COMMENT ON

'POSITIVELY HOMOGENEOUS LATTICE HOMOMORPHISMS BETWEEN RIESZ SPACES NEED NOT BE LINEAR'

FETHI BEN AMOR
(Received 14 September 2015; accepted 13 April 2016; first published online 8 July 2016)

Abstract

This note furnishes an example showing that the main result (Theorem 4) in Toumi ['When lattice homomorphisms of Archimedean vector lattices are Riesz homomorphisms', J. Aust. Math. Soc. 87 (2009), 263-273] is false.

2010 Mathematics subject classification: primary 46A40; secondary 47B65.
Keywords and phrases: lattice homomorphism.
Throughout this note, all Riesz spaces under consideration are assumed to be Archimedean. Let E and F be two Riesz spaces. A mapping $T: E \rightarrow F$ is said to be a lattice homomorphism whenever $T(x \vee y)=T x \vee T y$ and $T(x \wedge y)=T x \wedge T y$ for all $x, y \in E$. The problem of linearity of a lattice homomorphism between Riesz spaces was initiated by Mena and Roth in their paper [3], where they proved that if X and Y are compact Hausdorff spaces and $T: C(X) \rightarrow C(Y)$ is a lattice homomorphism such that $T(\alpha \mathbf{1})=\alpha \mathbf{1}$ for all $\alpha \in \mathbb{R}$, then T is linear. In [4], Thanh generalized this result to the case when X and Y are realcompact spaces. See also [2] by Lochan and Strauss for another generalization. In [1], Ercan and Wickstead extended this investigation to lattice homomorphisms between uniformly complete Riesz spaces with order units. Their main result was the following. If E is a uniformly complete Riesz space with a strong order unit e, F is a uniformly complete Riesz space, and $T: E \rightarrow F$ is a lattice homomorphism such that $T(\alpha \mathbf{e})=\alpha T(\mathbf{e})$ for each $\alpha \in \mathbb{R}$, then T is linear. Recently, Toumi [5] gave the following improvement of the above result. Let E be a Riesz space with a strong order unit e, F be a Riesz space, and $T: E \rightarrow F$ be a lattice homomorphism such that $T(\alpha \mathbf{e})=\alpha T(\mathbf{e})$ for each $\alpha \in \mathbb{R}^{+}$; then T is linear. Unfortunately, this result is false, as shown by the following example.
Example 1. Let E and F be nontrivial Riesz spaces. Let $T: E \rightarrow F$ be the mapping defined by $T(x)=x^{+}$for all $x \in E$. Then T is a nonlinear lattice homomorphism and $T(\alpha x)=\alpha T(x)$ for all $\alpha \in \mathbb{R}^{+}$and all $x \in E$.

[^0]Proof. It is well known that

$$
T(x \vee y)=(x \vee y)^{+}=x^{+} \vee y^{+}=T(x) \vee T(y)
$$

and

$$
(x \wedge y)=(x \wedge y)^{+}=x^{+} \wedge y^{+}=T(x) \wedge T(y)
$$

for all $x, y \in E$. It follows that T is a lattice homomorphism. Moreover,

$$
T(\alpha x)=(\alpha x)^{+}=\alpha(x)^{+}=\alpha T(x)
$$

for all $\alpha \in \mathbb{R}^{+}$and all $x \in E$. To see that T is not linear, take $x \in E$ with $x>0$ and observe that

$$
T(-x)=(-x)^{+}=0 \quad \text { and } \quad T(x)=x .
$$

Thus, $T(-x) \neq-T(x)$ and T is not linear.
To prove this result, the author used the following affirmation (see the proof of [5, Theorem 4, page 270, line 13]). If E is a Riesz space with a strong order unit e, F is a Riesz space, and $T: E \rightarrow F$ is a lattice homomorphism such that $T(\alpha \mathbf{e})=\alpha T(\mathbf{e})$ for each $\alpha \in \mathbb{R}^{+}$, then $T(x)^{-}=T\left(x^{-}\right)$for all $x \in E$. Example 1 above shows that this assertion is false. Indeed, with the same notation in Example 1,

$$
T(x)^{-}=\left(x^{+}\right)^{-}=0 \quad \text { and } \quad T\left(x^{-}\right)=\left(x^{-}\right)^{+}=x^{-}
$$

for all $x \in E$. Thus, for $x \notin E^{+}, T(x)^{-} \neq T\left(x^{-}\right)$and we are done.

References

[1] Z. Ercan and A. W. Wickstead, 'When a lattice homomorphism is a Riesz homomorphism', Math. Nachr. 279 (2006), 1024-1027.
[2] R. Lochan and D. Strauss, 'Lattice homomorphisms of spaces of continuous functions', J. Lond. Math. Soc. 25 (1982), 379-384.
[3] R. Mena and B. Roth, 'Homomorphisms of lattices of continuous functions', Proc. Amer. Math. Soc. 71 (1978), 11-12.
[4] D. T. Thanh, 'A generalization of a theorem of R. Mena and R. Roth', Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 34 (1992), 167-171.
[5] M. A. Toumi, 'When lattice homomorphisms of Archimedean vector lattices are Riesz homomorphisms', J. Aust. Math. Soc. 87 (2009), 263-273.

FETHI BEN AMOR, Research Laboratory LATAO,
Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis El-Manar, 2092 El-Manar, Tunisia
e-mail: fethi.benamor@ipest.rnu.tn

[^0]: (C) 2016 Australian Mathematical Publishing Association Inc. 1446-7887/2016 \$16.00

