MULTIPLICATION OPERATORS AND DYNAMICAL SYSTEMS

R. K. SINGH and JASBIR SINGH MANHAS

(Received 27 June 1990)

Communicated by A. J. Pryde

Abstract

Let X be a completely regular Hausdorff space, let V be a system of weights on X and let T be a locally convex Hausdorff topological vector space. Then $CV_b(X, T)$ is a locally convex space of vector-valued continuous functions with a topology generated by seminorms which are weighted analogues of the supremum norm. In the present paper we characterize multiplication operators on the space $CV_b(X, T)$ induced by operator-valued mappings and then obtain a (linear) dynamical system on this weighted function space.

1991 Mathematics subject classification (Amer. Math. Soc.): 34 C 35, 46 E 40, 47 B 38. Keywords and phrases: system of weights, locally convex spaces, multiplication operators, dynamical systems.

Introduction

Let X be a non-empty set, let T be a topological algebra and let L(X, T) be the linear space of all functions from X to T. Let F(X, T) be a topological vector subspace of L(X, T). Let ψ be a mapping on X such that $\psi f \in$ L(X, T) whenever $f \in F(X, T)$. This gives rise to a linear transformation $M_{\psi}: F(X, T) \to L(X, T)$ defined as $M_{\psi}f = \psi f$, where the product of functions is defined pointwise. In case M_{ψ} takes F(X, T) into itself and is continuous, it is called a multiplication operator on F(X, T) induced by the mapping ψ .

This paper is a continuation of our earlier paper [8] in which we have studied multiplication operators on weighted spaces of vector-valued con-

^{© 1992} Australian Mathematical Society 0263-6115/92 \$A2.00 + 0.00

tinuous functions induced by scalar-valued and vector-valued mappings. In the present paper we concentrate on the study of multiplication operators on weighted spaces of vector-valued mappings induced by operator-valued mappings and then we endeavor to study a (linear) dynamical system on these function spaces.

Preliminaries

Let X be a completely regular Hausdorff space, let T be a Hausdorff locally convex topological vector space over C and let C(X, T) be the vector space of all continuous functions from X into T. By cs(T) we mean the set of all continuous seminorms on T, and B(T) denotes the set of all continuous linear operators on T. By a system of weights we mean a set V of non-negative upper-semicontinuous functions on X such that, given any $x \in X$, there is some $v \in V$ for which v(x) > 0 and for every pair $u, v \in V$ and $\alpha > 0$, there exists $w \in V$ so that $\alpha u \leq w$ and $\alpha v \leq w$ (point wise on X).

Now we consider the following vector space of vector-valued continuous functions:

 $CV_{b}(X, T) = \{f \in C(X, T) : vf(X) \text{ is bounded in } T \text{ for all } v \in V\}.$

Now, let $v \in V$, $q \in cs(T)$ and $f \in C(X, T)$. If we put $||f||_{v,q} = Sup\{v(x)q(f(x)): x \in X\}$, then $||\cdot||_{v,q}$ is a seminorm on $CV_b(X, T)$ and the family $\{||\cdot||_{v,q}: v \in V \ q \in cs(T)\}$ defines a locally convex topology on $CV_b(X, T)$.

In case $T = \mathbb{C}$, we shall omit T from our notation and write $CV_b(X)$ in place of $CV_b(X, \mathbb{C})$. We also write $\|\cdot\|_v$ in place of $\|\cdot\|_{v,q}$ for each $v \in V$, where q(z) = |z|, $z \in \mathbb{C}$. We shall denote by $B_{v,q}$ the closed unit ball corresponding to the seminorm $\|\cdot\|_{v,q}$. In case T = (T, q), any normed linear space, we simply write B_v . We refer to the papers of Bierstedt [1, 2] and Prolla [7] for more details and examples of these function spaces.

