed linear subspaces of the Banach space
c(X). In addition, for each n ∈ ω, the linear operator An : c(X) → Y is well defined.
Thanks to the Banach–Steinhaus theorem, An is bounded on Mn for all n ∈ ω.

At this point, it follows by theorem 3.6 that there exist n0 ∈ ω and J� ∈ J �

such that An is bounded on Mn0 for all n ∈ J�. Thanks to theorem 3.5, we obtain
that J - lim supn ‖An � Mn0‖ < ∞, i.e., there exist a constant κ > 0 and J0 ∈ J �,
with J0 = ω if J = Fin, such that ‖Anx‖ � κ‖x‖ for all x ∈ Mn0 and n ∈ J0. To
complete the proof, observe that

∀n ∈ J0,∀x ∈ c00(X) ∩ Mn0 , ‖Anx‖ =
∥∥∥∥∑

k�f(n0)
An,kxk

∥∥∥∥ � κ‖x‖,

which implies that ‖An,�f(n0)‖ � κ. Since the upper bound is independent of
n ∈ J0, the claim follows by setting k0 := f(n0).

The second part is clear once we observe that it is possible to choose f(n) = 0
for all n. �

In the following results we need the following weakening of (T2), namely,

(T2�) J - lim supn ‖An,kx‖ < ∞ for all x ∈ X and k < k0.

It is clear that (T5) implies (T2�), which is the reason why it does not appear in
theorem 2.14, cf. remark 2.6.

Theorem 3.8. Let A = (An,k) be a matrix of linear operators in L(X, Y ). Also,
let J be a strongly selective ideal on ω. Then A ∈ (�∞(X), �∞(Y, J )) if and only
if there exists k0 ∈ ω such that (T1�), (T2�), and (T3�) hold.

In addition, if each An,k is bounded, it is possible to choose k0 = 0.

Proof. If part. Fix x ∈ �∞(X). Thanks to lemma 3.1, for each n, the sum Anx =∑
k An,kxk is convergent in the norm of Y , hence Ax is well defined. It follows by

(T2�) that there exist J1 ∈ J � and κ > 0 such that ‖An,kxk‖ � κ for all k < k0

and n ∈ J1. Hence

‖Anx‖ �
∑

k<k0
‖An,kxk‖ +

∥∥∥∑
k�k0

An,kxk

∥∥∥ � κk0 + ‖x‖ supt∈J0
‖At,�k0‖

(3.1)
for all n ∈ J0 ∩ J1 ∈ J �, which proves that Ax ∈ �∞(Y, J ).

Only If part. The necessity of (T1�) follows by theorem 3.7, with k0 = 0 if
each An,k is bounded. Now, if (T2�) does not hold, there would exist x ∈ X and
k < k0 such that J - lim supn ‖An,kx‖ = ∞. This contradicts the hypothesis that
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A ∈ (�∞(X), �∞(Y, J )) by choosing x ∈ �∞(X) such that xt = x if t = k and xt =
0 otherwise. Lastly, the necessity of (T3�) follows by lemma 3.1. �

Remark 3.9. The same example given in remark 2.4 proves that, even if X = Y ,
J = Fin, and each An,k is bounded (so that (T2�) is void), condition (T1�)
(as its stronger version (T1)) is not sufficient to characterize the matrix class
(�∞(X), �∞(Y, J )); cf. corollary 3.11 below for the finite-dimensional case.

Theorem 3.10. Let A = (An,k) be a matrix of linear operators in L(X, Y ). Also,
let J be a strongly selective ideal on ω. Then A ∈ (c(X), �∞(Y, J )) if and only if
there exists k0 ∈ ω such that (T1�) and (T2�) hold, together with:

(T4�)
∑

k An,k convergences in the strong operator topology for all n.

In addition, if each An,k is bounded, it is possible to choose k0 = 0.

Proof. The proof goes as in theorem 3.8, replacing lemma 3.1 with lemma 3.2. �

However, if X is finite dimensional, it is possible to simplify the equivalences in
theorems 3.8 and 3.10, namely, condition (T1�) is necessary and sufficient in both
cases choosing k0 = 0

Corollary 3.11. Let A = (An,k) be a matrix of linear operators in L(X, Y ) and
assume, in addition, that X is finite dimensional. Also, let J be a strongly selective
ideal on ω.

Then the following are equivalent:

(i) A ∈ (�∞(X), �∞(Y, J ));

(ii) A ∈ (c(X), �∞(Y, J ));

(iii) (T1�) holds with k0 = 0.

Proof. (i) =⇒ (ii) is clear, (ii) =⇒ (iii) follows by theorem 3.7, and (iii) =⇒
(i) follows by lemma 3.1, corollary 3.3, theorem 3.8, and the fact that each An,k is
bounded. �

Lemma 3.12. Let (Tk) be a sequence of nonzero linear operators in L(X, Y ). Then
there exists a sequence x ∈ Xω such that

∑
k Tkxk is not convergent in the norm

of Y .

