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Abstract

This note furnishes an example showing that the main result (Theorem 4) in Toumi [‘When lattice
homomorphisms of Archimedean vector lattices are Riesz homomorphisms’, J. Aust. Math. Soc. 87
(2009), 263-273] is false.
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Throughout this note, all Riesz spaces under consideration are assumed to be
Archimedean. Let E and F be two Riesz spaces. A mapping T : E — F is said to
be a lattice homomorphism whenever T(x Vy)=TxV Ty and T(xAy)=Tx ATy
for all x,y € E. The problem of linearity of a lattice homomorphism between Riesz
spaces was initiated by Mena and Roth in their paper [3], where they proved that if X
and Y are compact Hausdorff spaces and T : C(X) — C(Y) is a lattice homomorphism
such that T(al) = a1 for all @ € R, then T is linear. In [4], Thanh generalized this
result to the case when X and Y are realcompact spaces. See also [2] by Lochan
and Strauss for another generalization. In [1], Ercan and Wickstead extended this
investigation to lattice homomorphisms between uniformly complete Riesz spaces
with order units. Their main result was the following. If E is a uniformly complete
Riesz space with a strong order unit e, F is a uniformly complete Riesz space, and
T : E — F is a lattice homomorphism such that 7'(ae) = aT'(e) for each « € R, then
T is linear. Recently, Toumi [5] gave the following improvement of the above result.
Let E be a Riesz space with a strong order unit ¢, F be a Riesz space,and 7 : E — F
be a lattice homomorphism such that 7'(ae) = aT'(e) for each @ € R*; then T is linear.
Unfortunately, this result is false, as shown by the following example.

ExampLE 1. Let E and F be nontrivial Riesz spaces. Let T : E — F be the mapping
defined by T (x) = x* for all x € E. Then T is a nonlinear lattice homomorphism and
T(ax) = aT(x)foralla e R* and all x € E.
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Proor. It is well known that
T(xVy)=(xVy =x" vy =T@)VTQ)

and
@xA=@AY =x" Ay =T(X)AT()

for all x,y € E. It follows that T is a lattice homomorphism. Moreover,
T(ax) = (ax)" = a(x)" = aT(x)

for all @ € R* and all x € E. To see that T is not linear, take x € E with x > 0 and
observe that
T(=x)=(=x)"=0 and T(x)==x.

Thus, T(—x) # —T(x) and T is not linear. O

To prove this result, the author used the following affirmation (see the proof of [5,
Theorem 4, page 270, line 13]). If E is a Riesz space with a strong order unit e, F
is a Riesz space, and 7 : E — F is a lattice homomorphism such that T (ae) = aT (e)
for each @ € R*, then T(x)~ = T(x") for all x € E. Example 1 above shows that this
assertion is false. Indeed, with the same notation in Example 1,

Tx) " =(xH)"=0 and TG ) =) "=x
for all x € E. Thus, for x ¢ E*, T(x)~ # T(x") and we are done.
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