Let \mathscr{F} be the family of all bounded subsets of T and let $M \in \mathscr{F}$ and $p \in cs(T)$. If we define the function

$$S_{M,p}: B(T) \to \mathbb{R}^+$$
 as $S_{M,p}(A) = \sup\{p(A(y)): y \in M\}$

then $S_{M,p}$ is a seminorm on B(T) and the family $\{S_{M,p}: M \in \mathcal{F}, p \in cs(T)\}$ defines a locally convex topology on B(T) which we call the topology of uniform convergence on bounded sets and denote by \mathcal{U} . Thus $(B(T), \mathcal{U})$ is a locally convex topological vector space of continuous linear operators on

T. For more details of these topologies on the spaces of linear operators we refer to Grothendieck [4] and Kothe [5].

2. Functions inducing multiplication operators

Throughout this section we will work under the following modest requirements, while developing our characterisation of an operator-valued mapping $\psi: X \to B(T)$ which induces a multiplication operator on $CV_b(X, T)$:

(2.a) X is a completely regular Hausdorff space;

(2.b) T is a Hausdorff locally convex topological vector space;

(2.c) V is a system of weights on X.

In the following theorem we characterise operator-valued mappings which induce multiplication operators on $CV_b(X, T)$.

2.1. THEOREM. Let $\psi: X \to B(T)$ be an operator-valued continuous function. Then $M_{\psi}: CV_b(X, T) \to CV_b(X, T)$ is a multiplication operator if and only if for every $v \in V$ and $p \in cs(T)$, there exist $u \in V$ and $q \in cs(T)$ such that $v(x)p(\psi(x)y) \leq u(x)q(y)$, for every $x \in X$ and $y \in T$.

PROOF. First, let us suppose that for every $v \in V$ and $p \in cs(T)$, there exist $u \in V$ and $q \in cs(T)$ such that

$$v(x)p(\psi(x)y) \le u(x)q(y)$$
, for every $x \in X$ and $y \in T$.

Then we shall show that M_{ψ} is a continuous linear operator on $CV_b(X, T)$. First of all, we show that M_{ψ} is an into map. Let $\{x_{\alpha} : \alpha \in \Delta\}$ be a net in X such that $x_{\alpha} \to x$. To show that $\psi(x_{\alpha})f(x_{\alpha}) \to \psi(x)f(x)$ in T, it suffices to show that for every $p \in cs(T)$ and $\varepsilon > 0$, there exists $\alpha_0 \in \Delta$ such that

$$p(\psi(x_{\alpha})f(x_{\alpha}) - \psi(x)f(x)) < \varepsilon$$
, for every $\alpha \ge \alpha_0$.

Now,

(i)
$$p(\psi(x_{\alpha})f(x_{\alpha}) - \psi(x)f(x)) \le p[(\psi(x_{\alpha}) - \psi(x))(f(x_{\alpha}))] + p[\psi(x)(f(x_{\alpha}) - f(x))].$$

Since the set $\{f(x_{\alpha}): \alpha \in \Delta\}$ is bounded in T, for every $p \in cs(T)$ and $\varepsilon > 0$, there exists $\alpha_1 \in \Delta$ such that

(ii)
$$p[(\psi(x_{\alpha}) - \psi(x))(f(x_{\alpha}))] < \varepsilon/2$$
, for every $\alpha \ge \alpha_1$.

Again, since $\psi(x)$ is a continuous linear operator on T, for every $p \in cs(T)$ and $\varepsilon > 0$, there exists a neighbourhood W of the origin in T such that

 $p(\psi(x)y) < \epsilon/2$ for every $y \in W$. Since f is continuous, there exists $\alpha_2 \in \Delta$ such that $f(x_{\alpha}) - f(x) \in W$, for $\alpha \ge \alpha_2$ and consequently

(iii)
$$p[\psi(x)f(x_{\alpha}) - f(x))] < \varepsilon/2$$
, for every $\alpha \ge \alpha_2$.

Let $\alpha_0 \in \Delta$ be such that $\alpha_1 \leq \alpha_0$ and $\alpha_2 \leq \alpha_0$. Then from (ii) and (iii) it follows that

$$p(\psi(x_{\alpha})f(x_{\alpha}) - \psi(x)f(x)) \le \varepsilon$$
, for every $\alpha \ge \alpha_0$.