Proof. For each k ∈ ω, pick yk ∈ X such that Tkyk �= 0. Now define the sequence x
recursively as it follows: x0 := y0 and, if x0, . . . , xn−1 are defined for some n � 1,
then xn := κnyn, where κn := (n + ‖∑

k�n−1 Tkxk‖)/‖Tnyn‖. Indeed, it follows
that ∥∥∥∑

k�n
Tkxk

∥∥∥ � ‖Tnxn‖ −
∥∥∥∑

k�n−1
Tkxk

∥∥∥ = n

for all n � 1, completing the proof. �
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Lemma 3.13. Let I be an ideal on ω which is tall. Then there exists a partition
{En : n ∈ ω} of ω such that En ∈ I ∩ Fin+ for all n.

Proof. We define such partition recursively, with the property that {0, . . . , n} ∪
E0 ∪ · · ·En for all n. Since I is tall there exists an infinite set S0 ∈ I, and set
E0 := S0 ∪ {0}. Now, suppose that E0, . . . , En−1 have been defined, for some n � 1,
so that the set Gn := ω \ ⋃

i<n Ei belongs to I�. Since I is tall there exists an
infinite set Sn ∈ I contained in Gn. The claim follows defining En := Sn if n /∈ Gn

and En := Sn ∪ {n} otherwise. �

Lemma 3.14. Let (Tk) be a sequence of linear operators in L(X, Y ). Let also I be a
tall ideal on ω. Then

∑
k Tkxk is convergent in the norm of Y for all x ∈ c00(X, I)

if and only if {k ∈ ω : Tk �= 0} is finite.

Proof. Thanks to lemma 3.13, there exists a partition {En : n ∈ ω} of ω such that
En ∈ I ∩ Fin+ for all n. Now, it follows by lemma 3.12 that Fn := {k ∈ En : Tk �= 0}
∈ Fin. Define F :=

⋃
n Fn and suppose for the sake of contradiction that F /∈ Fin.

Since I is tall, there exists an infinite subset F ′ ⊆ F such that F ′ ∈ I. However,
by construction {k ∈ F ′ : Tk �= 0} = F ′, which contradicts lemma 3.12. �

Recalling that a matrix A is said to be row-finite if {k ∈ ω : An,k �= 0} ∈ Fin
for all n ∈ ω, we provide strong necessary conditions on the entries of matrices in
(Xω, �∞(Y, J )) and (c00(X, I), �∞(Y )), where J is countably generated and I is
tall.

Theorem 3.15. Let A = (An,k) be a matrix of linear operators in L(X, Y ) such
that A ∈ (Xω, �∞(Y, J )), where J is a countably generated ideal on ω. Then A is
row finite and there exist J ∈ J � and k1 ∈ ω such that An,k = 0 for all n ∈ J and
k � k1.

Proof. First, suppose that A ∈ (Xω, �∞(Y, J )) and that J is generated by a
sequence of increasing sets (Qj). Then A is row finite by lemma 3.12, so that
Fn := {k ∈ ω : An,k �= 0} ∈ Fin for all n ∈ ω. Suppose for the sake of contradiction
that

∀ J ∈ J �, ∀ k1 ∈ ω, ∃k � k1, ∃n ∈ J, An,k �= 0. (3.2)

Define a strictly increasing sequence (sn) in ω such that s0 := min{n ∈ ω : Fn �= ∅},
and, recursively, sn+1 := min(Sn \ Qjn

) for all n ∈ ω, where

Sn := {t ∈ ω : max Ft > max(Fs0 ∪ · · · ∪ Fsn
)} and jn := min{j ∈ ω : sn ∈ Qj}.

We claim that Sn \ Qjn
is nonempty, so that sn+1 is well defined. Note that Sn ∈

J +: indeed, in the opposite, we would contradict (3.2) by setting J = Sc
n and k1 =

1 + max(Fs0 ∪ · · · ∪ Fsn
). In addition, since Qjn

∈ J , it follows that Sn \ Qjn
∈ J +

(in particular, it is nonempty).
Since the set S := {sn : n ∈ ω} is not contained in any Qj , it follows that S ∈ J+.

