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Abstract

This note furnishes an example showing that the main result (Theorem 4) in Toumi [‘When lattice
homomorphisms of Archimedean vector lattices are Riesz homomorphisms’, J. Aust. Math. Soc. 87
(2009), 263–273] is false.
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Throughout this note, all Riesz spaces under consideration are assumed to be
Archimedean. Let E and F be two Riesz spaces. A mapping T : E → F is said to
be a lattice homomorphism whenever T (x ∨ y) = T x ∨ Ty and T (x ∧ y) = T x ∧ Ty
for all x, y ∈ E. The problem of linearity of a lattice homomorphism between Riesz
spaces was initiated by Mena and Roth in their paper [3], where they proved that if X
and Y are compact Hausdorff spaces and T : C(X)→ C(Y) is a lattice homomorphism
such that T (α1) = α1 for all α ∈ R, then T is linear. In [4], Thanh generalized this
result to the case when X and Y are realcompact spaces. See also [2] by Lochan
and Strauss for another generalization. In [1], Ercan and Wickstead extended this
investigation to lattice homomorphisms between uniformly complete Riesz spaces
with order units. Their main result was the following. If E is a uniformly complete
Riesz space with a strong order unit e, F is a uniformly complete Riesz space, and
T : E → F is a lattice homomorphism such that T (αe) = αT (e) for each α ∈ R, then
T is linear. Recently, Toumi [5] gave the following improvement of the above result.
Let E be a Riesz space with a strong order unit e, F be a Riesz space, and T : E → F
be a lattice homomorphism such that T (αe) = αT (e) for each α ∈ R+; then T is linear.
Unfortunately, this result is false, as shown by the following example.

Example 1. Let E and F be nontrivial Riesz spaces. Let T : E → F be the mapping
defined by T (x) = x+ for all x ∈ E. Then T is a nonlinear lattice homomorphism and
T (αx) = αT (x) for all α ∈ R+ and all x ∈ E.
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Proof. It is well known that

T (x ∨ y) = (x ∨ y)+ = x+ ∨ y+ = T (x) ∨ T (y)

and
(x ∧ y) = (x ∧ y)+ = x+ ∧ y+ = T (x) ∧ T (y)

for all x, y ∈ E. It follows that T is a lattice homomorphism. Moreover,

T (αx) = (αx)+ = α(x)+ = αT (x)

for all α ∈ R+ and all x ∈ E. To see that T is not linear, take x ∈ E with x > 0 and
observe that

T (−x) = (−x)+ = 0 and T (x) = x.

Thus, T (−x) , −T (x) and T is not linear. �

To prove this result, the author used the following affirmation (see the proof of [5,
Theorem 4, page 270, line 13]). If E is a Riesz space with a strong order unit e, F
is a Riesz space, and T : E → F is a lattice homomorphism such that T (αe) = αT (e)
for each α ∈ R+, then T (x)− = T (x−) for all x ∈ E. Example 1 above shows that this
assertion is false. Indeed, with the same notation in Example 1,

T (x)− = (x+)− = 0 and T (x−) = (x−)+ = x−

for all x ∈ E. Thus, for x < E+, T (x)− , T (x−) and we are done.
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