This proves the continuity of ψf . Further, let $v \in V$, $p \in cs(T)$ and $f \in CV_h(X, T)$. The

$$\|\psi f\|_{v,p} = \sup\{v(x)p(\psi(x)f(x)) | x \in X\} \le \sup\{u(x)q(f(x)): x \in X\} < \infty.$$

This implies that $\psi f \in CV_b(X, T)$. Clearly M_{ψ} is linear on $CV_b(X, T)$. In order to prove the continuity of M_{ψ} on $CV_b(X, T)$, it is enough to show that M_{ψ} is continuous at the origin. For this, suppose $\{f_{\alpha}\}$ is a net in $CV_b(X, T)$ such that $\|f_{\alpha}\|_{v, p} \to 0$, for every $v \in V$ and $p \in cs(T)$.

$$\begin{split} \|M_{\psi}f_{\alpha}\|_{v,p} &= \operatorname{Sup}\{v(x)p(\psi(x)f_{\alpha}(x)) \colon x \in X\} \le \operatorname{Sup}\{u(x)q(f_{\alpha}(x)) \colon x \in X\}\\ &= \|f_{\alpha}\|_{u,q} \to 0. \end{split}$$

This proves the continuity of M_{ψ} at the origin and hence M_{ψ} is continuous on $CV_{b}(X, T)$.

Conversely, suppose M_{ψ} is a continuous linear operator on $CV_b(X, T)$. We shall show that for every $v \in V$ and $p \in cs(T)$, there exist $u \in V$ and $q \in cs(T)$ such that

$$v(x)p(\psi(x)y) \le u(x)q(y)$$
, for every $x \in X$ and $y \in T$.

Let $v \in V$ and $p \in cs(T)$. Since M_{ψ} is continuous at the origin, there exist $u \in V$ and $q \in cs(T)$ such that $M_{\psi}(B_{u,q}) \subseteq B_{v,p}$. We claim that

$$v(x)p(\psi(x)y) \le 2u(x)q(y)$$
, for every $x \in X$ and $y \in T$.

Take $x_0 \in X$, $y_0 \in T$ and set $u(x_0)q(y_0) = \varepsilon$. In case $\varepsilon > 0$, the set $G = \{x \in X : u(x)q(y_0) < 2\varepsilon\}$ is an open neighbourhood of x_0 . Thus, according to [6, Lemma 2], there exists $f \in CV_b(X)$ such that $0 \le f \le 1$, $f(x_0) = 1$ and f(X - G) = 0. Define $g(x) = f(x)y_0$, for every $x \in X$. Then clearly $g \in CV_b(X, T)$ and for every $p \in cs(T)$, $0 \le (p \circ g) \le p(y_0)$, $(p \circ g)(x_0) = p(y_0)$ and $(p \circ g)(X - G) = 0$. Let $h = (2u(x_0)q(y_0))^{-1}g$. Then clearly $h \in B_{u,q}$ and this yields that $\psi h \in B_{v,p}$. Hence $v(x)p(\psi(x)h(x) \le 1$, for every $x \in X$. From this, it follows that

$$v(x)p(\psi(x)g(x)) \le 2u(x_0)q(y_0)$$
, for every $x \in X$.

This implies that

$$v(x_0)p(\psi(x_0)y_0) \le 2u(x_0)q(y_0)$$
.

On the other hand, suppose $u(x_0)q(y_0) = 0$. Then the following three cases arise:

(i) $u(x_0) = 0$, $q(y_0) \neq 0$; (ii) $u(x_0) \neq 0$, $q(y_0) = 0$; (iii) $u(x_0) = 0$, $q(y_0) = 0$.

Let us suppose that (i) holds and let $v(x_0)p(\psi(x_0)y_0) > 0$. Put $\varepsilon = v(jx_0)p(\psi(x_0)y_0)/2$. Then $G = \{x \in X : u(x)q(y_0) < \varepsilon\}$ is an open neighbourhood of x_0 and hence again by [6, Lemma 2], there exists $f \in CV_b(X)$ such that $0 \le f \le 1$, $f(x_0) = 1$ and f(X - G) = 0. Again, define $g(x) = f(x)y_0$, for every $x \in X$. Then clearly $g \in CV_b(X, T)$ and for every $p \in \operatorname{cs}(T)$, $0 \le (p \circ g) \le p(y_0)$, $(p \circ g)(x_0) = p(y_0)$ and $(p \circ g)(X - G) = 0$. Consider $h = \varepsilon^{-1}g$. Then $h \in B_{u,q}$ and therefore $\psi h \in B_{v,p}$. Hence $v(x)p(\psi(x)h(x)) \le 1$ for every $x \in X$. This implies that

$$v(x)p(\psi(x)g(x)) \leq \frac{v(x_0)p(\psi(x_0)y_0)}{2}$$
, for every $x \in X$.