In addition, set kn := max Fsn
for all n ∈ ω. Using a technique similar to the one

used in lemma 3.12, we are going to construct a sequence x supported on K := {kn :
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n ∈ ω} such that ‖Anx‖ � n for all n ∈ ω, so that Ax /∈ �∞(Y, J ). To this aim,
pick an arbitrary sequence y ∈ Xω such that Asn,kn

yn �= 0 for all n ∈ ω. Now define
x recursively so that xk0 := y0 and, if xk0 , . . . , xkn−1 are given for some n � 1, then
xkn

:= κnyn, where κn := (n + ‖∑
i�n−1 Asn,ki

xki
‖)/‖Asn,kn

yn‖. Indeed, it follows
that

‖Asn
x‖ =

∥∥∥∥∑
k∈Fsn

Asn,kxk

∥∥∥∥ =
∥∥∥∑

i�n
Asn,ki

xki

∥∥∥
� κn‖Asn,kn

ykn
‖ −

∥∥∥∑
i�n−1

Asn,ki
xki

∥∥∥ = n

for all n � 1. Since S ∈ J+, we conclude that J - lim supn ‖Anx‖ �= 0. �

Theorem 3.16. Let A = (An,k) be a matrix of linear operators in L(X, Y ) such
that A ∈ (c00(X, I), �∞(Y )), where I is a tall ideal on ω. Then there exists k1 ∈ ω
such that An,k = 0 for all n ∈ ω and k � k1.

Proof. First, A is row finite by lemma 3.14. Now, it is enough to repeat the proof
of lemma 3.14 replacing lemma 3.12 with theorem 3.15, with Fn := {k ∈ ω : ∃m ∈
ω, Am,k �= 0}. �

4. Key tools

Let A = (An,k) be a matrix of linear operators in L(X, Y ) and note that, for each
n ∈ ω and sequence x taking values on the closed unit ball BX , we have

J - lim supn ‖An,ω‖ � J - lim supn ‖Anx‖ (4.1)

In this section, we provide sufficient conditions on the matrix A and on the ideal
J for the existence of a sequence x such that the above inequality is actually an
equality. The following result is the operator version of the sliding jump argument
contained in the proof of [11, Theorem 1.3] for the one-dimensional case X = Y = R
and J = Fin.

Theorem 4.1. Let J be an ideal on ω which is countably generated. Let also A =
(An,k) be a matrix of linear operators in L(X, Y ) which satisfies conditions (T1�)
for some k0 ∈ ω, (T3�), and (T6�). Then there exists a sequence x with values on
the unit sphere SX such that

J - lim supn ‖An,ω‖ = J - lim supn ‖Anx‖.

Proof. Suppose that J is generated by an increasing sequence of sets (Qn), and
define

η0 := J - lim supn ‖An,ω‖ ∈ [0,∞].

It follows by (T6�) that

∀E ∈ Fin, J - limn ‖An,E‖ =
∑

k∈E
J - limn ‖An,k‖ = 0. (4.2)
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Hence there exists J1 ∈ J � such that ‖An,�k0‖ � 1 for all n ∈ J1. Setting J2 :=
J0 ∩ J1 ∈ J �, it follows that

∀ n ∈ J2, ‖An,ω‖ � ‖An,�k0‖ + ‖An,�k0‖ � 1 + supt∈J0
‖At,�k0‖,

which is finite by condition (T1�). This proves that η0 �= ∞. Moreover, if η0 = 0,
it is enough to let x be an arbitrary sequence with values in SX , thanks to (4.1).
Hence, let us assume hereafter that η0 ∈ (0, ∞).

At this point, for each n ∈ ω, define the set

En :=
{

t ∈ J2 : |‖At,ω‖ − η0| � η0

2n

}
, (4.3)

and note that (En) is a decreasing sequence of sets in J +. Define also two strictly
increasing sequences (sn) and (mn) of nonnegative integers, a descreasing sequence
(Hn) of sets of J �, and a decreasing sequence (Sn) of sets in J + as it follows.
Set s0 := min S0, with S0 := E0, H0 := ω, and choose m0 ∈ ω such that ‖As0,�m0‖
� η0, which is possible by (T3�). Now, suppose that s0, . . . , sn−1, m0, . . . , mn−1 ∈
ω and the sets S0, . . . , Sn−1 ∈ J + and H0, . . . , Hn−1 ∈ J � have been defined for
some n � 1.

(i) Set Hn := Hn−1 ∩
{
t ∈ ω : ‖At,mn−1‖ � η0/2n

}
, so that Hn ∈ J � by (4.2);

(ii) Define Sn := En ∩ Hn, hence Sn ∈ J + and

∀t ∈ Sn, ‖At,�mn−1‖ � η0

2n
. (4.4)

(iii) Choose sn ∈ Sn \ Qz, where k is an integer such that sn−1 ∈ Qk. In particular,
sn > sn−1. Note that this is possible since Sn \ Qk ∈ J +.