From this, it follows that

$$v(x_0)p(\psi(x_0)y_0) \le \frac{v(x_0)p(\psi(x_0)y_0)}{2}$$

which is impossible and hence in this case our claim is established.

CASE (ii). Suppose $u(x_0) \neq 0$, $q(y_0) = 0$ and $v(x_0)p(\psi(x_0)y_0) > 0$. Put $\varepsilon = v(x_0)p(\psi(x_0)y_0)/2$. Then $G = \{x \in X : u(x) < \varepsilon + u(x_0)\}$ is an open neighbourhood of x_0 and therefore by [6, Lemma 2], there exists $f \in CV_b(X)$ such that $0 \leq f \leq 1$, $f(x_0) = 1$ and f(X - G) = 0. Define $g(x) = f(x)y_0$, for every $x \in X$. Then clearly $g \in CV_b(X, T)$ and for every $p \in cs(T)$, $0 \leq (p \circ g) \leq p(y_0)$, $(p \circ g)(x_0) = p(y_0)$ and $(p \circ g)(X - G) = 0$. Consider $h = \varepsilon^{-1}g$. Then $h \in B_{u,q}$ and this yields that $\psi h \in B_{v,p}$. This implies that $v(x)p(\psi(x)h(x)) \leq 1$, for every $x \in X$. From this, it follows that

$$v(x)p(\psi(x)g(x)) \le \frac{v(x_0)p(\psi(x_0)y_0)}{2}$$
, for every $x \in X$.

Further, it implies that

$$v(x_0)p(\psi(x_0)y_0) \le \frac{v(x_0)p(\psi(x_0)y_0)}{2}$$

which is impossible and hence in this case too our claim is established.

CASE (iii). Finally, suppose $u(x_0) = 0$ and $q(y_0) = 0$. Let $v(x_0)p(\psi(x_0)y_0) > 0$ and put $\varepsilon = v(x_0)p(\psi(x_0)y_0)/2$. Then $G = \{x \in X : u(x) < \varepsilon\}$ is an open neighbourhood of x_0 and again by [6, Lemma 2], there exists $f \in CV_b(X)$ such that $0 \le f \le 1$, $f(x_0) = 1$ and f(X - G) = 0. Define $g(x) = f(x)y_0$, for every $x \in X$. Then clearly $g \in CV_b(X, T)$ and for every

 $p \in cs(T)$, $0 \le (p \circ g) \le p(y_0)$, $(p \circ g)(x_0) = p(y_0)$ and $(p \circ g)(X - G) = 0$. Consider $h = \varepsilon^{-1}g$. Then $h \in B_{u,q}$ and this implies that $\psi h \in B_{v,p}$. Hence $v(x)p(\psi(x)h(x)) \le 1$, for every $x \in X$. From this, it follows that

$$v(x)p(\psi(x)g(x)) \le \frac{v(x_0)p(\psi(x_0)y_0)}{2}$$
, for every $x \in X$.

Further, it implies that

$$v(x_0)p(\psi(x_0)y_0) \le \frac{v(x_0)p(\psi(x_0)y_0)}{2}$$

which is a contradiction and with this our claim is established. This completes the proof of the theorem.

2.2 REMARK (i). Every constant map $\psi: X \to B(T)$ induces a multiplication operator on $CV_b(X, T)$. For, if we define $\psi: X \to B(T)$ as $\psi(x) = A$, for every $x \in X$ where A is any continuous linear operator on T. Let $v \in V$, and $p \in cs(T)$. Since A is a continuous linear operator, there exist m > 0 and $q \in cs(T)$ such that

$$p(Ay) \le mq(y)$$
, for every $y \in T$.

This implies that $p(\psi(x)y) \le mq(y)$, for every $x \in X$ and $y \in T$. Further, it follows that

$$v(x)p(\psi(x)y) \le mv(x)q(y)$$
 (for every $x \in X$ and $y \in T$)
 $\le u(x)q(y)$ ((for every $x \in X$ and $y \in T$).

Hence by Theorem 2.1, M_w is a multiplication operator on $CV_b(X, T)$.

(ii) Let X be a completely regular Hausdorff space and let T = Y be any Banach space. Then every continuous bounded operator-valued mapping induces a multiplication operator on $CV_b(X, Y)$. For, let $\psi: X \to B(Y)$ be a bounded operator-valued mapping. Then there exists m > 0 such that $\|\psi(x)\| \le m$, for every $x \in X$, Let $v \in V$, $x \in X$ and $y \in Y$. Then

$$\begin{aligned} v(x)\|\psi(x)y\| &\leq v(x)\|\psi(x)\| \|y\| \leq mv(x)\|y\| \\ &\leq u(x)\|y\| \quad \text{(for every } x \in X \text{ and } y \in Y\text{)}. \end{aligned}$$

Hence by Theorem 2.1, M_w is a multiplication operator on $CV_b(X, Y)$.

If T = Y is any Banach space and V is the system of weights generated by the characteristic functions of all compact subsets, then it turns out that every continuous operator-valued mapping induces a multiplication operator on $CV_b(X, Y)$. This we shall establish in the following proposition.

2.3 **PROPOSITION.** Let X be a completely regular Hausdorff space and let $V = \{\lambda \chi_K : \lambda \ge 0, K \subset X \text{ and } K \text{ is a compact set} \}.$ Then every continuous mapping $\psi: X \to B(Y)$, induces a multiplication operator M_{ψ} on $CV_b(X, Y)$.

PROOF. In order to show that M_{ψ} is a continuous linear operator on $CV_b(X, Y)$, in the light of Theorem 2.1 it is enough to show that for every $v \in V$, there exists $u \in V$ such that

$$||\psi(x)|| ||\psi(x)y|| \le u(x)||y||$$
, for every $x \in X$ and $y \in Y$

If $v \in V$, then $v = \lambda \chi_K$, for some compact subset K of X. Since $\psi: X \to B(Y)$ is continuous, $\psi(K)$ is a compact subset in B(Y). Let $m = \sup\{\|\psi(x)\|: x \in K\}$. Put $u(x) = \lambda m \chi_K(x)$. Then $u \in V$. Let $x \in K$ and $y \in Y$. Then

 $\|\psi(x)y\| \le \|\psi(x)\| \|y\| \le m\|y\|.$

From this, it follows that

$$\lambda \chi_{K}(x) \| \psi(x) y \| \leq \lambda \chi_{K}(x) m \| y \|.$$

This implies that

$$v(x) \| \psi(x)y \| \le u(x) \|y\|$$
, for every $x \in K$ and $y \in Y$

On the other hand, if $x \in X \setminus K$, then obviously

$$v(x)\|\psi(x)y\| \le u(x)\|y\|.$$

Thus $v(x) || \psi(x) y || \le u(x) || y ||$, for every $x \in X$, $y \in Y$ and hence M_{ψ} is a multiplication operator on $CV_b(X, Y)$. This completes the proof of the theorem.

2.4 REMARK (i). From the above proposition, we note that if $\psi: X \to B(T)$ where T is any Banach space, is an unbounded continuous operatorvalued mapping, even then ψ gives rise to a multiplication operator M_{ψ} on $CV_b(X, T)$, where V is the system of weights generated by the characteristic functions of all compact subsets of X.

(ii) In the above proposition, if we replace the system of weights

 $V = \{\lambda \chi_K : \lambda \ge 0, K \subset X \text{ and } K \text{ is a compact set} \}$

by $C_c^+(X)$, the set of all positive continuous functions having compact supports, even then the conclusion holds.