(iv) Lastly, thanks to (T3�), choose mn > mn−1 such that

‖Asn,�mn
‖ � η0

2n
. (4.5)

To conclude the proof, let x = (xn) be a sequence taking values on the unit sphere
SX such that

∀ n � 1,
∥∥∥∑

k∈Mn

Asn,kxk

∥∥∥ � ‖Asn,Mn
‖ − η0

2n
, (4.6)

where Mn := {k ∈ ω : mn−1 < k � mn}, and xn is arbitrarily chosen on the unit
sphere SX for all n ∈ [0, m0]. It follows by (4.3)–(4.6) that

∀ n � 1, ‖Asn
x‖ �

∥∥∥∑
k∈Mn

Asn,kxk

∥∥∥ − ∥∥Asn,�mn−1

∥∥ − ‖Asn,�mn
‖

� ‖Asn,Mn
‖ − ∥∥Asn,�mn−1

∥∥ − ‖Asn,�mn
‖ − η0

2n

� ‖Asn,ω‖ − 2
∥∥Asn,�mn−1

∥∥ − 2 ‖Asn,�mn
‖ − η0

2n

� η0

(
1 − 1

2n

)
− η0

2n−1
− η0

2n−1
− η0

2n
> η0

(
1 − 1

2n−3

)
.

(4.7)
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It follows by construction that we cannot find an integer k such that sn ∈ Qk for
all n ∈ ω. Therefore {sn : n ∈ ω} ∈ J + and J - lim supn ‖Anx‖ � η0.

The converse inequality follows by (4.1), completing the proof. �

Related results (in the case X = Y = R and J = Fin) can be found in [1, Lemma
3.1] and [40, Corollary 12]. The following corollary is immediate (we omit details):

Corollary 4.2. With the same hypothesis of theorem 4.1, for each E ⊆ ω, there
exists a sequence x taking values on SX ∪ {0} and supported on E such that

J - lim supn ‖An,E‖ = J - lim supn ‖Anx‖.
In the finite-dimensional case, the statement can be simplified:

Corollary 4.3. With the same notations of corollary 2.11, suppose that X =
Rd, Y = Rm, and that J is countably generated. Let also A be a matrix which
satisfies:

(K1) supn∈J0

∑
k

∑
i,j |an,k(i, j)| < ∞ for some J0 ∈ J �;

(K2)
∑

k

∑
i,j |an,k(i, j)| < ∞ for all n ∈ ω;

(K3) J - limn

∑
i,j |an,k(i, j)| = 0 for all k ∈ ω.

Then, for each E ⊆ ω, there exists a sequence x = (x(0), x(1), . . .) taking values on
SX ∪ {0} and supported on E such that

J - lim supn

∑
k∈E

maxj

∑
i
|an,k(i, j)| = J - lim supn

∑
i

∣∣∣∑
k

∑
j
an,k(i, j)x(k)

j

∣∣∣ .

Proof. Conditions (K1) and (K2) correspond to (T1�), and (K3) corresponds to
(T6�), cf. the proof of corollary 2.11. In addition, (T1�) implies (T3�) by proposition
2.8(v) and remark 5.1 below. The claim follows by corollary 4.2. �

Remark 4.4. As it has been previously observed in remark 2.3, there exists a
matrix A which does not satisfy condition (T6�) with J = Fin (which corresponds
to (S4)) and, on other hand, it satisfies (T5) with I = J = Fin (which corresponds
to (S3)). In addition, it is immediate to see that A satisfies (T1) and (T3�) since
An,k = 0 for all n � 0 and k > 0. However, in this case, the conclusion of theorem
4.1 fails: indeed, if x = (x0, x1, . . .) is a sequence taking values on the closed unit
ball of �2 then limn ‖Anx‖ = limn ‖An,0x0‖ = 0, and ‖An,ω‖ = ‖An,0‖ = 1 for all
n ∈ ω. Hence we cannot replace (T6�) in theorem 4.1 with the weaker pointwise
condition J - limn An,k = 0 for all k ∈ ω (namely, (T5) with I = Fin).

However, the weaker condition above is sufficient to obtain the same claim if
η0 = ∞; note that, as it has been shown above, this case is impossible with the
hypotheses of theorem 4.1.

Theorem 4.5. Let J be an ideal on ω which is countably generated. Let also A =
(An,k) be a matrix of linear operators in L(X, Y ) which satisfies conditions (T3�)
and (T5) with I = Fin. In addition, assume that J - lim supn ‖An,�f(n)‖ = ∞.
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Then there exists a sequence x with values on SX such that J - lim supn

‖Anx‖ = ∞.

Proof. We proceed with the same strategy of the proof of theorem 4.1. Note
that (T3�) implies (T1��). Accordingly, define En := {t ∈ ω : ‖At,�f(t)‖ � n}, which
belongs to J + for each n ∈ ω. Set s0 := min S0, with S0 := E0, H0 := ω, choose
m0 ∈ ω such that ‖As0,�m0‖ � 1, which is possible by (T3�), and pick some
arbitrary vectors x0, . . . , xm0 ∈ SX .