2.5 COROLLARY. Let X have the discrete topology and

 $V = \{\lambda \chi_K : \lambda \ge 0, K \subset X \text{ and } K \text{ is a compact set} \}.$

Then every map $\psi: X \to B(T)$, where T is a Banach space, induces a multiplication operator M_{ψ} on $CV_b(X, T)$.

Now, we shall give certain examples of operator-valued mappings which induce and do not induce multiplication operators on $CV_h(X, T)$.

2.6 EXAMPLE. Let $X = \mathbb{N}$ with discrete topology and let $T = l^2$, the Hilbert space of all square summable sequences of complex numbers. If we define $\psi \colon \mathbb{N} \to B(l^2)$ by $\psi(n) = U^n$, where U is the unilateral shift operator on l^2 , then

$$\|\psi(n)\| = \|U^n\| \le \|U\|^n \le 1$$
, for every $n \in \mathbb{N}$.

This shows that ψ is a bounded operator-valued mapping and hence by Remark 2.2 (ii), M_{ψ} is a multiplication operator on $CV_b(X, T)$.

2.7 EXAMPLE. Let $X = \mathbb{N}$, with discrete topology and $T = \mathbb{R}^2$, the real Banach space. Define $\psi \colon \mathbb{N} \to B(\mathbb{R}^2)$ by $\psi(n) = P^n$, where P is a projection operator on \mathbb{R}^2 . Then $\|\psi(n)\| = \|P^n\| \le \|P\|^n \le 1$. This implies that ψ is a bounded operator-valued mapping and hence by Remark 2.2(ii), M_{ψ} is a multiplication operator on $CV_b(X, T)$.

2.8 EXAMPLE. Let $X = \mathbb{N}$ be the set of natural numbers with discrete topology and let $V = K^+(\mathbb{N})$, the system of all positive constant weights. Let $T = C_b(\mathbb{N}) = l^\infty$ be the Banach space of all bounded sequences of complex numbers and $B(l^\infty)$, the Banach algebra of bounded operators on l^∞ . Define $\psi \colon \mathbb{N} \to B(l^\infty)$ as $\psi(n) = C_{\phi^n}$, where $C_{\phi} \colon l^\infty \to l^\infty$ is the composition operator induced by a map $\phi \colon \mathbb{N} \to \mathbb{N}$. Then it can be seen that for every $v \in V$, there exists $u \in V$ such that

$$v(n) \| \psi(n) f \| \le u(n) \| f \|$$
, for every $n \in \mathbb{N}$ and $f \in l^{\infty}$

and hence by Theorem 2.1, M_{ψ} is a multiplication operator on $CV_b(X, T)$.

2.9 EXAMPLE. Let $X = \mathbb{N}$, the set of natural numbers with discrete topology, $T = l^2$ and let $B(l^2)$ be the Banach space of bounded linear operators on l^2 . Let v(n) = n, for every $n \in \mathbb{N}$. Then $V = \{\lambda v : \lambda \ge 0\}$ is a system of weights on \mathbb{N} . Let us define $\psi : \mathbb{N} \to B(l^2)$ as $\psi(n) = A^n$, where A is the multiplication operator on l^2 induced by the constant function 2, that is, $A: l^2 \to l^2$ is defined as

$$A(x_1, x_2, \ldots) = 2(x_1, x_2, \ldots).$$

Then clearly one can check that

$$v(n)\|\psi(n)x\| \not\leq u(n)\|x\|.$$

Thus ψ does not induce a multiplication operator M_{ψ} on $CV_b(\mathbb{N}, l^2)$. In fact M_{ψ} is not even an into map. For, take $f: \mathbb{N} \to l^2$ as $f(n) = 1/n^2$. Then

obviously $f \in CV_b(\mathbb{N}, l^2)$ but $\psi f(n) = \psi(n)f(n) = A^n(1/n^2) = 2^n/n^2 \to \infty$ as $n \to \infty$ and therefore $\psi f \notin CV_b(\mathbb{N}, l^2)$. In this example, if we take V as the system of positive constant weights on \mathbb{N} , even then ψ does not induce a multiplication operator M_{ψ} on $CV_b(\mathbb{N}, l^2)$. If fact, if f(n) = 1/n, then $f \in CV_b(\mathbb{N}, l^2)$ but $\psi f \notin CV_b(\mathbb{N}, l^2)$.

3. Dynamical systems induced by multiplication operators

Throughout this section we shall take X to be the real line \mathbb{R} (with the usual topology) and T to be a Banach space. We shall denote by B(T), the Banach algebra of all bounded linear operators on T and by $F_b(\mathbb{R})$, the set of all continuous bounded functions on \mathbb{R} . Let V be a system of weights on \mathbb{R} . Then clearly $CV_b(\mathbb{R}, T)$ is a locally convex Hausdorff topological vector space with the weighted topology defined in the last section. Now let U be a countable set of non-negative upper semicontinuous functions on \mathbb{R} such that $W = \{\lambda u: \lambda \ge 0, u \in U\}$ is a system of weights on \mathbb{R} with $W \approx V$. Then one can easily prove that the weighted space $CV_b(\mathbb{R}, T)$ is metrizable. In case $T = \mathbb{C}$, the metrizable weighted space $CV_b(\mathbb{R})$ is a special case of the result proved by Summers [10, Theorem 2.10].

Now, fix $g \in F_b(\mathbb{R})$ and $A \in B(T)$. For each $t \in \mathbb{R}$, we define $\psi_t : \mathbb{R} \to B(T)$ as $\psi_t(w) = e^{tg(w)A}$, for every $w \in \mathbb{R}$. We can easily see that ψ_t is a bounded operator-valued mapping from $\mathbb{R} \to B(T)$ and hence by Remark 2.2(ii), ψ_t induces a multiplication operator M_{ψ_t} on the weighted metrizable locally convex Hausdorff space $CV_b(\mathbb{R}, T)$.

3.1 THEOREM. Let $g \in F_b(\mathbb{R})$, $A \in B(T)$ and let $\prod_{A,g} : \mathbb{R} \times CV_b(\mathbb{R}, T)$ $\rightarrow C(\mathbb{R}, T)$ be the function defined by $\prod_{A,g}(t, f) = M_{\psi_i} f$ for $t \in \mathbb{R}$ and $f \in CV_b(\mathbb{R}, T)$. Then $\prod_{A,g}$ is a dynamical system on $CV_b(\mathbb{R}, T)$.

PROOF. Since M_{ψ_t} is a multiplication operator on $CV_b(\mathbb{R}, T)$ for every $t \in \mathbb{R}$, we can conclude that $\prod_{A,g}(t, f)$ belongs to $CV_b(\mathbb{R}, T)$ whenever $t \in \mathbb{R}$ and $f \in CV_b(\mathbb{R}, T)$. Thus $\prod_{A,g}$ is a function from $\mathbb{R} \times CV_b(\mathbb{R}, T)$ to $CV_b(\mathbb{R}, T)$. It can be easily seen that $\prod_{A,g}(0, f) = f$, and

$$\Pi_{A,g}(t+s, f) = \Pi_{A,g}(t, \Pi_{A,g}(s, f))$$

for all $t, s \in \mathbb{R}$ and $f \in CV_h(\mathbb{R}, T)$.

In order to show that $\Pi_{A,g}$ is a dynamical system on $CV_b(\mathbb{R}, T)$, it is enough to show that $\Pi_{A,g}$ is a separately continuous map since joint continuity follows from [3, Theorem 1]. Let us first prove the continuity of

 $\begin{array}{l} \Pi_{A,\,g} \ \text{in the first argument. Let} \ t_n \to t \ \text{in } \ \mathbb{R} \ \text{. Then} \ |t_n - t| \to 0 \ \text{as} \ n \to \infty \,. \end{array} \\ \text{We shall show that} \ \Pi_{A,\,g}(t_n,\,f) \to \Pi_{A,\,g}(t,\,f) \ \text{in} \ CV_b(\mathbb{R},\,T) \,. \ \text{Let} \ v \in V \,. \end{array} \\ \text{Then} \end{array}$