Now, suppose that, for some n � 1, all the integers si, mi, sets Si, Hi ⊆ ω, and
vectors xj have been defined for all i � n − 1 and j � mn−1. Then, define recursively

Hn := Hn−1 ∩
{

t ∈ ω :
∥∥∥∥∑

k�mn−1
At,kxk

∥∥∥∥ � 1
}

,

which belongs to J � thanks to (T5) with I = Fin. Define Sn and sn as in the proof
of theorem 4.1, and mn > mn−1 such that ‖Asn,�mn

‖ � 1, which is possible again
by (T3�). Finally, we choose some vectors {xk : k ∈ Mn} on the unit sphere SX

such that ‖∑
k∈Mn

Asn,kxk‖ � ‖Asn,Mn
‖ − 1. (Here, differently from the previous

proof, the sequence x has been constructed recursively.) Reasoning as in (4.7), we
conclude that

∀n � 1, ‖Asn
x‖ � n − 5 and {st : t ∈ ω} ∈ J+.

Therefore J - lim supn ‖Anx‖ = ∞. �

As a consequence of the results above, we obtain an ideal version of the
Hahn–Schur theorem (where the classical version corresponds to the case J = Fin):

Theorem 4.6. Let J be a countably generated ideal. Let also A = (an,k) be an
infinite real matrix such that

∑
k |an,k| < ∞ for all n ∈ ω and

∀E ⊆ ω, J - limn

∑
k∈E

an,k = 0. (4.8)

Then J - limn

∑
k |an,k| = 0.

Proof. Set η0 := J - lim supn

∑
k |an,k| ∈ [0, ∞]. Note also that the standing

hypotheses imply (T3�) and (T6�). In addition, if η0 < ∞, then (T1) holds. It
follows by theorems 4.1 and 4.5 that there exists a real sequence x taking values in
{1, −1} such that

J - lim supn

∑
k
an,kxk = η0. (4.9)

At this point, define yn := (1 + xn)/2 for all n ∈ ω, so that y = 1E , where E :=
{k ∈ ω : xk = 1}. It follows by (4.8) and (4.9) that

η0 = J - lim supn

(∑
k
an,k(2yk − 1)

)
= 2 · J - lim supn

∑
k
an,kyk − J - limn

∑
k
an,k

= 2 · J - lim supn

∑
k∈E

an,k = 0.

Therefore J - limn

∑
k |an,k| = 0. �
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Neither (T6�) nor (T5) with I = Fin will be required for a conclusion as in
theorem 4.1 in the case of positive linear operators between certain Banach lattices.

Proposition 4.7. Let X be an AM-space with order unit e > 0 and let Y be a
Banach lattice. Also, let T = (Tk) be a sequence of linear operators in L(X, Y )
which are positive and such that

∑
k Tkxk is convergent in the norm of Y for all

sequences x ∈ �∞(X). Then

∀ E ⊆ ω, ‖(Tk : k ∈ E)‖ =
∥∥∥∑

k∈E
Tke

∥∥∥ .

Proof. Thanks to [2, Theorem 3.40], there exists a (unique, up to homeomorphism)
compact Hausdorff space K and a lattice isometry h : X → C(K) such that h(e) is
the constant function 1, where C(K) is the Banach lattice of continuous functions
f : K → R, endowed with the supremum norm. It follows that the closed unit ball
BX of X is simply the order interval [−e, e], indeed

BX = h−1({f ∈ C(K) : ‖f‖ � 1}) = h−1([−1,1]) = [−e, e].

At this point, let us fix a nonempty E ⊆ ω, a positive integer n with n � |E|,
distinct integers i1, . . . , in ∈ E, and vectors x1, . . . , xn ∈ X such that |xk| � e for
all k ∈ {1, . . . , n}. By the fact that each Tk is a positive linear operator and [2,
Theorem 1.7(2)], it follows that

0 �
∣∣∣∑

k�n
Tik

xk

∣∣∣ �
∑

k�n
|Tik

xk| �
∑

k�n
Tik

|xk| �
∑

k�n
Tik

e.

By the definition of group norm and the compatibility between the norm and the
order structure in X, we obtain

‖(Tk : k ∈ E)‖ = supn

∥∥∥∑
k�n,k∈E

Tke
∥∥∥ =

∥∥∥∑
k∈E

Tke
∥∥∥ ,

which concludes the proof. �

In the same spirit of corollary 4.2, we obtain the following consequence:

Corollary 4.8. Let X be an AM-space with order unit e > 0 and let Y be a Banach
lattice. Also, let J be an ideal of ω, and A = (An,k) be a matrix of positive linear
operators such that A ∈ (�∞(X), �∞(Y )). Then

∀ E ⊆ ω, J - lim supn ‖An,E‖ = J - lim supn ‖Anx‖,

where xn = e if n ∈ E and xn = 0 otherwise.

Proof. Proposition 4.7 implies that ‖An,E‖ = ‖∑
k∈E An,ke‖ = ‖Anx‖ for all n.

�
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5. Main proofs

Proof of theorem 2.5. If part. Suppose that (T1)–(T5) hold and fix a bounded
sequence x which is I-convergent to η ∈ X. Thanks to (T3), Anx is well defined
for each n ∈ ω. In addition, we obtain by (T1) and (T2) that inequality (3.1) holds
for all n (indeed, in our case J0 = J1 = ω), proving that Ax ∈ �∞(Y ).

First, suppose that η = 0. Fix ε > 0 and define

δ :=
ε

1 + supn ‖An,�k0‖
and E := {n ∈ ω : n < k0 or ‖xn‖ > δ}. Note that E ∈ I and that, again by (T3),
(
∑

k∈E An,kxk : n ∈ ω) is a well-defined sequence in Y . In addition,

S :=
{

n ∈ ω :
∥∥∥∑

k∈E
An,kxk

∥∥∥ > δ
}
∈ J

by (T5). Now, suppose that ‖Anx‖ > ε for some n ∈ ω. It follows that

ε <
∥∥∥∑

k∈E
An,kxk

∥∥∥ +
∥∥∥∑

k/∈E
An,kxk

∥∥∥ �
∥∥∥∑

k∈E
An,kxk

∥∥∥ + δ supt ‖At,�k0‖.
(5.1)

By the definition of δ, this implies that∥∥∥∑
k∈E

An,kxk

∥∥∥ > ε − δ supt ‖At,�k0‖ = δ,

so that n ∈ S. We conclude that {n ∈ ω : ‖Anx‖ > ε} ⊆ S ∈ J . By the arbitrari-
ness of ε, we obtain J - lim Ax = 0.

At this point, suppose that η ∈ X and define y ∈ Xω such that yn := xn − η for
all n. Note that y ∈ cb

0(X, I), hence by the previous case Ay ∈ cb
0(Y, J ). It follows

by (T4) that

J - lim Ax = J - lim Ay + J - limn

∑
k
An,kη = Tη,

which proves that A is (I, J )-regular with respect to T .
Only If part. Assume that A is (I, J )-regular with respect to T . Hence,

the matrix A belongs, in particular, to (c(X), �∞(Y )). It follows by theorem 3.10
that conditions (T1) and (T2) hold. Also, for each n ∈ ω, the sum

∑
k An,kxk is

convergent in the norm of Y for all sequences x ∈ cb(X, I), hence (T3) holds.
Moreover, for each x ∈ X, the constant sequence (x, x, . . .) has I-limit x, hence
J - limn

∑
k An,kx = Tx, which is condition (T4).

Lastly, fix x ∈ cb
00(X, I), so that I- lim x = 0. By the (I, J )-regularity of A

with respect to T , we obtain that Ax is well defined and J - lim Ax = T (0) = 0.
This proves (T5).

The second part of the statement follows by proposition 2.8(iv). �

Proof of proposition 2.8. (i) Condition (T4) implies that
∑

k An,k is convergent in
strong operator topology for each n ∈ ω. The conclusion follows by lemma 3.2

(ii) For all k ∈ ω and x ∈ X, if limn An,kx = 0 then supn ‖An,kx‖ < ∞.
(iii) It follows by lemma 3.1.
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(iv) Since A belongs to (c(X), �∞(Y )), the claim follows by theorem 3.7.
(v) It is known that each An,k is bounded. The second part follows by lemma 3.1

and corollary 3.3. (Note that this is not necessarily true if dim(X) = ∞, cf. remark
3.9.)

(vi) Given k ∈ ω and x ∈ X, the sequence x defined by xn = x if n = k and
xn = 0 otherwise has I-limit 0, hence J - limn An,kx = T (0) = 0. This claim follows
by lemma 3.4.

(vii) For all n, k ∈ ω, there exists an,k ∈ R such that An,k = an,kA0. Note also
that

∀ n ∈ ω,∀ E ⊆ ω, ‖An,E‖ = ‖A0‖
∑

k∈E
|an,k|. (5.2)

Hence condition (T1) implies that A0 is necessarily bounded, k0 = 0 can be chosen
by point (iv) above, and hence supn

∑
k |an,k| < ∞. Thanks to (5.2), it is immediate

to conclude that limk ‖An,�k‖ = ‖A0‖ limk

∑
t�k |an,t| = 0 for all n ∈ ω.