$$\begin{split} \|\Pi_{A,g}(t_n, f) - \Pi_{A,g}(t, f)\|_v \| &= \|\psi_{t_n} f - \psi_t f\|_v \\ &= \mathrm{Sup}\{v(w)\|(\psi_{t_n}(w) - \psi_t(w))(f(w))\| \colon w \in \mathbb{R}\} \\ &= \mathrm{Sup}\{v(w)\|(e^{t_n g(w)A - tg(w)A} - I)e^{tg(w)A}(f(w))\| \colon w \in \mathbb{R}\} \\ &\leq \mathrm{Sup}\{v(w)\|(e^{t_n g(w)A - tg(w)A} - I)\| \|e^{tg(w)A}(f(w))\| \colon w \in \mathbb{R}\} \\ &\leq \mathrm{Sup}\{\|(e^{t_n g(w)A - tg(w)A} - I)\| \colon w \in \mathbb{R}\} \mathrm{Sup}\{v(w)\|e^{tg(w)A}(f(w))\| \colon w \in \mathbb{R}\} \\ &\leq (e^{|t_n - t|M||A||} - 1)\|f\|_u \to 0 \text{ as } |t_n - t| \to 0. \end{split}$$

This proves the continuity of $\Pi_{A,g}$ in the first argument. Now, we shall prove the continuity of $\Pi_{A,g}$ in the second argument. Let $\{f_{\alpha}\}$ be a net in $CV_b(\mathbb{R}, T)$ such that $f_{\alpha} \to f$ in $CV_b(\mathbb{R}, T)$. Then $\|f_{\alpha} - f\|_v \to 0$ for every $v \in V$. We shall show that

$$\Pi_{A,g}(t, f_{\alpha}) \to \Pi_{A,g}(t, f) \quad \text{in} \quad CV_b(\mathbb{R}, T).$$

For this, let $v \in V$. Then

$$\begin{split} \|\Pi_{A,g}(t,f_{\alpha}) - \Pi_{A,g}(t,f)\|_{v} &= \|\psi_{t}f_{\alpha} - \psi_{t}f\|_{v} \\ &= \mathrm{Sup}\{v(w)\|\psi_{t}(w)(f_{\alpha}(w) - f(w))\| \colon w \in \mathbb{R}\} \\ &\leq \mathrm{Sup}\{u(w)\|f_{\alpha}(w) - f(w)\| \colon w \in \mathbb{R}\} \\ &= \|f_{\alpha} - f\|_{u} \to 0. \end{split}$$

This proves the continuity of $\Pi_{A,g}$ in the second argument and hence $\Pi_{A,g}$ is a (linear) dynamical system on the weighted space $CV_b(\mathbb{R}, T)$.

References

- K. D. Bierstedt, 'Gewichtete Raume Stetiger Vektorwertiger Funktionen und das Injektive Tensor-produkt I', J. reine u. angew Math. 259 (1973), 186-210.
- [2] K. D. Bierstedt, 'Gewichtete Reume Stetiger Vektorwertiger Funktionen und das Injektive Tensor-produkt II', J. reine u. angew Math. 260 (1973), 133-146.
- [3] P. Chernoff, and J. Marsden, 'On continuity and smoothness of group actions', Bull. Amer. Math. Soc. 76 (1970), 1044-1049.
- [4] A. Gronthedieck, Topological Vector Spaces, (Gordon and Breach, New York, 1975).
- [5] G. Kothe, Topological Vector Spaces I (Springer-Verlag, Berlin, 1969).
- [6] L. Nachbin, *Elements of Approximation Theory*, Math. Studies 14, (Van Nostrand, Princeton, 1967).

[7] J. B. Prolla, 'Weighted spaces of vector-valued continuous functions', Ann. Mat. Pura. Appl. 89 (1971), 145-158.

[11]

- [8] R. K. Singh and Jasbir Singh Manhas, 'Multiplication operators on spaces of vectorvalued continuous functions', J. Austral. Math. Soc. (Series A), 50 (1991), 98-107.
- [9] R. K. Singh and W. H. Summers, 'Composition operators on weighted spaces of continuous functions', J. Austral. Math. Soc. (Series A) 45 (1988), 303-319.
- [10] W. H. Summers, Weighted locally convex spaces of continuous functions, Ph.D. Dissertation, Louisiana State University, 1968.

University of Jammu Jammu-180004 India