(viii) By point (vii) above, A0 is bounded. Moreover, if A0 = 0 the claim is
obvious. Otherwise, there exists x ∈ X such that A0x �= 0 and by (T5) we obtain
J - limn An,kx = 0, so that ‖A0x‖ · J - limn |an,k| = 0 for all k ∈ ω. It follows that
J - limn ‖An,k‖ = ‖A0‖ · J - limn |an,k| = 0. �

Remark 5.1. As it is evident from the above proofs, the statements of proposition
2.8(i), (iii), (v), (vii), and (viii) are correct also replacing (T1) with the weaker
condition (T1��).

Proof of theorem 2.9. First, assume that A is (I, J )-regular with respect to T , with
J countably generated. Then (T1) and (T4) holds by theorem 2.5. Now, fix x ∈
cb
00(X, I). Then I- lim x = 0 and, since A is (I, J )-regular, we obtain J - lim Ax =

0, namely, J - limn ‖Anx‖ = 0. Then (T6) holds by corollary 4.2.
Conversely, assume that (T1), (T4), and (T6) hold. Then (T5) holds (since it

is implied by (T6)), and conditions (T2) and (T3) hold by proposition 2.8(ii) and
(iii), respectively. It follows by theorem 2.5 that A is (I, J )-regular with respect
to T . �

Proof of theorem 2.10. The first proof goes verbatim as in the proof of theorem
2.9, replacing corollary 4.2 with corollary 4.8. Also the second part proceeds sim-
ilarly, with the difference that (T2) holds by proposition 2.8(iv): indeed, thanks
to [3, Theorem 4.3], each positive linear operator An,k between Banach lattices is
necessarily continuous. �

Proof of corollary 2.11. Endow Rd and Rm with the corresponding 1-norm, as
in the proof of corollary 3.3, so that ‖An,k‖ = maxj

∑
i |an,k(i, j)|, cf. e.g. [20,

Example 5.6.4]. Also, note that, for all n ∈ ω and E ⊆ ω,

1
d

∑
k∈E

∑
i,j

|an,k(i, j)| � ‖An,E‖ �
∑

k∈E

∑
i,j

|an,k(i, j)|. (5.3)

Accordingly, conditions (F1), (F2), and (F3) are simply a rewriting of (T1), (T4),
and (T6), respectively, with k0 = 0 (which can be chosen thanks to proposition
2.8(v) and (iv); in particular, in the following subcases, condition (T2) is void).
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Case I = Fin: First, assume that A is (I, J )-regular with respect to T . Then
(T1) and (T4) hold by theorem 2.5. In addition, by proposition 2.8(vi) also (T6�)
holds. At this point, fix E ∈ Fin and note that ‖An,E‖ �

∑
k∈E ‖An,k‖. Taking

J -limits on both sides, we obtain (T6). Conversely, assume that (T1), (T4) and
(T6) hold. Then (T6) implies (T5). And (T3) holds by proposition 2.8(iii) and (v).
Hence A is (I, J )-regular with respect to T by theorem 2.5.

Case J is countably generated: If A is (I, J )-regular with respect to T ,
then (T1) and (T4) hold by theorem 2.5. In addition, (T3�) and (T6�) hold by
proposition 2.8(v) and (vi). Then (T6) holds by theorem 2.9. The converse goes as
in the previous case.

Case an,k(i, j) � 0 for all 1 � i � m, 1 � j � d, and n, k ∈ ω: Note that Rd

is an AM-space with order unit (1, . . . , 1). The proof goes on the same lines of the
previous case replacing theorem 2.9 with theorem 2.10. �

Proof of corollary 2.12. Let I and I ′ be two maximal ideals such that {2ω, 2ω + 1}
⊆ I ∪ I ′. Since cb(Rd, I) = cb(Rd, I ′) = �∞(Rd), we obtain that (F3) holds with
both E = 2ω and E = 2ω + 1, hence it is equivalent to (F3′). In turn, (F3′) implies
(F2) with T = 0. The claim follows by corollary 2.11. �

Proof of corollary 2.13. First, suppose that A is (I, J )-regular with respect
to T . It follows by theorem 2.5 that conditions (T1)–(T5) hold. Thanks to
equation (5.2) above and (T1), there exists k0 ∈ ω such that supn ‖An,�k0‖ =
‖A0‖ supn

∑
k�k0

|an,k| < ∞ (since A0 �= 0), which implies (M1) and (M2). Con-
dition (M3) is just a rewriting of (T4). In addition, conditions (T3�) and (T6�) hold
by proposition 2.8(vii)-(viii). It follows that (M4), which is just a rewriting of (T6),
holds for the same reasons in the proof of corollary 2.11.

Conversely, assume that conditions (M1)-(M4) hold. (M1) implies that each An,k

is bounded, hence it is possible to choose k0 = 0 by proposition 2.8(iv), hence (T2)
holds. Accordingly, (M2), (M3), and (M4) are just rewritings of (T1), (T4), and
(T6), respectively. Lastly, (T3) follows by proposition 2.8(iii) and (vii), and (T5) is
implied by (T6). To sum up, conditions (T1)–(T5) hold, and the conclusion follows
by theorem 2.5. �

Proof of theorem 2.14. It proceeds on the same lines of the proof of theorem 2.5
(recalling the (T5) implies (T2�)), with the only difference that it is not necessarily
true that J0 = J1 = ω but only J0, J1 ∈ J �. �

Proof of corollary 2.15. Proceeding as in the proof of corollary 2.11, note that con-
ditions (R1) and (R2) are simply a rewriting of (T1�), (R3) is a rewriting of (T4),
and (R4) is a rewriting of (T6). Since each An,k is bounded, we choose k0 = f(n) = 0
for all n ∈ Qt0 in the statement of theorem 2.14.

First, assume that A satisfies (2.2). It follows by theorem 2.14 that (T1�), (T4),
and (T5) hold. In addition, (T1�) implies (T3�) by lemma 3.1 and corollary 3.3; and
condition (T6�) holds by lemma 3.4. We conclude by corollary 4.2 that A satisfies
(T6).

Conversely, assume that (T1�), (T4), and (T6) hold. Then (T6) implies (T5). As
before, (T1�) implies (T3�), so that A satisfies (T3) by lemma 3.1. The conclusion
follows by theorem 2.14. �
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Proof of theorem 2.17. Suppose for the sake of contradiction that such a matrix
A exists. Since A ∈ (c00(X, I), �∞(Y )), it follows by theorem 3.16 that

∃k1 ∈ ω, ∀ k � k1,∀n ∈ ω, An,k = 0.

At this point, since A is also (I, J )-regular with respect to T , then (T1)–(T5) hold
by theorem 2.5. In addition, T is a nonzero linear operator, hence there exists (a
nonzero) x ∈ X such that y := Tx �= 0, and pick x := (x, x, . . .). Since A satisfies
(2.5), we obtain that J - lim Ax = y. However, it follows by condition (T5) that

J - limn Anx = J - limn

∑
k<k1

An,kx = 0,

providing the desired contradiction. �

Proof of theorem 2.18. This is an immediate consequence of theorem 3.16. �

Proof of theorem 2.20. First, suppose that (T1�), (T3�), (T4), and (T5�) hold for
some k0 ∈ ω. Fix a sequence x such that I- lim x = η. By (T3�), Ax is well defined.
Moreover, since (T5�) implies (T2�), we can pick κ and J1 ∈ J � as in the proof of
theorem 3.8, and define E := {k ∈ ω : ‖xk − η‖ � 1} ∈ I. Using (T5�), there exists
J2 ∈ J � such that

∥∥∥∑
k∈E,k�k0

An,kxk

∥∥∥ � 1 for all n ∈ J2. At this point, it follows

by (T1�) that

‖Anx‖ �
∥∥∥∑

k<k0
An,kxk

∥∥∥ +
∥∥∥∑

k∈E,k�k0
An,kxk

∥∥∥ +
∥∥∥∑

k/∈E,k�k0
An,kxk

∥∥∥
� κk0 + 1 + sup{‖xk‖ : k /∈ E} · supt∈J0

∥∥At,Ec\[0,k0)

∥∥
� κk0 + 1 + (‖η‖ + 1) · supt∈J0

‖At,�k0‖

for all n ∈ J , where J := J0 ∩ J1 ∩ J2 ∈ J �. Therefore Ax ∈ �∞(Y, J ).
We conclude as in the proof of theorem 2.5 that A satisfies (2.6), with the only

difference that Inequality (5.1) holds for all n ∈ J0, once we replace supt ‖At,�k0‖
with supt∈J0

‖At,�k0‖.
Conversely, if A satisfies (2.6), then (T3�) holds because the sequence Ax is

well defined for each x ∈ c(X, I); moreover, A ∈ (cb(X, I), c(Y, J )), and it follows
by theorem 2.14 that conditions (T1�) and (T4) hold. Lastly, if x is a sequence
supported on I, then J - lim Ax = 0, which proves (T5�). �

Proof of theorem 2.21. Thanks to theorem 2.20, we have only to show that
if A satisfies (2.6) then (T1�) holds. This follows by theorem 3.7 since A ∈
(c(X), �∞(Y, J )), with k0 = f(n) = 0 for all n ∈ ω \ J0 if each An,k is bounded. �

6. Closing remarks

We leave as open questions for the reader to check whether theorem 4.1 holds for
the larger class of rapid+ P+-ideals J , and whether this condition characterizes the
latter class of ideals in the same spirit of [12, Theorem 5.1]. An analogue question
could be asked for theorem 3.6. In addition, it would be interesting to obtain a
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characterization of the matrix class (c(X, Z), c(Y, Z)), analogously to theorem
2.21.
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